人教版数学六年级下册数学广角---鸽巢问题

合集下载

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。

教学“鸽巢问题”,教材安排了两个例题。

这节课教学内容是例1。

例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。

初步接触“鸽巢问题”对于学生来说,有一定的难度。

教学时,应放手让学生自主探索。

教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。

二、教学内容教材第68页例1及“做一做”第1、2题。

三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。

2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。

3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。

四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。

教学难点:初步理解“鸽巢原理”,能口头表达推理过程。

五、教学准备一副扑克牌、课件等。

六、教学过程(一)引入新知1.抢凳子游戏。

2.抽扑克牌游戏。

教师:这类问题在数学上称为鸽巢问题(板书)。

因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。

【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)探究新知1.教学例1。

(1)把3枝铅笔放进2个笔筒中。

想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。

小学数学人教版六年级下册《第一课数学广角(鸽巢问题)》课件

小学数学人教版六年级下册《第一课数学广角(鸽巢问题)》课件

07
17
27
1
0
0
0
1
4
4
3
3
7
37
27
37
2
0
1
1
2
新知导入
把7本书平 均分成3份 7÷3=2…1,如果 每个抽屉放2本, 还剩1本,把剩下 的这1本放进任何 一个抽屉,该抽屉 里就有3本书了。
把8本书放进3 个抽屉里呢?
8÷3=2…2,把8 本书放进3个抽屉 里,总有一个抽屉 至少放进3本书。
数学人教版 六年级下
鸽巢问题
新知导入
我给大家表演一个“魔 术”。一副牌,取出大小 王,还剩52张牌,你们5人 每人随意抽一张,我知道 至少有2张牌是同花色的。
老师说得对不对呢?
新知导入
把4支铅笔放进3个笔筒中, 不管怎么放,总有一个笔 筒里至少有2支铅笔。
“总有”和“至 少”什么意思?
为什么呢?
新知导入
试一试: 把5支铅笔放到4个笔筒里呢? 把6支铅笔放到5个笔筒里呢? 你发现了什么规律?
首先通过平均分,余下1支,不管放在哪个笔筒里,一 定会出现“总有一个盒子里至少有2支铅笔”。
新知导入
抽屉原理一
只要物体数量是抽屉数量的1倍多,总有一个抽屉里至少放 进2个物体。
新知导入
1. 5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进2 只鸽子。为什么?
至少取5个球可以保证 取到两个颜色相同的球。
新知导入
小组讨论
鱼缸里有足够数量的金鱼5种, 最少捞出多少条,可以保证捞 到6条同种类的金鱼?
(6-1) × 5+1=26(条)
抽取问题
要保证摸出n个同色的球,摸出的球的数 量至少要比颜色数的(n-1)倍多“1”

六年级数学下册数学广角——鸽巢问题(含答案)人教版

六年级数学下册数学广角——鸽巢问题(含答案)人教版

六年级数学下册数学广角——鸽巢问题(含答案)人教版一、填空题1.六(1)班有50个学生,他们至少有(________)人会在同一个月过生日。

2.一副扑克牌54张,至少要抽取(________)张,才能保证其中至少有两张牌点数相同。

3.盒子里有同样大小的红、黄、蓝、白四种颜色的玻璃球各12个,要想摸出的球一定有2个是同色的,至少要摸出(________)个球;要想摸出的球一定有4个是同色的,至少要摸出(________)个球。

4.把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。

至少要取(______)个球,可以保证取到两个颜色相同的球;至少要取(________)个球,可以保证取到两种颜色的球。

5.有形状、长短都完全一样的红筷子、黑筷子、白筷子、黄筷子、紫筷子和花筷子各25根。

在黑暗中至少应摸出(________)根筷子,才能保证摸出的筷子至少有8双(每两根花筷子或两根同色的筷子为一双)。

6.从1至36个数中,最多可以取出(________)个数,使得这些数种没有两数的差是5的倍数。

7.一次测验共有10道问答题,每题的评分标准是:回答完全正确,得5分;回答不完全正确,得3分,回答完全错误或不回答,得0分。

至少(________)人参加这次测验,才能保证至少有3人得得分相同。

8.袋中有外形完全一样的红、黄、蓝三种颜色的小球各10个,每个小朋友只能从中摸出1个小球,至少有(________)个小朋友摸球,才能保证一定有两个人摸的球颜色一样。

9.有红、黄、蓝3种颜色的球各5个,放在同一个盒子里,至少取出(______)个,可以保证取到2个颜色相同的球。

10.10只鸽子飞回3个鸽舍,至少有(________)只鸽子要飞进同一个鸽舍里。

11.李亮练习打靶,5次共打了33环,那么至少有一次不低于(________)环。

12.把6串葡萄放在5个盘子里,总有一个盘子里至少放(________)串葡萄;如果把这6串葡萄放在4个盘子里,那么总有一个盘子里至少放(________)串葡萄。

六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

第五单元数学广角——鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。

二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。

模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。

【练习1】把4支铅笔放进3个笔筒中,有()种放法。

【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。

【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。

【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。

【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。

规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。

那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。

你知道桂苑小学六年级至少有多少名学生吗?【例题7】从1,2,3,……,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【练习7】1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?【例题8】从1,4,7,10,……37,40这14个自然数,至少任取多少个数才能保证其中至少有2个数的和是41?【练习8】从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【例题9】从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?【练习9】从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?【例题10】某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有多少人的头发根数一样多?【练习10】49名同学共同参加体操表演,其中最小的8岁,最大的11岁。

人教版六年级下数学数学广角——鸽巢问题

人教版六年级下数学数学广角——鸽巢问题

人教版六年级下数学数学广角——鸽巢问题第十二周数学广角——鸽巢问题鸽巣原理是一个重要而又基本的组合原理,在解决数学问题时有非常重要的作用。

鸽巣原理的最简单表达形式是:物体个数÷鸽巣个数=商……余数,至少个数=商+1.举例来说,如果有3个苹果放在2个盒子里,共有四种不同的放法,但无论哪一种放法,都可以说“必有一个盒子放了两个或两个以上的苹果”。

类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子。

如果有6封信,任意投入5个信箱里,那么一定有一个信箱至少有2封信。

摸2个同色球的计算方法是:要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1.物体数=颜色数×(至少数-1)+1.另外,可以使用极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。

在填空题中,可以通过运用鸽巣原理来解决问题。

例如,鱼岳三小六年级有30名学生是二月份出生的,那么六年级至少有3名学生的生日是在二月份的同一天。

又如,有3个同学一起练投篮,如果他们一共投进16个球,那么一定有1个同学至少投进了6个球。

把6只鸡放进5个鸡笼,至少有2只鸡要放进同1个鸡笼里。

某班有个小书架,40个同学可以任意借阅,小书架上至少要有14本书,才可以保证至少有1个同学能借到2本或2本以上的书。

在解决问题时,我们可以运用鸽巣原理来求解。

例如,六(1)班有50名同学,至少有6名同学是同一个月出生的。

书籍里混装着3本故事书和5本科技书,要保证一次一定能拿出2本科技书,一次至少要拿出4本书。

把16支铅笔最多放入3个铅笔盒里,可以保证至少有1个铅笔盒里的铅笔不少于6支。

在拓展应用中,我们可以通过鸽巣原理来解决更加复杂的问题。

例如,把27个球最多放在4个盒子里,可以保证至少有1个盒子里有7个球。

教师引导学生规范解答:2、假设先取5只,全是红的,不符合题意,要继续取;假设再取5只,5只有全是黄的,这时再取一只一定是蓝色的,这样取5×2+1=11(只)可以保证每种颜色至少有1只。

六年级下册数学教案-《数学广角—鸽巢问题》(人教版)

六年级下册数学教案-《数学广角—鸽巢问题》(人教版)
五、教学反思
在今天的教学中,我引导学生们探索了《数学广角—鸽巢问题》。通过这节课的教学,我有一些深刻的体会和反思。
首先,我发现学生们对于鸽巢问题的理解存在一定难度。他们刚开始接触这个概念时,很难理解为什么一定会出现至少一个集合中有超过一个物品的情况。为此,我采用了生活中的实例和图示来进行讲解,帮助学生逐步建立起对鸽巢原理的认识。在今后的教学中,我还需要继续关注学生的理解程度,及时调整教学方法,以便让他们更好地掌握这个概念。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“鸽巢问题在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-举例:如给定10个学生和9个座位,证明至少有一个座位上会有两个学生。
2.教学难点
-抽象概念的理解:难点在于帮助学生理解抽象的鸽巢原理,并将其与具体问题联系起来。
-逻辑推理的运用:难点在于指导学生如何运用逻辑推理来证明鸽巢原理的正确性,这对于逻辑思维能力的培养至关重要。
-实际问题的转换:难点在于将实际问题转化为鸽巢问题,需要学生具备较强的观察力和问题转化能力。
3.学习通过画图、列举和逻辑推理等方法,解决涉及鸽巢原理的相关问题。
4.完成本册教材中《数学广角》模块的相关练习题,巩固鸽巢问题的解答技巧。
二、核心素养目标
《数学广角—鸽巢问题》核心素养目标:
1.培养学生逻辑推理与数学思维能力,通过鸽巢问题的学习,使学生能够运用逻辑推理解决实际问题,提高数学抽象和推理能力。

人教版六年级下册数学第五单元《数学广角》鸽巢问题

有有55个苹果要放入个苹果要放入44个抽屉中那么总有一抽屉中那么总有一个抽屉里面至少会放个抽屉里面至少会放22个苹100991如果把6个苹果放入4个抽屉中至少有几个苹果被放到同一个抽2如果把8个苹果放入5个抽屉中至少有几个苹果被放到同一个抽1如果把9个苹果放入4个抽屉中总有一个抽屉里至少放了个苹果
人教版六年级下册数学第五单元《数学广角 》
2)如果把158个苹果放进 3个抽屉里,不管怎么放, 总有一个抽屉里至少有几 个苹果?
精品课件
抽屉原理(二)
把 a 个 物 体 放 进 n 个 抽 屉,若a÷n=b……c
(c≠0 ,c<n )
则一定有一个抽屉至少 放了______ 个物体。 精品课件
比一比:两个抽屉原理有 何区别?
“原理1”和“原理2”的区别 是:原理1苹果多,抽屉少,数 量比较接近;原理2虽然也是 苹果多,抽屉少,但是数量相 差较大,苹果个数比抽屉个数 的几倍还多几。
2、从任意5双手套中任取6只,其中至少有2只 恰为一双手套 ,对吗?
3、从数1,2,。。。,10中任取6个数,其中 至少有2个数为奇偶性相同。
4、体育用品仓库里有许多足球、排球和篮球, 某班 50名同学来仓库拿球,规定每个人至少拿 1个球,至多拿2个球,问至少有几名同学所 拿的球种类是一致的?
精品课件
例:把一些铅笔放进3个文具盒中,保证其中 一个文具盒至少有4枝铅笔,原来至少有多少
枝铅笔?至少:只有一个文具盒有 4 枝,
其余都是(4-1)枝
3 +1
3
3
3
3×(4-1)+1=10(枝)
求总数=抽屉×(至少-1)+1
要分的份精数品课件 其中一个多1
鸽巢问题 (二)

人教版六年级数学下册《鸽巢问题》数学广角PPT精品课件


盒子里有同样大小的红球和蓝球各4个,要想摸 出的球一定有2个同色的,至少要摸出几个球?
至少要摸出3个球
只要摸出的球数比它们的颜色种数多1, 就能保证至少有两个球同色。
一天晚上,小红正要从自已放袜子的抽屉里 取袜子,突然灯熄了。她知道自己的抽屉里放有 白色与黄色的袜子各6只。小红至少要摸出多少只 袜子,才能保证拿出一双相同颜色的袜子?
9÷4=2……1 2+1=3
第五单元 数学广角--鸽巢问题 第3课
鸽巢问题
第3课时
人教版六年级下册数学课件

01 新课导入 02 新课讲解

03 课堂小结
CONTENTS
04 拓展延伸
第一部分 PART 01
新课导入
your content is entered here, or by copying your text, select paste in this box and choose to retain only text. your content is typed here, or by copying your text, select paste in this box.
复习导入
5个人坐4把椅子,总有一把椅子上至少坐 2人,为什么?
把5个人分到“4个鸽巢”(代表4把 椅 子 ) 中 , 5÷4 = 1……1 , 所 以 一 定 有 “一个鸽巢”里至少有1+1=2(人),即 总有一把椅子上至少坐2人。
第二部分 PART 02
新课讲解
your content is entered here, or by copying your text, select paste in this box and choose to retain only text. your content is typed here, or by copying your text, select paste in this box.

2024年人教版数学六年级下册鸽巢问题教学设计推荐3篇

人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗第五单元数学广角——鸽巢问题第一课时课题:鸽巢问题教学内容:教材第68-70页例1、例22,及“做一做”的第1题,及第71页练习十三的1-2题。

教学目标:1、知识与技能:理解“鸽巢问题”的特点,理解“鸽巢原理”的含义。

使学生学会用此原理解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜想、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。

难点:找出“鸽巢问题”解决的窍门实行反复推理。

教学准备:课件。

教学过程:一.情境导入二、探究新知1.教学例1.(课件出例如题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。

为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→理解“鸽巢问题”的学习过程来解决问题。

(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,能够发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。

(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。

(3)探究证明。

方法一:用“枚举法”证明。

方法二:用“分解法”证明。

把4分解成3个数。

由图可知,把4分解3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。

方法三:用“假设法”证明。

通过以上几种方法证明都能够发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。

(4)理解“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。

在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描绘就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。

人教版六年级下册数学《鸽巢问题》数学广角说课教学复习课件


答案:π 0 1
栏目 导引
第五章 三角函数
用“五点法”作三角函数的图象
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
用“五点法”作出下列函数的简图: (1)y=12+sin x,x∈[0,2π]; (2)y=1-cos x,x∈[0,2π].
栏目 导引
栏目 导引
第五章 三角函数
正、余弦函数曲线的简单应用
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
根据正弦曲线求满足 sin x≥- 23在[0,2π]上的 x 的取值 范围.
栏目 导引
第五章 三角函数
【解】 在同一坐标系内作出函数 y=sin x 与 y=- 23的图象,
栏目 导引
第五章 三角函数
利用三角函数图象解 sin x>a
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
(或 cos x>a)的三个步骤
(1)作出 y=a,y=sin x(或 y=cos x)的图象.
(2)确定 sin x=a(或 cos x=a)的 x 值.
课件
课件
课件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学广角---鸽巢问题
教学内容
教材第68、69页,例1、例2.
教学目标
1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。

2.通过动手操作发展学生的类推能力,形成比较抽象概括的数学思维。

3.通过“鸽巢问题”的灵活应用感受数学的魅力。

教学重点
经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。

教学难点
理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。

教具、学具准备
课件、每组都有相应数量的杯子、铅笔。

教学过程
一、魔术游戏引入
1、魔术游戏。

2、引入课题,师板书课题:鸽巢问题.
3、看到课题你有什么问题想问的?
二、探究新知
1、动手操作,感知模型
(1)小组合作研究:把4枝铅笔放入3个杯子,有几种放法?
学生动手操作、交流,师巡视、指导。

(2)全班交流:
哪个小组愿意到前面展示一下你们的研究结果?
观察这四种方法,你能发现什么?
总有是什么意思?至少2支铅笔是什么意思?
(3)质疑:如果只摆一种能得出刚才的结论吗?
(4)师总结。

(5)既然是平均分,能用算式表示吗?
2、逐步深入,建立模型
(1)把5枝铅笔放进4个杯子里,总有一个杯子里要放进几枝铅笔?并说一说为什么?把6枝笔放进5个杯子里呢?还用摆吗? 把7枝笔放进6个杯子里呢?把10枝笔放进9个杯子里呢? 把100枝笔放进99个杯子里呢?……
(2)你有什么发现?
(3)如果铅笔的数量不是比杯子数多1时,你们的这个发现还能成立吗?
(4)课件出示:5只鸽子飞进了3个鸽笼。

问:看到这个条件你想提怎样的数学问题?
(5)我们一起来解决“总有一个鸽笼里至少有几只鸽子?”这个问题,你们在小组里用学具摆一摆看,有什么发现?如果用算式怎样表示呢?小组讨论说说你的想法。

(6)全班交流。

3、深入研究,验证模型
刚才同学们表现得非常棒,现在老师还有几个难题想请你们帮忙,你们愿意吗?
(1)课件出示:把7本书放进3个抽屉,不管怎样放,总有一个抽屉里至少放进3本书。

为什么?
(2)组织学生分组动手操作,并用算式表示。

(3)哪个小组愿意展示一下?
(4)如果有8本书会怎样呢?10本书呢?
(5)观察这些算式,你有什么发现?
学生的回答板书:商+1
(6)同学们发现的这一规律,其实就是一个非常著名的数学原理,也是我们今天研究的“鸽巢问题”,一起看大屏幕(介绍“鸽巢问题”的相关知识)
三、巩固练习
1、现在,你能利用这一原理揭秘课前的魔术了吗?
2、六年一班有48人,那么至少有几个人在同一个月出生的?为什么?
四、课堂总结
通过这节课的学习,你有哪些收获?
抢凳子游戏
游戏规则:
老师宣布开始,4位同学就围着凳子转圈,老师喊“停”的时候,四个人每个人都必须坐在凳子上。

准备好了吗?
数学广角
鸽巢问题
1.理解最简单的“鸽巢问题”及“鸽巢问题”的一般形式。

2. 让学生采用操作的方法进行枚举及假设探究“鸽巢问题”。

3.会用“鸽巢问题”解决简单的实际问题。

学习目标
小组合作:拿出4枝铅笔和3个文具盒,把这4枝笔放进这3个文具盒中摆一摆,放一放,看有几种情况?
例1:把4枝铅笔放进3个文具盒中,不管怎么放,总有一个文具盒里至少有2枝铅笔。

为什么呢?怎样解释这种现象?
第一种情况
第二种情况
第三种情况
第四种情况
不管怎么放,总有一个文具盒里至少放进2枝铅笔。

请同学们观察不同的摆法,能发现什么?
例题
不管怎么放总有一个文具盒里至少有2枝铅笔。

可以假设先在每个文具盒中放1枝铅笔,最多放3枝。

剩下的1枝还要放进其中的一个文具盒。

所以至少有2枝铅笔放进同一个文具盒。

也就是先平均分,然后把剩下的1枝,不管放在哪个盒子里,一定会出现总有一个文具盒里至少有2枝铅笔。

请同学们把4分解成三个数,共有几种情况?
(4,0,0)、(3,1,0)(2,2,0)、(2,1,1)
分解法
每一种结果的三个数中,至少有一个数不小于2。

把这4枝铅笔放进这3个文具盒中,不管怎么放,总有一个文具盒里至少放进2枝铅笔。

鸽巢问题
(也叫“鸽巢原理”)
数学小知识:鸽巢问题的由来。

最先发现这个规律的人是谁呢?最先是由19世纪的德国数学家狄里克雷运用于解决数学问题的,后人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鸽巢原理”,还把它叫做“抽屉原理”。

把6枝铅笔放进5个文具盒里呢?
拓展
把8枝铅笔放进7个文具盒里呢?
把7枝铅笔放进6个文具盒里呢?
把100枝铅笔放进99个文具盒里呢?
你发现什么?
只要铅笔的枝数比文具盒的数量多1,总有一个盒子里至少有2枝铅笔。

如果放的铅笔数比文具盒的数量多2,多3,多4呢?
思考:
原理1:
把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

鸽巢原理
解决“鸽巢问题”关键是找准哪是物体,哪是抽屉
物体个数÷抽屉个数
有余数商+1
无余数商
总有一个抽屉至
少有()个物体
物体
抽屉
5只鸽子飞回4个鸽笼,至少有2只鸽子飞进同一个鸽笼里,为什么?
解决问题
解决问题
如果一个鸽笼飞进一只鸽子,最多飞进四只鸽子,
剩下一只,要飞进其中的任何一个鸽笼里。

不管怎么飞,至少有2只鸽子飞进同一个鸽笼里。

5只鸽子飞回4个鸽笼,至少有2只鸽子飞进同一个鸽笼里,为什么?
解决问题
5 ÷4=1(只)······1 (只)
1﹢1=2(只)
某学校有31名学生是6月份出生的,那么,其中至少有两名学生的生日是在同一天。

试一试吧!
为什么?
在我们班的任意13人中,至少有几个人的属相相同?想一想,为什么?
猜猜看
从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有2张是同花色的?试一试,并说明理由。

扑克牌。

相关文档
最新文档