北师大版九年级数学上第三四单元测试题
北师大版九年级数学上册全套单元测试卷

北师大版九年级数学上册全套单元测试卷特别说明:本试卷为最新北师大版中学生九年级试卷。
全套试卷共13份。
(含答案)试卷内容如下:1. 第一单元使用(2份)2. 第二单元使用(2份)3. 第三单元使用(2份)4. 第四单元使用(2份)5. 第五单元使用(2份)6. 第六单元使用(2份)7. 期末检测卷(1份)第一章达标测试卷一、选择题(每题3分,共30分)1.如图,已知菱形ABCD的边长等于2,∠DAB=60°,则对角线BD的长为() A.1 B. 3 C.2 D.232.已知正方形的面积为36,则其对角线的长为()A.6 B.6 2 C.9 D.923.如图,矩形ABCD的对角线AC=8 cm,∠AOD=120°,则AB的长为()A. 3 cm B.2 cm C.2 3 cm D.4 cm4.如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为()A.5 cm B.10 cm C.14 cm D.20 cm5.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形6.如图,EF过矩形ABCD对角线的交点O,分别交AB,CD于点E,F,那么阴影部分的面积是矩形ABCD的面积的()A.15 B.14 C.13 D.3107.如图,在△ABC中,AB=AC,四边形ADEF为菱形,S△ABC=83,则S菱形ADEF 等于()A.4 B.4 6C.4 3 D.288.在四边形ABCD中,点O是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠BAD=∠BCDC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC9.如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=6,则四边形ABCD的面积是()A.3 B.4 C.2 6 D.610.如图,把矩形OABC放入平面直角坐标系中,点B的坐标为(10,8),点D 是OC上一点,将△BCD沿边BD折叠,点C恰好落在OA上的点E处,则点D的坐标是()A.(0,4) B.(0,5) C.(0,3) D.(0,2)二、填空题(每题3分,共30分)11.在R t△ABC中,如果斜边上的中线CD=4 cm,那么斜边AB=________.12.已知菱形的两条对角线长分别为2 cm,3 cm,则它的面积是________.13.如图,一活动菱形衣架中,菱形的边长均为16 cm,若墙上钉子间的距离AB =BC=16 cm,则∠1=________.14.已知矩形ABCD的对角线AC,BD相交于点O,当添加条件__________时,矩形ABCD是正方形(只填一个即可).15.矩形的对角线相交所成的角中,有一个角是60°,这个角所对的边长为1 cm,则其对角线长为________,矩形的面积为________.16.如图,菱形ABCD的顶点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为________.17.如图,在正方形ABCD的外侧作等边三角形ADE,则∠BED=________.18.如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为________.19.如图,已知正方形ABCD的边长为1,连接AC,BD,CE平分∠ACD交BD 于点E,则DE=________.20.如图,在正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G.下列结论:①BE=DF;②∠DAF=15°;③AC 垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论的序号为__________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.如图,在矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为点E,F.求证:BE=CF.22.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.23.如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB,EA,延长BE交边AD于点F.(1)求证:△ADE≌△BCE;(2)求∠AFB的度数.24.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,连接PE,PB.(1)在AC上找一点P,使△BPE的周长最小(作图说明);(2)求出△BPE周长的最小值.25.如图,在等腰三角形ABC中,AB=AC,AH⊥BC于点H,点E是AH上一点,延长AH至点F,使FH=EH,连接BE,CE,BF,CF.(1)求证:四边形EBFC是菱形;(2)如果∠BAC=∠ECF,求证:AC⊥CF.26.在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD 的中点G,连接EG,CG,如图①,易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图②,则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图③,则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.答案一、1.C 2.B 3.D 4.D 5.C 6.B 7.C 8.C 9.D 10.C 二、11.8 cm 12.3 cm 2 13.120° 14.AC ⊥BD (答案不唯一)15.2 cm ; 3 cm 2 16.(4,4) 17.45° 18.5013 19.2-1 20.①②③⑤ 三、21.证明:∵四边形ABCD 为矩形,∴OA =OC ,OB =OD ,AC =BD . ∴BO =CO .∵BE ⊥AC 于E ,CF ⊥BD 于F , ∴∠BEO =∠CFO =90°. 又∵∠BOE =∠COF , ∴△BOE ≌△COF (AAS). ∴BE =CF .22.(1)证明:∵四边形ABCD 是菱形,∴AB ∥CD ,AB =CD .又∵E 在AB 的延长线上,且BE =AB , ∴BE ∥CD ,BE =CD .∴四边形BECD 是平行四边形. ∴BD =EC .(2)解:∵四边形BECD 是平行四边形,∴BD ∥CE .∴∠ABO =∠E =50°. 又∵四边形ABCD 是菱形, ∴AC ⊥BD .∴∠BAO =90°-∠ABO =40°. 23.(1)证明:∵四边形ABCD 是正方形,∴∠DAB =∠ADC =∠BCD =90°,AD =BC .∵△CDE 是等边三角形,∴∠CDE =∠DCE =60°,DE =CE . ∴∠ADE =∠BCE =30°. 在△ADE 和△BCE 中,⎩⎨⎧AD =BC ,∠ADE =∠BCE ,DE =CE ,∴△ADE ≌△BCE (SAS). (2)解:∵△ADE ≌△BCE ,∴AE =BE . ∴∠BAE =∠ABE .又∵∠BAE +∠DAE =90°, ∠ABE +∠AFB =90°, ∴∠DAE =∠AFB .∵∠ADE =30°,DE =DC =DA , ∴∠DAE =75°. ∴∠AFB =75°.24.解:(1)如图,连接DE ,交AC 于点P ′,连接BP ′,则此时P ′B +P ′E 的值最小,即△BPE 的周长最小.(2)∵四边形ABCD 是正方形,∴B ,D 关于AC 对称. ∴P ′B =P ′D . ∴P ′B +P ′E =DE . ∵BE =2,AE =3BE , ∴AE =6,AD =AB =8. ∴DE =62+82=10.∴PB+PE的最小值是10.∴△BPE周长的最小值=10+BE=10+2=12. 25.证明:(1)∵AB=AC,AH⊥BC,∴BH=CH.∵FH=EH,∴四边形EBFC是平行四边形.又∵EF⊥BC,∴四边形EBFC是菱形.(2)如图所示.∴∠2=∠3=12∠ECF.∵AB=AC,AH⊥BC,∴∠4=12∠BAC.又∵∠BAC=∠ECF,∴∠4=∠3.∵∠4+∠1+∠2=90°,∴∠3+∠1+∠2=90°,即AC⊥CF.26.解:(1)EG=CG,EG⊥CG.(2)EG=CG,EG⊥CG.证明如下:延长FE交DC的延长线于点M,连接MG,如图所示.易得∠AEM=90°,∠EBC=90°,∠BCM=90°,∴四边形BEMC是矩形.∴BE=CM,BC=EM,∠EMC=90°.易知∠ABD=45°,∴∠EBF=45°.又∵∠BEF=90°,∴△BEF为等腰直角三角形.∴BE=EF,∠F=45°.∴EF=CM.∵∠EMC =90°,FG =DG , ∴MG =12FD =FG . ∵BC =EM ,BC =CD , ∴EM =CD .∵EF =CM ,∴FM =DM . 又∵FG =DG ,∴∠CMG =12∠EMC =45°. ∴∠F =∠CMG . 在△GFE 和△GMC 中,⎩⎨⎧FG =MG ,∠F =∠GMC ,EF =CM ,∴△GFE ≌△GMC (SAS). ∴EG =CG ,∠FGE =∠MGC . ∵MF =MD ,FG =DG , ∴MG ⊥FD .∴∠FGE +∠EGM =90°. ∴∠MGC +∠EGM =90°, 即∠EGC =90°. ∴EG ⊥CG .第一章达标测试卷一、选择题(每题3分,共30分)1.菱形、矩形、正方形都具有的性质是( )A .四条边相等,四个角相等B .对角线相等C .对角线互相垂直D .对角线互相平分2.如图,在菱形ABCD 中,AB =5,∠BCD =120°,则△ABC 的周长等于( )A .20B .15C .10D .53.如图,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,那么阴影部分的面积是矩形ABCD面积的()A.15B.14C.13D.3104.如图,菱形ABCD的周长为24 cm,对角线AC,BD相交于点O,点E是AD 的中点,连接OE,则线段OE的长等于()A.3 cm B.4 cm C.2.5 cm D.2 cm5.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为()A.3 B.2 2 C. 6 D.336.顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形7.如图,把一张长方形纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30° B.30°或45°C.45°或60° D.30°或60°8.如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E,F分别为BC,CD的中点,则∠EAF等于()A.75°B.45°C.60°D.30°9.如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()A.AF=AEB.△ABE≌△AGFC.EF=2 5D.AF=EF10.如图,在正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①BE=DF;②∠DAF=15°;③AC 垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE.其中正确结论有()A.2个B.3个C.4个D.5个二、填空题(每题3分,共24分)11.如图是一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α的度数为________时,两条对角线长度相等.12.如图,在菱形ABCD中,∠B=60°,AB=4,则以AC为边的正方形ACEF 的周长为________.13.如图,在矩形ABCD中,对角线AC,BD相交于点O,DE⊥AC于点E,∠EDC∶∠EDA=1∶2,且AC=10,则EC的长度是________.14.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为________.15.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→……的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2 019 s时,点P的坐标为________.16.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y-4)2的值为________.17.如图,在矩形ABCD中,AB=3,BC=2,点E为AD的中点,点F为BC 边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG +FH=________.18.如图,在Rt△ABC中,∠ACB=90°,以斜边AB为边向外作正方形ABDE,且正方形的对角线交于点O,连接OC.已知AC=5,OC=62,则另一直角边BC的长为________.三、解答题(19,20题每题9分,21题10分,22,23题每题12分,24题14分,共66分)19.如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于点E,DF⊥BC交BC的延长线于点F.求证:DE=DF.20.如图,点O是菱形ABCD对角线的交点,过点C作CE∥OD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形OCED是矩形.(2)若AB=4,∠ABC=60°,求矩形OCED的面积.21.如图,矩形ABCD的对角线AC,BD相交于点O,过点B作AC的平行线交DC的延长线于点E.(1)求证:BD=BE.(2)若BE=10,CE=6,连接OE,求△ODE的面积.22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE.(2)若CD=2,∠ADB=30°,求BE的长.23.如图,在菱形ABCD中,AB=4,∠BAD=120°,以点A为顶点的一个60°的∠EAF绕点A旋转,∠EAF的两边分别交BC,CD于点E,F,且E,F 不与B,C,D重合,连接EF.(1)求证:BE=CF.(2)在∠EAF绕点A旋转的过程中,四边形AECF的面积是否发生变化?如果不变,求出其定值;如果变化,请说明理由.24.在正方形ABCD的外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图①;(2)若∠P AB=20°,求∠ADF的度数;(3)如图②,若45°<∠P AB<90°,用等式表示线段AB,EF,FD之间的数量关系,并给出证明.答案一、1.D2.B3.B4.A点拨:∵菱形ABCD的周长为24 cm,∴AB=24÷4=6 (cm),OB=OD.又∵E为AD边的中点,∴OE是△ABD的中位线.∴OE=12AB=12×6=3 (cm).故选A.5.D6.D7.D8.C9.D点拨:如图,由折叠的性质得∠1=∠2.∵AD∥BC,∴∠3=∠1.∴∠2=∠3.∴AE=AF.故选项A正确.由折叠的性质得CD=AG,∠D=∠G=90°.∵AB=CD,∴AB=AG.又∵AE=AF,∠B=90°,∴Rt△ABE≌Rt△AGF(HL).故选项B正确.设DF=x,则GF=x,AF=8-x.又∵AG=AB=4,∴在Rt△AGF中,根据勾股定理得(8-x)2=42+x2.解得x=3.∴AF=8-x=5.则AE=AF=5,∴BE=AE2-AB2=52-42=3.过点F作FM⊥BC于点M,则FM=4,EM=5-3=2.在Rt△EFM中,根据勾股定理得EF=EM2+FM2=22+42=20=25,则选项C正确.∵AF=5,EF=25,∴AF≠EF.故选项D错误.10.C 点拨:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°. ∵△AEF 是等边三角形, ∴AE =EF =AF ,∠EAF =60°. ∴∠BAE +∠DAF =30°. 在Rt △ABE 和Rt △ADF 中,∴Rt △ABE ≌Rt △ADF (HL). ∴BE =DF (故①正确), ∠BAE =∠DAF .∴∠DAF +∠DAF =30°,即∠DAF =15°(故②正确). ∵BC =CD ,∴BC -BE =CD -DF ,即CE =CF , 又∵AE =AF ,∴AC 垂直平分EF (故③正确).设EC =x ,由勾股定理,得EF =AE =2x ,∴EG =CG =22x . ∴AG =62x . ∴AC =6x +2x2. ∴AB =BC =3x +x 2.∴BE =3x +x 2-x =3x -x2.∴BE +DF =3x -x ≠2x (故④错误). 易知S △CEF =x 22,S △ABE =3x -x 2·3x +x 22=x 24,∴2S △ABE =x 22=S △CEF (故⑤正确).综上所述,正确的有4个.二、11.90° 12.16 13.2.514.213 点拨:设正方形的边长为a ,∵S △ABE =18,∴S 正方形ABCD =2S △ABE =36,∴a 2=36.∵a >0,∴a =6. 在Rt △BCE 中,∵BC =6,CE =4,∠C =90°, ∴BE =BC 2+CE 2=62+42=213. 15.⎝ ⎛⎭⎪⎫14,334 16.16 点拨:∵四边形ABCD 是矩形,AB =x ,AD =y ,∴CD =AB =x ,BC =AD =y ,∠BCD =90°.又∵BD ⊥DE ,点F 是BE 的中点,DF =4,∴BF =DF =EF =4,∴CF =4-BC =4-y.在Rt △DCF 中,DC 2+CF 2=DF 2,即x 2+(4-y )2=42=16.∴x 2+(y -4)2=16. 17.3105 点拨:如图,连接EF ,∵四边形ABCD 是矩形,∴CD =AB =3,AD =BC =2,∠A =∠D =90°. ∵点E 为AD 的中点,∴AE =DE =1,∴BE =AE 2+AB 2=12+32=10,CE =DE 2+DC 2=12+32=10, ∴CE =BE .∵S △BCE =S △BEF +S △CEF ,∴12BC ·AB =12BE ·FG +12CE ·FH ,∴BC ·AB =BE (FG +FH ),即2×3=10(FG +FH ),解得FG +FH =3105.18.7 点拨:如图,过点O 作OM ⊥CA ,交CA 的延长线于点M ,过点O作ON ⊥BC 于点N ,易证△OMA ≌△ONB ,CN =OM ,∴OM =ON ,MA =N B.又∵∠ACB =90°,∠OMA =∠ONB =90°,OM =ON , ∴四边形OMCN 是正方形. ∴△OCM 为等腰直角三角形. ∵OC =62,∴CM =OM =6. ∴MA =CM -AC =6-5=1.∴BC =CN +NB =OM +MA =6+1=7. 故答案为7.三、19.证明:连接DB.∵四边形ABCD是菱形,∴BD平分∠ABC.又∵DE⊥AB,DF⊥BC,∴DE=DF.20.(1)证明:∵CE∥OD,DE∥AC,∴四边形OCED是平行四边形.又∵四边形ABCD是菱形,∴AC⊥BD,即∠COD=90°,∴四边形OCED是矩形.(2)解:∵在菱形ABCD中,AB=4,∴AB=BC=CD=4.又∵∠ABC=60°,∴△ABC是等边三角形,∴AC=4,∴OC=12AC=2,∴OD=42-22=23,∴矩形OCED的面积是23×2=4 3.21.(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD.又∵BE∥AC,E在DC的延长线上.∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE.(2)解:如图,过点O作OF⊥CD于点F.∵四边形ABCD是矩形,∴∠BCD=90°,∴∠BCE=90°.在Rt△BCE中,根据勾股定理可得BC=8.∵BE=BD,∴CD=CE=6,∴DE=12.∵OD=OC,∴CF=DF,又OB=OD,∴OF为△BCD的中位线,∴OF=12BC=4,∴S△ODE=12DE·OF=12×12×4=24.22.(1)证明:∵在矩形ABCD中,AD∥BC,∠A=∠C=90°,∴∠ADB=∠DBC.根据折叠的性质得∠ADB=∠FDB,∠F=∠A=90°,∴∠DBC=∠FDB,∠C=∠F.∴BE=DE.在△DCE和△BFE中,∴△DCE≌△BFE.(2)解:在Rt△BCD中,∵CD=2,∠DBC=∠ADB=30°,∴BD=4.∴BC=2 3.在Rt△ECD中,易得∠EDC=30°.∴DE=2EC.∴(2EC)2-EC2=CD2.又∵CD=2,∴CE=23 3.∴BE=BC-EC=43 3.23.(1)证明:如图,连接AC.∵四边形ABCD为菱形,∠BAD=120°,∴AB=BC=CD=DA,∴∠BAC=∠DAC=60°,∴△ABC 和△ADC都是等边三角形,∴∠ABE=∠ACF=60°,∠1+∠2=60°.∵∠3+∠2=∠EAF=60°,∴∠1=∠3.∵∠ABC=60°,AB=BC,∴△ABC为等边三角形.∴AB =AC .∴△ABE ≌△ACF . ∴BE =CF .(2)解:四边形AECF 的面积不变. 由(1)知△ABE ≌△ACF , 则S △ABE =S △ACF ,故S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC . 如图,过点A 作AM ⊥BC 于点M ,则BM =MC =2, ∴AM =AB 2-BM 2=42-22=2 3.∴S △ABC =12BC ·AM =12×4×23=4 3.故S 四边形AECF =4 3. 24.解:(1)如图①.(2)如图②,连接AE ,∵点E 是点B 关于直线AP 的对称点, ∴∠P AE =∠P AB =20°,AE =AB. ∵四边形ABCD 是正方形, ∴AE =AB =AD ,∠BAD =90°.∴∠AED =∠ADE ,∠EAD =∠DAB +∠BAP +∠P AE =130°. ∴∠ADF =180°-130°2=25°. (3)EF 2+FD 2=2AB 2.证明如下:如图③,连接AE ,BF ,BD ,由轴对称和正方形的性质可得,EF =BF ,AE =AB =AD ,易得∠ABF =∠AEF =∠ADF .∵∠BAD =90°, ∴∠ABF +∠FBD +∠ADB =90°. ∴∠ADF +∠ADB +∠F BD =90°.∴∠BFD =90°.在Rt △BFD 中,由勾股定理得BF 2+FD 2=BD 2. 在Rt △ABD 中,由勾股定理得BD 2=AB 2+AD 2=2AB 2, ∴EF 2+FD 2=2AB 2.第二章达标测试卷一、选择题(每题3分,共30分)1.下列方程中,是一元二次方程的是()A.x2+3x+y=0 B.x2+1x+5=0 C.2x2+13=x+12D.x+y+1=02.一元二次方程x2-2x-3=0配方后可变形为()A.(x-1)2=2 B.(x-1)2=4 C.(x-1)2=1 D.(x-1)2=7 3.已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为() A.1 B.-1 C.2 D.-24.根据下面表格中的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是() A.1<x<1.33 B.1.33<x<1.34C.1.34<x<1.35 D.1.35<x<1.365.下列一元二次方程中,没有..实数根的是()A.x2+2x-3=0 B.x2+x+14=0C.x2+2x+1=0 D.-x2+3=06.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1 400件.若设这个百分数为x,则可列方程为()A.200+200(1+x)2=1 400B.200+200(1+x)+200(1+x)2=1 400C.200(1+x)2=1 400D.200(1+x)+200(1+x)2=1 4007.x1,x2是一元二次方程3(x-1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于-1,x2大于3 B.x1小于-2,x2大于3C.x1,x2在-1和3之间D.x1,x2都小于38.已知x1,x2是一元二次方程3x2=6-2x的两根,则x1-x1x2+x2的值是()A.-43 B.83C.-83 D.439.若关于x的一元二次方程kx2+2(k-1)x+k-1=0有实数根,则k的取值范围是()A.k<1 B.k≤1 C.k<1且k≠0 D.k≤1且k≠010.已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长是()A.5 B.7 C.5或7 D.10二、填空题(每题3分,共30分)11.把一元二次方程(x-3)2=4化为一般形式是____________,其中二次项为________,一次项系数为________.12.若关于x的方程(a-2)x a2-2+2x=0是一元二次方程,则a=________.13.方程(x+3)2=x+3的解是______________.14.若一元二次方程ax2-bx-2 019=1有一根为x=-1,则a+b=________.15.已知方程x2+mx+3=0的一个根是x=1,则它的另一个根是________,m =________.16.当k=________时,关于x的一元二次方程(k+1)x2+2x-1=0没有实数根(写出一个你喜欢的k的值).17.若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程:________________.18.若正数a是一元二次方程x2-5x+m=0的一个根,-a是一元二次方程x2+5x-m=0的一个根,则a的值是________.19.如图,在▱ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的根,则▱ABCD的周长是________.20.如图,在一条矩形床单的四周绣上宽度相等的花边,剩下部分的面积为1.6 m2.已知床单的长是2 m,宽是1.4 m,则花边的宽度为________.三、解答题(21题12分,22题8分,其余每题10分,共60分) 21.用适当的方法解下列方程:(1)(6x-1)2=25;(2)x2-2x=2x-1;(3)x2-2x=2;(4)x(x-7)=8(7-x).22.已知关于x的方程(k-1)x2-(k-1)x+14=0有两个相等的实数根.(1)求k的值;(2)求此时该方程的根.23.已知关于x的一元二次方程x2-(t-1)x+t-2=0.(1)求证:对于任意实数t,方程都有实数根.(2)当t为何值时,方程的两个根互为相反数?请说明理由.24.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率.(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年六月份的快递投递任务?如果不能,请问至少需要增加几名业务员?25.某小商品市场以每副60元的价格购进800副羽毛球拍.九月份以单价100元销售,售出了200副.十月份如果销售单价不变,预计仍可售出200副.该小商品市场为增加销售量,决定降价销售,根据市场调查,销售单价每降低5元,可多售出10副,但最低销售单价应高于购进的价格.十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,清仓时销售单价为50元.设十月份销售单价降低x元.(1)填表:(2)如果该小商品市场希望通过销售这批羽毛球拍获利9 200元,那么十月份的销售单价应是多少元?26.请阅读下列材料.问题:已知方程x 2+x -1=0,求一个一元二次方程,使它的根分别是已知方程的根的2倍.解:设所求方程的根为y ,则y =2x ,所以x =y2. 把x =y 2代入已知方程,得⎝ ⎛⎭⎪⎫y 22+y2-1=0.化简,得y 2+2y -4=0. 故所求方程为y 2+2y -4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式). (1)已知方程x 2+x -2=0,求一个一元二次方程,使它的根分别是已知方程的根的相反数;(2)已知关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程的根的倒数.答案一、1.C 2.B 3.A 4.C 5.C 6.B 7.A 8.D 9.D 10.B 二、11.x 2-6x +5=0;x 2;-6 12.-2 13.x 1=-3,x 2=-2 14.2 020 15.x =3;-4 16.-3(答案不唯一) 17.x 2-9x +6=0(答案不唯一) 18.5 19.4+22 20.0.2 m三、21.解:(1)两边开平方,得6x -1=±5,即6x -1=5或6x -1=-5. ∴x 1=1,x 2=-23. (2)移项,得x 2-4x =-1. 配方,得x 2-4x +4=-1+4, 即(x -2)2=3.两边开平方,得x -2=±3, 即x -2=3或x -2=- 3. ∴x 1=2+3,x 2=2- 3.(3)将原方程化为一般形式,得x 2-2x -2=0. ∵b 2-4ac =(-2)2-4×1×(-2)=10, ∴x =2±102×1. ∴x 1=2+102,x 2=2-102. (4)移项,得x (x -7)+8(x -7)=0.变形,得(x -7)(x +8)=0. ∴x -7=0或x +8=0. ∴x 1=7,x 2=-8.22.解:(1)∵关于x 的方程(k -1)x 2-(k -1)x +14=0有两个相等的实数根,∴Δ=b 2-4ac =[-(k -1)]2-4·(k -1)·14=0, 即(k -1)2-(k -1)=0. 解得k =2或k =1.∵原方程是一元二次方程,∴k -1≠0,即k ≠1,则k =2. (2)当k =2时,原方程为x 2-x +14=0,解得x 1=x 2=12.23.(1)证明:∵Δ=b2-4ac=[-(t-1)]2-4(t-2)=t2-6t+9=(t-3)2≥0,∴对于任意实数t,方程都有实数根.(2)解:设此一元二次方程的两个根是x1,x2.由题意得x1=-x2,即x1+x2=0.利用根与系数的关系可得x1+x2=t-1=0,∴t=1.24.解:(1)设该快递公司投递总件数的月平均增长率为x.根据题意,得10(1+x)2=12.1,解得x1=0.1=10%,x2=-2.1(不合题意,舍去).答:该快递公司投递总件数的月平均增长率为10%.(2)今年六月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递快递0.6万件,∴21名快递投递业务员每月最多能完成的快递投递任务是0.6×21=12.6(万件).∵12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年六月份的快递投递任务.∵(13.31-12.6)÷0.6=111 60,∴至少需要增加2名业务员.25.解:(1)100-x;200+2x;400-2x(2)根据题意,得100×200+(100-x)(200+2x)+50(400-2x)-60×800=9 200.解得x1=20,x2=-70(舍去).当x=20时,100-x=80>60,符合题意.答:十月份的销售单价应是80元.26.解:(1)设所求方程的根为z,则z=-x,∴x=-z.把x=-z代入已知方程,得z2-z-2=0,故所求方程为z2-z-2=0.(2)设所求方程的根为t,则t=1x(x≠0),于是x=1t(t≠0).把x=1t代入方程ax2+bx+c=0,得a ⎝ ⎛⎭⎪⎫1t 2+b ·1t +c =0. 去分母,得a +bt +ct 2=0.若c =0,则有ax 2+bx =0,于是方程ax 2+bx +c =0有一个根为0,不符合题意,∴c ≠0.故所求方程为ct 2+bt +a =0(c ≠0).第二章达标测试卷一、选择题(每题3分,共30分)1.下列等式中是关于x 的一元二次方程的是( )A .3(x +1)2=2(x +1)B .1x 2+1x -2=0C .ax 2+bx +c =0D .x 2+2x =x 2-12.一元二次方程x 2-6x +5=0配方后可化为( )A .(x -3)2=-14B .(x +3)2=-14C .(x -3)2=4D .(x +3)2=143.关于x 的一元二次方程(m -1)x 2-2x -1=0有两个实数根,则实数m 的取值范围是( )A .m ≥0B .m >0C .m ≥0且m ≠1D .m >0且m ≠14.已知关于x 的一元二次方程x 2+mx -8=0的一个实数根为2,则另一个实数根及m 的值分别为( )A .4,-2B .-4,-2C .4,2D .-4,25.已知x 为实数,且满足(x 2+3x )2+2(x 2+3x )-3=0,那么x 2+3x 的值为( )A .1B .-3或1C .3D .-1或36.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有( )A .7队B .6队C .5队D .4队7.关于x 的方程x 2-ax +2a =0的两根的平方和是5,则a 的值是( )A .-1或5B .1C .5D .-18.已知x =2是关于x 的方程x 2-2mx +3m =0的一个根,并且等腰三角形ABC的腰长和底边长恰好是这个方程的两个根,则△ABC 的周长为( )A.10 B.14 C.10或14 D.8或109.若关于x的方程2x2+mx+n=0的两个根是-2和1,则nm的值为() A.-8 B.8 C.16 D.-1610.如图,将边长为2 cm的正方形ABCD沿其对角线AC剪开,再把△AB C沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1 cm2,则它移动的距离AA′等于()A.0.5 cmB.1 cmC.1.5 cmD.2 cm二、填空题(每题3分,共24分)11.一元二次方程x(x-7)=0的解是________.12.若关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a=________.13.已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k=________.14.某市加大了对雾霾的治理力度,2017年第一季度投入资金100万元,第二季度和第三季度共投入资金260万元,求这两个季度投入资金的平均增长率.设这两个季度投入资金的平均增长率为x,根据题意可列方程为________________________.15.关于x的两个方程x2-4x+3=0与1x-1=2x+a有一个解相同,则a=________.16.已知线段AB的长为2,以AB为边在AB的下方作正方形ABCD,取AB边上一点E(不与点A,B重合),以AE为边在AB的上方作正方形AENM.过点E作EF⊥CD,垂足为点F,如图.若正方形AENM与四边形EFCB的面积相等,则AE的长为________.17.已知(2a+2b+1)(2a+2b-1)=19,则a+b=________.18.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16 cm,AD为BC边上的高,动点P从点A出发,沿A→D方向以 2 cm/s的速度向点D运动.设△ABP 的面积为S1,矩形PDFE的面积为S2,运动时间为t s(0<t<8),则t=________时,S1=2S2.三、解答题(19题12分,20~23题每题8分,24题10分,25题12分,共66分)19.用适当的方法解下列方程.(1)x2-x-1=0; (2)3x(x-2)=x-2;(3)x2-22x+1=0; (4)(x+8)(x+1)=-12.20.已知关于x的一元二次方程(m-2)x2+2mx+m+3=0有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.21.解方程(x-1)2-5(x-1)+4=0时,我们可以将x-1看成一个整体,设x-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,即x-1=1,解得x=2;当y=4时,即x-1=4,解得x=5,所以原方程的解为x1=2,x2=5.请利用这种方法求方程(2x+5)2-4(2x+5)+3=0的解.22.关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.23.一个矩形周长为56 cm.(1)当矩形的面积为180 cm2时,长和宽分别为多少?(2)这个矩形的面积能为200 cm2吗?请说明理由.24.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A出发沿AB边向点B以1 cm/s的速度移动,点Q从点B出发沿BC边向点C以2 cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8 cm2?(2)出发几秒后,线段PQ的长为4 2 cm?(3)△PBQ的面积能否为10 cm2若能,求出时间;若不能,请说明理由.25.某中学九年级准备组织学生去方特梦幻王国进行春游活动.方特梦幻王国给出了学生团体门票的优惠价格:如果学生人数不超过30名,那么门票为每张240元;如果人数超过了30名,则每超过1名,每张门票就降低2元,但每张门票最低不能少于200元.(1)若一班共有40名学生参加了春游活动,则需要交门票费多少元?(2)若二班共有52名学生参加了春游活动,则需要交门票费多少元?(3)若三班交了门票费9 450元,请问该班参加春游的学生有多少名?答案一、1.A2.C3.C4.D5.A6.C7.D8.B9.C10.B点拨:设AC交A′B′于H.∵∠DAC=45°,∠AA′H=90°,∴△AA′H是等腰直角三角形.设AA′=x cm,则A′H=x cm,A′D=(2-x)cm.∴x(2-x)=1,解得x1=x2=1,即AA′=1 cm.故选B.二、11.x1=0,x2=712.-113.2点拨:∵x2-6x+k=0的两根分别为x1,x2,∴x1+x2=6,x1x2=k.∴1x1+1x2=x1+x2x1x2=6k=3.解得k=2.经检验,k=2满足题意.14.100(1+x)+100(1+x)2=260点拨:根据题意知:第二季度投入资金100(1+x)万元,第三季度投入资金100(1+x)2万元,∴100(1+x)+100(1+x)2=260.15.1点拨:由方程x2-4x+3=0,得(x-1)(x-3)=0,∴x-1=0或x-3=0.解得x1=1,x2=3.当x=1时,分式方程1x-1=2x+a无意义;当x=3时,13-1=23+a,解得a=1.经检验,a=1是方程13-1=23+a的解.16.5-1点拨:本题主要考查了根据几何图形列一元二次方程,解题的关键是根据已知条件和图形找出等量关系,列出方程.17.±5 点拨:设t =2(a +b ),则原方程可化为(t +1)(t -1)=19,整理,得t 2=20,解得t =±25,则a +b =t 2=± 5.技巧点拨:换元法的一般步骤是:(1)设新元,即根据问题的特点或关系,引进适当的辅助元作为新元;(2)换元,用新元去代替原问题中的代数式或旧元;(3)求解新元,将解出的新元代回所设的换元式,求解原问题的未知元.18.6 点拨:∵在Rt △ABC 中,∠BAC =90°,AB =AC =16 cm ,AD 为BC 边上的高,∴AD =BD =CD =8 2 cm.又∵AP =2t cm ,∴S 1=12AP ·BD =12×2t ×82=8t(cm 2),PD =(82-2t )cm.易知PE =AP =2t cm ,∴S 2=PD ·PE =(82-2t )·2t cm 2.∵S 1=2S 2,∴8t =2(82-2t )·2t .解得t 1=0(舍去),t 2=6.三、19.解:(1)(公式法)a =1,b =-1,c =-1,∴b 2-4ac =(-1)2-4×1×(-1)=5.∴x =-b ±b 2-4ac 2a=1±52, 即原方程的根为x 1=1+52,x 2=1-52.(2)(因式分解法)移项,得3x (x -2)-(x -2)=0,即(3x -1)(x -2)=0,∴x 1=13,x 2=2.(3)(配方法)配方,得(x -2)2=1,∴x -2=±1,∴x 1=2+1,x 2=2-1.(4)(因式分解法)原方程可化为x 2+9x +20=0,即(x +4)(x +5)=0,解得x1=-4,x2=-5.20.解:(1)∵关于x的一元二次方程(m-2)x2+2mx+m+3=0有两个不相等的实数根,∴m-2≠0且Δ=(2m)2-4(m-2)(m+3)=-4(m-6)>0,解得m<6且m≠2.∴m的取值范围是m<6且m≠2.(2)在m<6且m≠2的范围内,最大整数为5.此时,方程化为3x2+10x+8=0,解得x1=-2,x2=-4 3.21.解:设2x+5=y,则原方程可化为y2-4y+3=0,所以(y-1)(y-3)=0,解得y1=1,y2=3.当y=1时,即2x+5=1,解得x=-2;当y=3时,即2x+5=3,解得x=-1,所以原方程的解为x1=-2,x2=-1.22.解:(1)由题意得Δ=9-4(m-1)≥0,∴m≤13 4.(2)由根与系数的关系得x1+x2=-3,x1x2=m-1.∵2(x1+x2)+x1x2+10=0,∴-6+(m-1)+10=0,∴m=-3,∵m≤134,∴m的值为-3.23.解:(1)设矩形的长为x cm,则宽为(28-x)cm,由题意列方程,得x(28-x)=180,整理,得x2-28x+180=0,解得x1=10(舍去),x2=18.答:矩形的长为18 cm,宽为10 cm.(2)不能.理由如下:设矩形的长为y cm,则宽为(28-y) cm,由题意列方程,得y(28-y)=200,整理,得y2-28y+200=0,则Δ=(-28)2-4×200=784-800=-16<0.∴该方程无实数解.故这个矩形的面积不能为200 cm2.24.解:(1)设t s后,△PBQ的面积为8 cm2,则PB=(6-t)cm,BQ=2t cm,∵∠B=90°,∴12(6-t)×2t=8,解得t1=2,t2=4,∴2 s或4 s后,△PBQ的面积为8 cm2.(2)设出发x s后,PQ=4 2 cm,由题意,得(6-x)2+(2x)2=(42)2,解得x1=25,x2=2,故出发25s或2 s后,线段PQ的长为4 2 cm.(3)不能.理由:设经过y s,△PBQ的面积等于10 cm2,则12×(6-y)×2y=10,即y2-6y+10=0,∵Δ=b2-4ac=36-4×10=-4<0,∴该方程无实数解.∴△PBQ的面积不能为10 cm2.25.解:(1)240-(40-30)×2=220(元),220×40=8 800(元).答:若一班共有40名学生参加了春游活动,则需要交门票费8 800元.(2)240-(52-30)×2=196(元),∵196<200,∴每张门票200元.200×52=10 400(元).答:若二班共有52名学生参加了春游活动,则需要交门票费10 400元.(3)∵9 450不是200的整数倍,且240×30=7 200(元)<9 450元,∴每张门票的价格高于200元且低于240元.设三班参加春游的学生有x名,则每张门票的价格为[240-2(x-30)]元,根据题意,得[240-2(x-30)]x=9 450,整理,得x2-150x+4 725=0,解得x1=45,x2=105,∵240-2(x-30)>200,∴x<50.∴x=45.答:若三班交了门票费9 450元,则该班参加春游的学生有45名.第三章达标测试卷一、选择题(每题3分,共30分)1.从-5,0,4,π,3.5这五个数中随机抽取一个,则抽到无理数的概率是()A.15B.25C.35D.452.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0 B.13C.23D.13.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为()A.12B.13C.14D.164.在元旦游园晚会上有一个闯关活动:将5张分别画有正方形、圆、平行四边形、等边三角形、菱形的卡片任意摆放(卡片大小、质地、颜色完全相同),将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形,就可以过关.那么一次过关的概率是()A.15B.25C.35D.455.在一个不透明的盒中有20个除颜色外均相同的球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计盒中红球的个数为()A.4个B.6个C.8个D.12个6.某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是() A.移植10棵幼树,结果一定是“9棵幼树成活”B.移植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.移植10n棵幼树,恰好有“n棵幼树不成活”D.移植n棵幼树,当n越来越大时,幼树成活的频率会越来越稳定于0.9 7.用图中两个可自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()。
北师大版九年级数学上册-第一章-特殊的平行四边形-单元测试题(有答案)

九年级数学上册第一章特殊的平行四边形单元测试题班级:姓名:成绩:一.选择题(共10小题,每小题3分,共30分)1.下列属于菱形性质的是()A.对角线相等 B.对角线互相垂直C.对角互补 D.四个角都是直角2.如图,AC=AD,BC=BD,则正确的结论是()A.AB 垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.四边形ABCD是菱形3.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40 B.24 C.20 D.154.如图,O为矩形ABCD的对角线AC的中点,过点O作AC的垂线EF分别交AD、BC于点E、F,连结CE.若该矩形的周长为20,则△CDE的周长为()A.10 B.9 C.8 D.55.如图,在▱ABCD中,对角线AC与BD 交于点O,添加下列条件不能判定▱ABCD为矩形的只有()A.AC=BD B.AB=6,BC=8,AC=10 C.AC⊥BD D.∠1=∠26.如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=55°,则∠OAB的度数为()A.35°B.40°C.45°D.50°7.如图,在正方形ABCD中,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点E,连接AE,BE得到△ABE,则△ABE与正方形ABCD的面积比为()A.1:2 B.1:3 C.1:4 D.8.已知四边形ABCD中,∠A=∠B=∠C=90°,如添加一个条件,使得该四边形成为正方形,那么所添加的这个条件可以是()A.∠D=90°B.AB=CD C.AB=BC D.AC=BD9.如图,在平面直角坐标系中,菱形ABCD的边长为6,它的一边AB在x轴上,且AB的中点是坐标原点,点D在y轴正半轴上,则点C的坐标为()A.(3,3)B.(3,3)C.(6,3)D.(6,3)二.填空题(共8小题,每小题3分,共24分)10.矩形(非正方形)四个内角的平分线围成的四边形是形.(填特殊四边形)11.如图,E是菱形ABCD的对角线BD上一点,过点E作EF⊥BC于点F.若EF =4,则点E到边AB的距离为.12.在菱形ABCD中,AC=12cm,若菱形ABCD的面积是96cm2,则AB=.13.如图,矩形ABCD的对角线AC与BD相交点O,∠AOB=60°,AB=10,E、F 分别为AO、AD的中点,则EF的长是.14.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是.15.如图,菱形ABCD的周长是20,对角线AC、BD相交于点O.若BO=3,则菱形ABCD的面积为.16.已知:如图,在长方形ABCD中,AB=2,AD=3.延长BC到点E,使CE=1,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为时,△ABP和△DCE全等.17.如图,在正方形ABCD和正方形CEFG中,BC=1,CE=3,点D是CG边上一点,H是AF 的中点,那么CH的长是.三.解答题(共7小题,共66分)18.已知:如图所示,菱形ABCD中,DE⊥AB于点E,且E为AB的中点,已知BD=4,求菱形ABCD的周长和面积.19.如图,已知四边形ABCD是平行四边形,AE⊥BC,AF⊥DC,垂足分别是E,F,并且BE =DF.求证;四边形ABCD是菱形.20.如图,在矩形ABCD中,AE⊥BD于点E,∠DAE=2∠BAE,求∠EAC的度数.21.如图,在四边形ABCD中,AD∥BC,∠D=90°,E为边BC上一点,且EC=AD,连结AC.(1)求证:四边形AECD是矩形;(2)若AC平分∠DAB,AB=5,EC=2,求AE的长,22.如图,在边长12的正方形ABCD中,点E是CD的中点,点F在边AD上,且AF=3DF,连接BE,BF,EF,请判断△BEF的形状,并说明理由.23.如图,正方形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.(1)求证:四边形OCED是正方形.(2)若AC =,则点E到边AB 的距离为.24.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFC,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.参考答案一.选择题1.解:A、菱形的对角线互相垂直,但不一定相等,故原命题错误,不符合题意;B、菱形的对角线互相垂直,故原命题正确,符合题意;C、菱形的对角相等,故原命题错误,不符合题意;D、矩形的四个角都是直角,菱形不一定是,故原命题错误,不符合题意,故选:B.2.解:∵AC=AD,BC=BD,∴AB垂直平分CD,故选:A.3.解:∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO =BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD 的面积=×6×8=24,故选:B.4.解:∵O为矩形ABCD的对角线AC的中点,∴AO=OC,∵过点O作AC的垂线EF分别交AD、BC于点E、F,∴AE=CE,∵矩形的周长为20,∴AD+DC=AB+BC=10,∴△CDE的周长为CD+DE+CE=CD+DE+AE=CD+AD=10,故选:A.5.解:A、正确.对角线相等的平行四边形是矩形.B、正确.∵AB=6,BC=8,AC=10,∴AB2+BC2=62+82=102,∴∠ABC=90°,∴平行四边形ABCD为矩形.C、错误.对角线垂直的平行四边形是菱形,D、正确,∵∠1=∠2,∴AO=BO,∴AC=BD,∴平行四边形ABCD是矩形.故选:C.6.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形,∴∠DAB=90°,∵∠OAD=55°,∴∠OAB=∠DAB﹣∠OAD=35°故选:A.7.解:过E作EF⊥AB于F,由题意得,△BCE是等边三角形,∴∠EBC=60°,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE=30°,∴EF =BE,设正方形的边长为a,则AB=BE=BC=a,∴EF =a,∴S△ABE =AB•EF =•a a =a,S正方形ABCD=a2,∴△ABE与正方形ABCD的面积比为1:4,故选:C.8.解:由∠A=∠B=∠C=90°可判定四边形ABCD为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD为正方形,故选:C.9.解:过点D作BC的垂线,交BC的延长线于F,∵∠ADC=∠ABC=90°,∴∠A+∠BCD=180°,∵∠FCD+∠BCD=180°,∴∠A=∠FCD,又∠AED=∠F=90°,AD=DC,∴△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,∴DE=4.故选:C.10.解:∵四边形ABCD是菱形∴AB=AD=CD=6,AB∥CD∵AB的中点是坐标原点,∴AO=BO=3,∴DO ==3∴点C坐标(6,3)故选:D.二.填空题11.解:∵AF,BE是矩形的内角平分线.∴∠ABF=∠BAF﹣90°.故∠1=∠2=90°.同理可证四边形GMON四个内角都是90°,则四边形GMON为矩形.又∵有矩形ABCD且AF、BE、DK、CJ为矩形ABCD四角的平分线,∴有等腰直角△DOC,等腰直角△AMD,等腰直角△BNC,AD=BC.∴OD=OC,△AMD≌△BNC,∴NC=DM,∴NC﹣OC=DM﹣OD,即OM=ON,∴矩形GMON为正方形,故答案为:正方.12.解:∵四边形ABCD为菱形,∴BD平分∠ABC,∵E为BD上的一点,EF=4,∴点E到AB的距离=EF=4,故答案为:4.13.解:如图,∵四边形ABCD是菱形∴AO=CO=6cm,BO=DO,AC⊥BD ∵S菱形ABCD =×AC×BD=96∴BD=16cm∴BO=DO=8cm∴AB ==10cm故答案为:10cm14.解:∵四边形ABCD是矩形,∴AO=OC,DO=BO,AC=BD,∴DO=CO=AO=BO,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=10,∴AO=OB=DO=10,∵E、F分别为AO、AD的中点,∴EF =DO ==5,故答案为:5.15.解:∵四边形ABCD是正方形,∴∠CAE=45°=∠ACB.∵AE=AC,∴∠ACE=(180°﹣45°)÷2=67.5°.∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故答案为22.5°.16.解:∵菱形ABCD的周长是20,∴AB=5,AC⊥BD,AO=CO,BO=DO=3,∴AO ==4∴AC=8,BD=6∴菱形ABCD 的面积=AC×BD=24,故答案为:2417.解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=1,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=1,所以t=0.5,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=1,根据SAS证得△BAP≌△DCE,由题意得:AP=8﹣2t=1,解得t=3.5.所以,当t的值为0.5或3.5秒时.△ABP和△DCE全等.故答案为:0.5秒或3.5秒.18.解:∵四边形ABCD和四边形CEFG都是正方形,∴∠ACD=45°,∠FCG=45°,AC =BC =,CF =CE=3,∴∠ACF=45°+45°=90°,在Rt△ACF中,由勾股定理得:AF ===2,∵H是AF的中点,∴CH =AF =.故答案为:.三.解答题19.解:∵DE⊥AB于E,且E为AB的中点,∴AD=BD,∵四边形ABCD是菱形,∴AD=BA,∴AB=AD=BD,∴△ABD是等边三角形,∴∠DAB=60°;∵BD=4,∴DO=2,AD=4,∴AO ==2,∴AC=4;∴AB ===4,∴菱形ABCD的周长为4×4=16;菱形ABCD 的面积为:BD•AC =×4×4=8.20.证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥DC∴∠AEB=∠AFD=90°.又∵BE=DF,∴△ABE≌△ADF(AAS)∴DA=AB,∴平行四边形ABCD是菱形.21.解:∵四边形ABCD是矩形,∴AC=BD,AO=OC,OD=OB,∠BAD=90°,∴OA=OB,∵∠BAD=90°,∠DAE=2∠BAE,∴∠BAE=30°,∵AE⊥BD,∴∠AEB=90°,∴∠ABO=90°﹣30°=60°,∵OA=OB,∴△OAB是等边三角形,∴∠BAO=60°,∴∠EAC=∠BAO﹣∠BAE=60°﹣30°=30°.22.解:(1)证明:∵AD∥BC,EC=AD,∴四边形AECD是平行四边形.又∵∠D=90°,∴四边形AECD是矩形.(2)∵AC平分∠DAB.∴∠BAC=∠DAC.∵AD∥BC,∴∠DAC=∠ACB.∴∠BAC=∠ACB.∴BA=BC=5.∵EC=2,∴BE=3.∴在Rt△ABE中,AE ===4.23.解:△BEF是直角三角形,理由如下:∵四边形ABCD是正方形,∴∠A=∠C=∠D=90°.∵点E是CD的中点,∴DE=CE =CD=6.∵AF=3DF,∴DF =AD=3.∴AF=3DF=9.在Rt△ABF中,由勾股定理可得BF2=AB2+AF2=144+81=225,在Rt△BCE中,由勾股定理可得BE2=CB2+CE2=144+36=180,在Rt△DEF中,由勾股定理可得EF2=DF2+DE2=9+36=45,∵BE2+EF2=180+45=225,BF2=225,∴BE2+EF2=BF2.∴△BEF是直角三角形.24.(1)证明:∵CE∥BD,DE∥AC,∴四边形OCED是平行四边形,在正方形ABCD中,AC⊥BD,OD=OC,∴∠COD=90°,∴四边形OCED是正方形.(2)解:如图,连接EO并延长,交AB于G,交CD于H,由(1)知:四边形OCED是正方形,∴CD⊥OE,∵四边形ABCD是正方形,∴AB∥CD,∴EG⊥AB,∵AC =,∴AB=BC=1=GH,Rt△DCE中,∵DE=CE,EH⊥CD,∴DH=CH,∴EH =CD=0.5,∴EG=1+0.5=1.5,∴点E到边AB的距离为1.5;故答案为:1.5.25.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.。
2021-2021学年北师大版九年级数学上册全册单元测试题(含答案)

2021-2021学年北师大版九年级数学上册全册单元测试题(含答案)2021-2021学年北师大版九年级数学上册全册单元测试题第21章一元二次方程测试题(时间: 90分钟,满分:120分)(班级:_____ 姓名:_____ 得分:_____)一、选择题(每小题3分,共30分)1. 一元二次方程2x2-3x-4=0的二次项系数是() A. 2 B. -3 C. 4 D. -42.把方程(x-5)(x+5)+(2x-1)2=0化为一元二次方程的一般形式是()A.5x2-4x-4=0B.x2-5=0C.5x2-2x+1=0 D.5x2-4x+6=03.方程x2-2x-3=0经过配方法化为(x+a)2=b的形式,正确的是()A.?x?1??422B.?x?1??422C.?x?1??16 D.?x?1??164.方程?x?1??x?2??x?1的解是()A.2 B.3 C.-1,2D.-1,35.下列方程中,没有实数根的方程是() A.x2?12x?27?0 C.2x2?34x?1?0B.2x2?3x?2?0D.x2?3x?k2?0(k为任意实数)6.一个矩形的长比宽多2cm,其面积为8cm2,则矩形的周长为() A.12cm B.16cm C.20cm D.24cm7.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得() A.168(1+x)2=128 B.168(1��x)2=128 C.168(1��2x)=128 D.168(1��x2)=1288.一个两位数等于它的个位数的平方,且个位数比十位数大3,则这个两位数为()A.25B.36C.25或36D.-25或-369.从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48�O,则原来这块木板的面积是() A.100�OB.64�OC.121�OD.144�O10.三角形两边的长分别是8和6,第三边的长是一元二次方程x2?16x?60?0的一个实数根,则该三角形的面积是()A.24 B.24或85 C.48 D.85 二、填空题(每小题4分,共32分)11.当k 时,方程kx2?x?2?3x2是关于x的一元二次方程.12.若a?b?c?0且a?0,则关于x的一元二次方程ax2?bx?c?0必有一定根,它是. 13.一元二次方程x(x-6)=0的两个实数根中较大的为 .14.某市某企业为节约用水,自建污水净化站.7月份净化污水3000吨,9月份增加到3630吨,则这两个月净化的污水量平均每月增长的百分率为.15.若关于x的一元二次方程x2?(k?3)x?k?0的一个根是-2,则另一个根是______. 16.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为x,则可列方程____________________.17.方程x2+px+q=0,甲同学因为看错了常数项,解得的根是6,-1;乙同学看错了一次项,解得的根是-2,-3,则原方程为.18.如图,矩形ABCD的周长是20cm,以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为68 cm2,那么矩形ABCD的面积是_______cm2.三、解答题(共58分)19.(每小题5分,共20分)选择适当的方法解下列方程:(1)7(2x?3)2?28;(2)x2?8x?9?0; (3)2x2?1?25x;(4)(x?1)2?2x?1?x?.20.(8分)当m为何值时,关于x的一元二次方程x2?4x?m?1?0有两个相等的实数根?此2时这两个实数根是多少?1121.(8分)已知a,b是方程x2?2x?1?0的两个根,求代数式(?)(ab2?a2b)的值. ab22.(10分)如图,△ABC中,∠B=90°,点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果点P,Q分别从点A,B同时出发,经几秒钟,使△PBQ的面积等于8cm2?23.(12分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x元. 据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?参考答案一、1.A2.A 3.A 4.D 5.B6.A 7.B8.C9.B 10.B 二、11.k??312.1 13.6 14.10% 15.116.200?200(1?x)?200(1?x)2?140017.x2-5x+6=0 18.16 三、19.(1)x51=2,x12=2;(2)x1=1,x2=-9;(3)x5?35?11=2,x32=2;(4)x1=1,x2=3 .20. 解:由题意,得?=(-4)2-4(m-21)=0,即16-4m+2=0,解得m=29.当m =92时,方程有两个相等的实数根x1=x2=2.21. 解:由题意,得a?b??2,ab??1. 所以原式=b?aab?ab?b?a???b?a?2??a?b?2?4ab=??2?2?4?8. 22.解:解:设x秒时,点P在AB 上,点Q在BC上,且使△PBD的面积为8 cm2,由题意,得12(6?x)?2x?8. 解得x1=2, x2=4.经检验均是原方程的解,且符合题意. 所以经过2秒或4秒时△PBQ的面积为8 cm2.解:(1)2x50-x(2)由题意,得(50-x)(30+2x)=2100. 化简,得x2-35x+300=0. 解得x1=15,x2=20.因为该商场为了尽快减少库存,所以降的越多,越吸引顾客,故选x=20. 答:每件商品降价20元,商场日盈利可达2100元.第22章二次函数测试题时间:100分钟满分:120分钟一、选择题(每小题3分,共24分)1.抛物线y=2(x��3)2+1的顶点坐标是()A.(3,1) B.(3,��1) C.(��3,1) D.(��3,��1) 2.关于抛物线y=x2��2x+1,下列说法错误的是() A.开口向上 B.与x轴有两个重合的交点C.对称轴是直线x=1 D.当x>1时,y随x的增大而减小 3.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x y … … ��5 4 ��4 0 ��3 ��2 ��2��2 ��1 0 0 4 … … 下列说法正确的是() A.抛物线的开口向下B.当x>��3时,y随x的增大而增大 C.二次函数的最小值是��2D.抛物线的对称轴是x=�� 4.抛物线y=2x2,y=��2x2,共有的性质是()A.开口向下 B.对称轴是y轴C.都有最高点 D.y随x的增大而增大5.已知点(x1,y1),(x2,y2)均在抛物线y=x2��1上,下列说法中正确的是() A.若y1=y2,则x1=x2 B.若x1=��x2,则y1=��y2 C.若0<x1<x2,则y1>y2 D.若x1<x2<0,则y1>y26.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B. C. D.7.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=��2.关于下列结论:①ab<0;②b2��4ac>0;③9a��3b+c<0;④b��4a=0;⑤方程ax2+bx=0的两个根为x1=0, x2=��4,其中正确的结论有()A.①③④ B.②④⑤ C.①②⑤ D.②③⑤感谢您的阅读,祝您生活愉快。
(常考题)北师大版初中数学九年级数学上册第四单元《图形相似》测试题(含答案解析)(2)

一、选择题1.如图,A B C '''是ABC 以点O 为位似中心经过位似变换得到的,若A B C '''与ABC 的周长比是2:3,则它们的面积比为( )A .2:3B .4:5C .2:3D .4:92.如图,ABC 中,AD BC ⊥于点D ,下列条件中不.能判定ABC 是直角三角形的是( )A .B DAC ∠=∠ B .90B DAC ∠+∠=︒ C .2AB BD BC =⋅D .2AC CD BC =⋅3.如图,小颖身高为160cm ,在阳光下影长240AB cm =,当她走到距离墙角(点D )120cm 的C 处时,她的部分影子投射到墙上,则投射在墙上的影子DE 的长度为( )A .120cmB .80cmC .60cmD .40cm4.如图,在平面直角坐标系中,矩形ABCD 的对角线//BD x 轴,若(1,0),(0,2)A D ,则点C 的坐标为( )A .(4,3)B .(4,4)C .(3,4)D .(2.5,4)5.如图,4AB=,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,12BE DB=,作EF DE⊥并截取EF DE=,连结AF并延长交射线BM于点C.设BE x=,BC y=,则y关于x的函数解析式是()A.124xyx=--B.21xyx=--C.31xyx=--D.84xyx=--6.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN分为两线段MG、GN,使得其中较长的一段MG是全长MN与较短的一段GN的比例中项,即满足512MG GNMN MG-==,后人把512-这个数称为“黄金分割数”,把点G称为线段MN的“黄金分割点”.如图,在△ABC中,已知AB=AC=3,BC=4,若点D是边BC边上的一个“黄金分割点”,则△ADC的面积为()A.55-B.355-C.2085-D.1045-7.如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则C,D之间的距离为()A.(540)cm B.(540)cmC.(120﹣5cm D.(5160)cm8.如图,在△ABC中,中线AE、BD相交于点F,连接DE,则下列结论:①12DEAB=;②14CD CE DEAC BC AB++=++;③CD EFCA FA=;④13FDECDESS=△△.其中正确结论的个数是()A .1个B .2个C .3个D .4个9.《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何.”其大意是:如图,Rt ABC △的两条直角边的长分别为5和12,则它的内接正方形CDEF 的边长为( )A .2517B .6017C .10017D .1441710.如图,在平面直角坐标系xOy 中,已知△ABO 的两个顶点分别为A (﹣8,4),B (﹣2,﹣2),以原点O 为位似中心画△A B O '',使它与△ABO 位似,且相似比为12,则点A 的对应点A '的坐标为( )A .(4,2)B .(1,1)C .(﹣4,2)D .(4,﹣2)11.如图,线段1AB =,点1P 是线段AB 的黄金分割点(且11AP BP <),点2P 是线段1AP 的黄金分割点(212AP PP <),点3P 是线段3AP 的黄金分割点()323,,AP P P <依此类推,则线段2020AP 的长度是( )A .202051-⎝⎭B .202151-⎝⎭C .202035-⎝⎭D .202135-⎝⎭12.如图,在四边形ABCD 中,如果ADC BAC ∠=∠,那么下列条件中不能判定ADC 和BAC 相似的是( )A .DAC ABC ∠=∠B .CA 是BCD ∠的平分线C .AD DCAB AC= D .2AC BC CD =⋅二、填空题13.边长为4的正方形ABCD ,在BC 边上取一动点E ,连接AE ,作EF ⊥AE ,交CD 边于点F ,若CF 的长为34,则CE 的长为 _____ .14.如图,正方形ABCD 的边长为4,点E 为CD 中点,点F 为BC 边上一点,且CF=1,连接AF ,EG ⊥AF 交BC 于点G ,则BG=________.15.如图,在ABC 中,D 在AC 边上,:1:2AD DC =,O 是BD 的中点,连接AO 并延长交BC 于点E ,若3BE =,则EC 的长为____.16.如图,在菱形ABCD 中,AB =1,∠ADC =120°,以AC 为边作菱形ACC 1D 1,且∠AD 1C 1=120°;再以AC 1为边作菱形AC 1C 2D 2,且∠AD 2C 2=120°…;按此规律,菱形AC 2020C 2021D 2021的面积为_____.17.已知点D ,E 分别在△ABC 的边AB ,AC 上,△ADE ,△DEC ,△BCD 的面积之比为4:2:3,∠ACD=∠ADE ,CD=6,则BC 的长为_______.18.如图所示,在ABC 中,E 、F 分别是AC 、AB 的中点,已知FC 长是6,则线段OC 的长为______.19.在平面直角坐标系中,ABC 与DEF 是以坐标原点O 为位似中心的位似图形,相似比为1:2;若B 点的坐标为(2,1),则B 的对应点E 的坐标为________. 20.如图,在ABC 中,AB AC >,将ABC 以点A 为中心顺时针旋转,得到AED ,点D 在BC 上,DE 交AB 于点F .如下结论中:①DA 平分EDC ∠;②AEF DBF △∽△;③BDF CAD ∠=∠;④EF BD =.所有正确结论的序号是_____.三、解答题21.在矩形ABCD 的CD 边上取一点E ,将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若2BC BA =,求CBE ∠的度数; (2)如图2,当5AB =,且10AF FD =时,求BC 的长;22.已知ABC ∆中,90C =∠.你能画一条直线把它分割成两个相似三角形吗?如果可以,请用尺规作出这条分割线,保留作图痕迹,并说明两个三角形相似的理由.23.如图,已知O 为坐标原点,B ,C 两点坐标为(3,1)-,(2,1).(1)在y 轴的左侧以O 点为位似中心将OBC 放大到原来的2倍,画出放大后111O B C ;(2)写出11B C ,的坐标;(3)在(1)条件下,若OBC 内部有一点M 的坐标为(,)x y ,请直接写出M 的对应点1M 的坐标.24.如果两个相似三角形的对应边存在2倍关系,则称这两个相似三角形互为母子三角形.(1)如果DEF 与ABC 互为母子三角形,则DEAB的值可能为( )A.2 B.12C.2或12(2)已知:如图1,ABC中,AD是BAC∠的角平分线,2,AB AD ADE B=∠=∠.求证:ABD△与ADE互为母子三角形.(3)如图2,ABC中,AD是中线,过射线CA上点E作//EG BC,交射线DA于点G,连结BE,射线BE与射线DA交于点F,若AGE与ADC互为母子三角形.求AGGF的值.25.如图,在四边形ABCD中,AD∥BC,AC,BD交于点E,过点E作MN∥AD,分别交AB,CD于点M,N.(1)求证:△AME~△ABC;(2)求证:111 ME AD BC=+;(3)若AD=5,BC=7,求MN的长.26.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点、顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.求面积最大的三角形的斜边长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】直接利用位似是相似的特殊形式,利用相似的性质可知对应边A′B′与AB之比等于△A′B′C′的周长与△ABC 的周长之比为2:3,再根据面积比等于相似比的平方求解即可. 【详解】解:∵△A'B'C'是△ABC 以点O 为位似中心经过位似变换得到的,△A'B'C'的周长与△ABC 的周长比是2:3, ∴A B C '''∽ABC ,23A B AB ''=, ∴222439A B C ABC A S B S B A '''⎛''⎛⎫== ⎪⎝⎫= ⎪⎝⎭⎭. 故选:D . 【点睛】本题考查的是位似变换的概念、相似三角形的性质,掌握位似图形的对应边平行、相似三角形的面积比等于相似比的平方是解题的关键.2.B解析:B 【分析】根据已知对各个条件进行分析,从而得到答案. 【详解】 解:A.能, ∵AD ⊥BC , ∴∠B+∠BAD=90°, ∵∠B=∠DAC ,∴∠BAC=∠BAD+∠DAC=∠BAD+∠B=90°; ∴△ABC 是直角三角形; B.不能, ∵AD ⊥BC , ∴∠B+∠BAD=90°, ∵∠B+∠DAC=90°, ∴∠BAD=∠DAC , ∴△ABD ≌△ACD (ASA ), ∴AB=AC ,∴△ABC 是等腰三角形, ∴无法证明△ABC 是直角三角形; C.能,∵2AB BD BC =⋅ ∴AB BCBD AB= ∵∠B=∠B ∴△CBA ∽△ABD , ∴∠ADB=∠BAC ,∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠BAC=90°∴△ABC是直角三角形;D.能,∵2AC CD BC=⋅,∴AC BC=CD AC∵∠C=∠C∴△CBA∽△CAD,∴∠ADC=∠BAC=90°∴△ABC是直角三角形.故选:B【点睛】此题考查了相似三角形的判定与性质、直角三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用,注意相似三角形的判定与性质的应用.3.B解析:B【分析】过E作EF⊥CG于F,利用相似三角形列出比例式求出投射在墙上的影子DE长度即可.【详解】解:如图,过E作EF⊥CG于F,设投射在墙上的影子DE长度为x,由题意得:△GFE∽△HAB,∴AB:FE=AH:(GC−x),则240:120=160:(160−x),解得:x=80.答:投射在墙上的影子DE长度为80cm.故选:B.【点睛】本题考查了相似三角形的应用,解题的关键是正确地构造直角三角形.4.B解析:B【分析】过点B 作BF ⊥x 轴,垂足为F ,证明△ADO ∽△BAF ,确定点B 的坐标,利用中点坐标公式确定点E 的坐标,二次运用中点中点坐标公式即可确定点C 的坐标. 【详解】如图,过点B 作BF ⊥x 轴,垂足为F , ∵四边形ABCD 是矩形, ∴∠DAB=90°, ∴∠DAO+∠BAF=90°, ∵∠DAO+∠ADO=90°, ∴∠ADO=∠BAF , ∴△ADO ∽△BAF , ∴OA :BF=OD :FA ,∵//BD x 轴,若(1,0),(0,2)A D , ∴OA=1,OD=2,BF=2, ∴1:2=2:FA , ∴FA=4, ∴点B (5,2), ∵四边形ABCD 是矩形, ∴点E 是BD 的,AC 的中点, ∴点E (52,2), 设点C 的坐标为(m ,n ),∴150,2,222m n ++== ∴m=4,n=4,∴点C 的坐标为(4,4), 故选C .【点睛】本题考查了矩形的性质,三角形相似的判定与性质,中点坐标公式,平行x 轴直线上点的坐标特点,构造辅助线证明三角形的相似,灵活运用中点坐标公式是解题的关键.5.A解析:A【分析】作FG ⊥BC 于G ,依据已知条件求得△DBE ≌△EGF ,得出FG =BE =x ,EG =DB =2x ,然后根据平行线的性质即可求得.【详解】解:作FG ⊥BC 于G ,∵∠DEB +∠FEC =90°,∠DEB +∠BDE =90°;∴∠BDE =∠FEG ,在△DBE 与△EGF 中,B FGE BDE FEG DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△EGF ,∴EG =DB ,FG =BE =x ,∴EG =DB =2BE =2x ,∴GC =y -3x ,∵FG ⊥BC ,AB ⊥BC ,∴FG ∥AB ,CG :BC =FG :AB , 即34x y x y-=, ∴124x y x =--, 故选:A .【点睛】本题考查了三角形全等的判定和性质,以及平行线分线段成比例,辅助线的做法是解题的关键.6.A解析:A【分析】作AF ⊥BC ,根据等腰三角形ABC 的性质求出AF 的长,再根据黄金分割点的定义求出CD 的长度,利用三角形面积公式即可解题.【详解】解:过点A 作AF ⊥BC ,∵AB=AC ,∴BF=12BC=2, 在Rt ABF ,AF=2222325AB BF -=-=,∵D 是边BC 的两个“黄金分割”点,∴512CD BC -=即5142CD -=, 解得CD=252-,∴12ADC C AF S D ⨯⨯==()125252⨯-⨯=55-, 故选:A .【点睛】本题考查了“黄金分割比”的定义、等腰三角形的性质、勾股定理的应用以及三角形的面积公式,求出DC 和AF 的长是解题的关键.7.D解析:D【分析】根据黄金分割的概念和黄金比值求出AC =BD =540,进而得出答案.【详解】解:∵点C 是靠近点B 的黄金分割点,点D 是靠近点A 的黄金分割点,∴AC =BD =8051-=540, ∴CD =BD ﹣(AB ﹣BD )=2BD ﹣AB =5160,故选:D .【点睛】此题考查了黄金分割点的概念:把一条线段分成两部分,使其中较长的线段为全线段与较51-叫做黄金比. 8.C解析:C【分析】根据题意和相似三角形的判定与性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:在△ABC 中,中线AE 、BD 相交于点F ,∴DE 是△ABC 的中位线,∴DE ∥AB ,DE AB =12,故①正确; ∴△CDE ∽△CAB , ∴12CD DE CA AB ==,12CD CE DE DE AC BC AB AB ++==++,故②错误; ∵DE ∥AB ,∴△DEF ∽△BAF , ∴12EF DE AF BA ==, ∴CD EF CA FA=,故③正确; ∵CD =DA ,12EF AF =, ∴S △CDE =S △ADE ,13DEF ADE S S ∆∆=, ∴FDE CDE S S ∆∆=13,故④正确; 故选:C .【点睛】本题考查了相似三角形的判定与性质、三角形的中位线,解答本题的关键是明确题意,利用数形结合的思想解答.9.B解析:B【分析】根据正方形的性质得:DE ∥BC ,则△ADE ∽△ACB ,列比例式可得结论.【详解】解:∵四边形CDEF 是正方形,∴CD=ED ,DE ∥CF ,设ED=x ,则CD=x ,AD=5-x ,∵DE ∥CF ,∴∠ADE=∠C ,∠AED=∠B ,∴△ADE ∽△ACB , ∴DE AD BC AC=,∴5125x x -=, ∴x=6017, ∴正方形CDEF 的边长为6017. 故选:B .【点睛】此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.10.D解析:D【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k ,即可求得答案.【详解】解:∵△ABO 与A B O ''△的相似比为12,且A '在第四象限, ∴点A 的对应点A '的坐标为118,422⎛⎫⎛⎫⎛⎫-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即(4,-2), 故选:D .【点睛】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.11.C解析:C【分析】根据把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值12叫做黄金比进行解答即可. 【详解】解:根据黄金比的比值,1BP =则113122AP -=-=, 2323,,AP AP ==⎝⎭⎝⎭…依此类推,则线段20202020AP =⎝⎭,故选C .【点睛】 本题考查的是黄金分割的知识,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.12.D解析:D【分析】已知∠ADC =∠BAC ,则A 、B 选项可根据有两组角对应相等的两个三角形相似来判定;C 选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;D 选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似.【详解】在△ADC 和△BAC 中,∠ADC =∠BAC ,如果△ADC ∽△BAC ,需满足的条件有:①∠DAC =∠ABC 或AC 是∠BCD 的平分线; ②AD DC AB AC=; 故选:D .【点睛】 此题主要考查了相似三角形的判定方法;熟记三角形相似的判定方法是解决问题的关键.二、填空题13.1或3【分析】由正方形的性质结合三角形内角和定理可得出结合可得出由可证出再利用相似三角形的性质可求出的长【详解】解:四边形为正方形即或故答案为:1或3【点睛】本题考查了相似三角形的判定与性质正方形的 解析:1或3.【分析】由正方形的性质结合三角形内角和定理可得出90BAE AEB ∠+∠=︒,结合90AEB CEF ∠+∠=︒可得出BAE CEF ∠=∠,由B C ∠=∠,BAE CEF ∠=∠可证出ABE ECF ∆∆∽,再利用相似三角形的性质可求出CE 的长.【详解】 解:四边形ABCD 为正方形,90B C ∴∠=∠=︒,90BAE AEB ∴∠+∠=︒.EF AE ⊥,90AEF ∴∠=︒,90AEB CEF ∴∠+∠=︒,BAE CEF ∴∠=∠,ABE ECF ∽, ∴CE CF BA BE ,即4344CE CE, 1CE ∴=或3CE =.故答案为:1或3.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形内角和定理,利用“两角对应相等的三角形相似”找出ABE ECF ∆∆∽是解题的关键.14.【分析】证明△ECG △FBA 利用相似三角形的性质求解即可【详解】设EG 交AF 于点Q ∵EG ⊥AF ∴∠FQG=90∴∠QFG+∠QGF=90在正方形ABCD 中∠B=∠C=90∴∠QAB+∠AFB=90∴ 解析:43【分析】证明△ECG ~△FBA ,利用相似三角形的性质求解即可.【详解】设EG 交AF 于点Q ,∵EG ⊥AF ,∴∠FQG=90︒,∴∠QFG+∠QGF =90︒,在正方形ABCD 中,∠B=∠C =90︒,∴∠QAB+∠AFB =90︒,∴∠QGF =∠FAB ,在△ECG 和△FBA 中,∠B=∠C =90︒,∠QGF =∠FAB ,∴△ECG ~△FBA(两组对应角相等的三角形是相似三角形),∴EC CG BF AB =, ∴EC CF FG BF AB+=, ∵E 是CD 的中点,∴122CE CD ==, ∵CF=1,∴BF=3, ∴2134FG +=, 解得:FG=53, ∴43BG BF FG =-=, 故答案为:43. 【点睛】 本题考查了正方形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题.15.9【分析】过D 点作DF ∥CE 交AE 于F 如图先由DF ∥BE 根据平行线分线段成比例得到DF=BE=3再由DF ∥CE 得到然后利用比例的性质求CE 的长【详解】解:过D 点作DF ∥CE 交AE 于F 如图∵DF ∥BE解析:9【分析】过D 点作DF ∥CE 交AE 于F ,如图,先由DF ∥BE ,根据平行线分线段成比例得到DF=BE=3,再由DF ∥CE 得到DF AD CE AC=,然后利用比例的性质求CE 的长. 【详解】解:过D 点作DF ∥CE 交AE 于F ,如图,∵DF ∥BE ,∴DF DO BE BO=, ∵O 是BD 的中点,∴OB=OD ,∴DF=BE=3,∵DF ∥CE ,∴DF AD CE AC=,∵AD :DC=1:2,∴AD :AC=1:3, ∴13DF CE =, ∴CE=3DF=3×3=9.故答案为9.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.16.【分析】根据题意可以求得菱形ABCD 的面积再根据题意可以知所有的菱形都相似即可得到菱形AC2020C2021D2021的面积【详解】解:作CE ⊥AB 交AB 的延长线于点E 如右图所示由已知可得∠ABC =解析:40412【分析】根据题意,可以求得菱形ABCD 的面积,再根据题意,可以知所有的菱形都相似,即可得到菱形AC 2020C 2021D 2021的面积.【详解】解:作CE ⊥AB 交AB 的延长线于点E ,如右图所示,由已知可得,∠ABC =120°,BC =1,∠CAB =30°,∴∠CBE =60°,∴∠BCE =30°,∴CE ∴AC∴菱形ABCD 的面积是1×2=2,∵AC AB =1,图中的菱形都是相似的,∴菱形AC2020C 2021D 2021的面积为:2×[(1)2]2020=2×4040=40412,【点睛】本题考查了图形的相似、菱形的性质、图形的变化类,解题的关键是明确题意,发现图形的变化特点,利用数形结合的思想解答.17.3【分析】根据△ADE△DEC△BCD的面积之比为4:2:3可得出AE:EC=2:1AD:BD=2:1则可证明DE∥BC利用平行线的性质与相似三角形的判定可得△ACD∽△ABC与△ACD∽△ADE根解析:3【分析】根据△ADE,△DEC,△BCD的面积之比为4:2:3,可得出AE:EC=2:1,AD:BD=2:1,则可证明DE∥BC,利用平行线的性质与相似三角形的判定可得△ACD∽△ABC与△ACD∽△ADE,根据相似三角形的判定可推出BC CDCD DE=,计算后即可得出结论.【详解】解:如图,∵S△ADE:S△DEC=4:2,∴AE:EC=2:1,∵S△ADE:S△DEC:S△BCD =4:2:3,∴S△ACD:S△BCD=6:3,∴AD:BD=2:1,∵AE ADEC BD=,∴DE ∥BC ,∴∠B=∠ADE ,∵∠ACD=∠ADE ,∴∠ACD=∠B ,∵∠A=∠A ,∴△ACD ∽△ABC , ∴BC AB AC CD AC AD==, 同理可证:△ACD ∽△ADE , ∴CD AC AD DE AD AE ==, ∴BC CD CD DE=, ∵DE ∥BC ,∴△ABC ∽△ADE ,, ∴DE AD BC AB=, ∵AD :BD=2:1, ∴23AD AB =, ∴23DE BC =, ∴23DE BC =, ∴223BC BC CD ⋅=, ∵,∴3BC =.故答案为:3.【点睛】此题主要考查了相似三角形的判定与性质,掌握平行线的判定与相似三角形的判定与性质是解题的关键.18.4【分析】根据已知利用相似三角形的判定可得到△EFO ∽△BCO 根据相似比可求得CO 的长即可【详解】解:∵点EF 分别是△ABC 中ACAB 边的中点∴EF 是△ABC 的中位线∴EF=BCEF ∥BC ∴△EFO解析:4【分析】根据已知利用相似三角形的判定可得到△EFO ∽△BCO ,根据相似比可求得CO 的长即可.【详解】解:∵点E、F分别是△ABC中AC、AB边的中点.∴EF是△ABC的中位线.∴EF=1BC,EF∥BC.2∴△EFO∽△BCO,且相似比为1:2.∴CO=2FO.∵FC=6.∴OC=2FO=4.故答案为4.【点睛】此题主要考查三角形的中位线的定理和相似三角形的判定方法的掌握.19.或【分析】根据位似图形的有两个在原点同侧或异侧分类讨论根据坐标变化规律求解即可【详解】解:与是以坐标原点为位似中心的位似图形分两种情况当与在原点同侧时E点坐标为:当与在原点异侧时E点坐标为:故答案为--解析:(4,2)或(4,2)【分析】根据位似图形的有两个,在原点同侧或异侧分类讨论,根据坐标变化规律求解即可.【详解】解:ABC与DEF是以坐标原点O为位似中心的位似图形,分两种情况,当ABC与DEF在原点同侧时,E点坐标为:(4,2),--,当ABC与DEF在原点异侧时,E点坐标为:(4,2)--.故答案为:(4,2)或(4,2)【点睛】本题考查了平面直角坐标系中位似图形的坐标变化规律,解题关键是注意分类讨论,熟记位似坐标变化规律.20.①②③【分析】由旋转性质得AD=AC∠ADE=∠C利用AD=AC得到∠ADC=∠C即可推出∠ADC=∠ADE判断①正确;根据∠E=∠B∠AFE=∠BFD即可证明△AEF∽△DBF判断②正确;利用三角解析:①②③【分析】由旋转性质得AD=AC,∠ADE=∠C,利用AD=AC得到∠ADC=∠C,即可推出∠ADC=∠ADE,判断①正确;根据∠E=∠B,∠AFE=∠BFD,即可证明△AEF∽△DBF,判断②正确;利用三角形的外角性质判断③正确;由∠FAD不一定等于∠CAD,不能证明△ADF全等于△ADC,故CD不一定等于DF,由此判断④错误.【详解】由旋转得:AD=AC,∠ADE=∠C,∵AD=AC,∴∠ADC=∠C,∴∠ADC=∠ADE ,即DA 平分∠EDC ,故①正确;∵∠E=∠B ,∠AFE=∠BFD ,∴△AEF ∽△DBF ,故②正确;∵∠ADB=∠ADE+∠BDF=∠C+∠CAD ,∠ADE=∠C ,∴BDF CAD ∠=∠,故③正确;∵∠FAD 不一定等于∠CAD ,AD=AD ,∠ADC=∠ADE ,∴不能证明△ADF 全等于△ADC ,故CD 不一定等于DF ,∴DE-DF 不一定等于BC-CD ,即无法证明EF=BD ,故④错误;故答案为:①②③.【点睛】此题考查旋转的性质,等腰三角形的性质,相似三角形的判定及性质,三角形的外角性质,是一道三角形的综合题.三、解答题21.(1)15°;(2)【分析】(1)由翻折易得BC BF =,FBE EBC ∠=∠,由2BF AB =及直角三角形的性质易得30AFB ∠=︒,再由矩形的对边平行即可得结论;(2)根据翻折易得FAB EDF ∆∆∽,从而有对应边成比例,由此可得DE 的长,从而可得EC 的长,即EF 的长,由勾股定理得DF ,最后可得AD 的长.【详解】(1)将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处,BC BF ∴=,FBE EBC ∠=∠,2BC AB =,2BF AB ∴=,四边形ABCD 是矩形,∴∠A =90º,//AD BC ,30AFB ∴∠=︒,30AFB CBF ∴∠=∠=︒,1152CBE FBC ∴∠=∠=︒; (2)将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处, 90BFE C ∴∠=∠=︒,CE EF =, 又矩形ABCD 中,90A D ∠=∠=︒,90AFB DFE ∴∠+∠=︒,90DEF DFE ∠+∠=︒,AFB DEF ∴∠=∠,FAB EDF ∴∆∆∽,∴AF AB DE DF =, AF DF AB DE ∴=,10AF DF =,5AB =, 2DE ∴=,523CE DC DE ∴=-=-=,3EF ∴=,2222325DF EF DE ∴=-=-=,255AF ∴==, 25535BC AD AF DF ∴==+=+=.【点睛】本题主要考查了矩形的性质、直角三角形的性质、相似三角形的判定与性质、图形的翻折,关键是图形的翻折这个条件,由它可得出对应线段相等、对应角相等,充分用好用足它们.22.图见解析;理由见解析【分析】作AB 的垂线即可;利用两个角对应相等的两个三角形相似即可判定.【详解】解:如图,作AB 的垂线,垂足为P ,直线CP 就是所求直线;证明:∵CP ⊥AB ,∴∠CPA=∠BPC=90°,∵90C =∠,∴∠A+∠B=90°,∠A+∠ACP=90°,∴∠ACP =∠B ,∴△CPA ∽△BPC .【点睛】本题考查了尺规作图和相似三角形的判定,解题关键是熟悉尺规作图的方法,根据相似确定如何作图.23.(1)见解析;(2)1(6,2)B -,1(4,2)C --;(3)1(2,2)M x y --.【分析】(1)先确定B ,C 的位置,再确定它们各自关于原点的对称点,最后把对称点的坐标各自扩大2倍即可;(2)点B 关于原点的对称点为(-3,1),扩大2倍,得到1B ;点C 关于原点的对称点为(-2,-1),扩大2倍,得到1C ;(3)利用原点对称原理计算,加上倍数即可.【详解】解:(1)如图,△111O B C 即为所求作.(2)∵点B (3,1)-,∴点B 关于原点的对称点为(-3,1),∴扩大2倍,得到1(6,2)B -;∵点C (2,1),∴点C 关于原点的对称点为(-2,-1),∴扩大2倍,得到1(4,2)C --.(3)∵点M (,)x y ,∴点M 关于原点的对称点为(,)x y --,∴扩大2倍,得到1(2,2)M x y --.【点睛】本题考查了位似的作图与计算问题,熟练将位似与原点的对称密切联系起来是解题的关键.24.(1)C ;(2)见解析;(3)13AG GF =或3. 【分析】(1)根据互为母子三角形的定义即可得出结论;(2)根据两角对应相等两三角形相似得出ABD ADE ∽△△,再根据2AB AD =从而得出结论;(3)根据题意画出图形,分当,G E 分别在线段,AD AC 上时和当,G E 分别在射线,DA CA 上时两种情况加以讨论;【详解】(1)∵DEF 与ABC 互为母子三角形, ∴1=2DE AB 或2 故选:C (2)AD 是BAC ∠的角平分线,BAD CAD ∴∠=∠,ADE B ∠=∠,ABD ADE ∴∽.又2AB AD =,ABD ∴与ADE 互为母子三角形.(3)如图,当,G E 分别在线段,AD AC 上时,AGE 与ADC 互为母子三角形,2CD AD GE AG∴==, AG DG ∴=, AD 是中线,BD CD ∴=,又//GE BC ,GEF DBF ∴∽△△.2DF DB CD GF GE GE∴===, 3DG GF ∴=,3AG GF∴=. 如图,当,G E 分别在射线,DA CA 上时,AGE 与ADC 互为母子三角形,2CD AD GE AG∴==, 1123AG AD DG ∴==,AD 是中线,BD CD ∴=,又//GE BC ,GEF DBF ∴∽△△.2DF DB CD GF GE GE ∴===, DG GF ∴=, 13AG GF ∴=. 综上所述,13AG GF =或3【点睛】本题主要考查了相似三角形的判定与性质、分类讨论的数学思想以及接受与理解新生事物的能力.准确理解题设条件中互为母子三角形的定义是正确解题的先决条件,在分析与解决问题的过程中,要考虑全面,进行分类讨论,避免漏解.25.(1)见详解;(2)见详解;(3)356 【分析】(1)利用相似三角形的判定定理直接证明即可(2)利用平行线分线段成比例定理,再证明,ABC DBC △AME ∽△△DEN ∽△,CEN AME ABC △∽CAD,△∽△,根据三角形相似的性质即可解答.(3)结合(2)的结论将AD=5,BC=7,代入即可求得MN 的长【详解】(1)//MN BCAME ABC ∴△∽△,(2)//AD MN ,//AD BCDE AE BD AC ∴= //MN BC,ABC DBC ∴△AME ∽△△DEN ∽△,AE ME DE NE AC BC BD CB ∴== ME NE BC BC∴= ME NE ∴=∴E 是MN 的中点,ME=NE=12MN //BC//AD MNCEN AME ABC ∴△∽CAD,△∽△,NE CE ME AE AD AC BC AC ∴== 1NE ME CE AE AC AD BC AC AC AC ∴+=+== 1NE ME AD BC∴+= 111ME AD BC∴=+ (3)结合(2)的结论,5,7AD BC == 11157MN ∴=+ 3512ME ∴=ME NE =7035126MN ME NE ∴=+== 【点睛】本题考查了相似三角形的判定和性质,平行线分线段成比例定理,解题关键是熟练掌握相似三角形的判定定理,利用比例的等量关系解题.26.【分析】根据相似三角形的性质确定两直角边的比值为1:2,以及6×6网格图形中,最长线段为【详解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=5,AC:BC=1∶2,∴与Rt△ABC相似的格点三角形的两直角边的比值为1∶2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为2,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE10,EF=10,DF=2的三角形,∵102105210,5∴△ACB∽△DEF,∴∠DEF=∠C=90°,∴此时△DEF1010÷2=10,△DEF为面积最大的三角形,其斜边长为2.【点睛】本题考查了作图-应用与设计、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题.。
北师大版九年级上册第三章《证明(三)》练习题(北师大版九年级上)

北师大版九年级上册第三章证明(三)练习题一、填空题1、如图,平行四边形ABCD ,对角线AC 、BD 交于点O ,请你写出图中三对一定相等的线段 。
2、在上题图中,若平行四边形ABCD 的周长为30cm ,且A O B ∆的周长比BOC ∆的周长小1cm ,那么AB= cm ,BC = cm 。
第1-2题图 第3题图第4题图 3、如图,将两块完全相同的含有30角的三角板一边重合拼在一起,可以得到一个四边形ABCD ,则四边形ABCD 是 (回答是什么四边形);若BC=10 cm ,则对角线BD = cm 。
4、如图平行四边形ABCD 中,AE 、AF 分别是BC 和CD 边上的高,若65EAF ∠=,则B ∠= 度,C ∠= 度。
5、如图,将两根等宽的纸条叠放在一起,重叠的部分(图中阴影部分)是一个四边形,对这个四边形的形状你认为最准确的一个描述是:这个四边形是 四边形。
第7题图 96、菱形ABCD 的面积是503cm 2,其中一条对角线的长是103 cm ,则菱形ABCD 的较小的内角为 ,菱形ABCD 的边长为 。
7、如图,矩形ABCD 中,BE ⊥AC 于E ,DF ⊥AC 于F ,若AE=1,EF =2,则FC = ,AB = 。
8、对角线 的四边形是正方形。
二、择题9、如图,平行四边形ABCD 中,AE=CF ,则图中的平行四边形的个数是( )个 A.2 B.3 C.4 D.510、若第1题的条件中,除原有条件外,再增加FA =FD ,则图中的等腰梯形个数是( )个A.2B.3C.4D.511、下列关于平行四边形的判定中正确的是( ) A. 一组对边相等,另一组对边平行的四边形是平行四边形 B.一组对边相等,一组对角相等的四边形是平行四边形 C.一组对边平行,一组对角相等的四边形是平行四边形OC AD BC AD BE FC A DB FECADBCA DBE FD.一组对边平行,一组邻角互补的四边形是平行四边形12、顺次连接对角线互相垂直且相等的四边形各边中点,得到一个四边形,对这个四边形的形状描述最准确的是( )A. 平行四边形B.矩形C.菱形D.正方形13、已知菱形ABCD 的面积为96cm 2,对角线AC 的长为16 cm ,则此菱形的边长为( )cm A.32 B.10 C.14 D.2014、正方形具有而菱形不一定具有的性质是( )A. 对角线互相平分B.对角线互相垂直C.对角线相等D. 每一条对角线平分一组对角 15、只用一把刻度尺检查一张四边形纸片是否是矩形,下列操作中最为恰当的是( ) A. 先测量两对角线是否互相平分,再测量对角线是否相等 B. 先测量两对角线是否互相平分,再测量是否有一个直角 C. 先测量两组对边是否相等,再测量对角线是否相等D. 先测量两组对边是否互相平行,再测量对角线是否相等16、如图,梯形ABCD 中,AD ∥BC ,90B C ∠+∠=,E 、F分别是AD 、BC 的中点,若AD=5cm ,BC=13cm ,那么EF=( )cmA.4B.5C.6.5D.9三、解答题17、按要求填图下面图中,表达了四边形、平行四边形、矩形、菱形、正方形之间的关系。
北师大版九年级数学上册单元测试卷:第二章 《一元二次方程》(含答案)

单元测试卷:第二章《一元二次方程》时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,692.若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是()A.k≥5 B.k≥5且k≠1 C.k≤5且k≠1 D.k≤53.下列方程中,是关于x的一元二次方程的是()A.+x=3 B.x2+2x﹣3=0C.4x+3=x D.x2+x+1=x2﹣2x4.已知m、n是一元二次方程x2﹣3x﹣1=0的两个实数根,则=()A.3 B.﹣3 C.D.﹣5.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.5000(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=75006.若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020 B.﹣2020 C.2019 D.﹣20197.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=3,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根8.若x 1x 2=2,+=,则以x 1,x 2为根的一元二次方程是( )A .x 2+3x ﹣2=0B .x 2﹣3x +2=0C .x 2+3x +2=0D .x 2﹣3x ﹣2=0 9.若关于x 的一元二次方程x 2+2x +c =0有实数根,则c 的取值可能为( )A .4B .3C .2D .110.设a 、b 是方程x 2+x ﹣2020=0的两个实数根,则(a ﹣1)(b ﹣1)的值为( )A .﹣2018B .2018C .2020D .2022二.填空题(每题4分,共20分)11.已知一元二次方程x 2+2x +m =0的一个根是﹣1,则m 的值为 .12.若关于x 的一元二次方程mx 2﹣2x ﹣1=0无实数根,则一次函数y =mx +m 的图象不经过第 象限.13.已知x 为实数,且满足(2x 2+3)2+2(2x 2+3)﹣15=0,则2x 2+3的值为 . 14.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场),一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军,为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜 场.15.已知一元二次方程x 2+2x ﹣8=0的两根为x 1、x 2,则+2x 1x 2+= .三.解答题(每题10分,共50分)16.解下列方程.(1)x 2+2x ﹣35=0(2)4x (2x ﹣1)=1﹣2x17.某公司设计了一款工艺品,每件的成本是40元,为了合理定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?18.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?19.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?20.某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.参考答案一.选择题1.解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.2.解:①当该方程是关于x的一元一次方程时,k﹣1=0即k=1,此时x=﹣,符合题意;②当该方程是关于x的一元二次方程时,k﹣1≠0即k≠1,此时△=16﹣4(k﹣1)≥0.解得k≤5;综上所述,k的取值范围是k≤5.故选:D.3.解:A、因为方程是分式方程,不是整式方程,所以方程不是一元二次方程,故本选项不符合题意;B、是一元二次方程,故本选项符合题意;C、因为方程是一元一次方程,所以方程不是一元二次方程,故本选项不符合题意;D、因为方程是一元一次方程,所以方程不是一元二次方程,故本选项不符合题意;故选:B.4.解:根据题意得m+n=3,mn=﹣1,所以=.故选:B.5.解:设我国2017年至2019年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故选:C.6.解:∵a是方程x2﹣x﹣1=0的一个根,∴a2﹣a﹣1=0,∴a 2﹣1=a ,﹣a 2+a =﹣1,∴﹣a 3+2a +2020=﹣a (a 2﹣1)+a +2020=﹣a 2+a +2020=2019.故选:C .7.解:∵小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =3,解出其中一个根是x =﹣1,∴(﹣1)2﹣3+c =0,解得:c =2,故原方程中c =4,则b 2﹣4ac =9﹣4×1×4=﹣7<0,则原方程的根的情况是不存在实数根.故选:A .8.解:∵+=,∴x 1+x 2=x 1x 2,∵x 1x 2=2,∴x 1+x 2=3,∴以x 1,x 2为根的一元二次方程是x 2﹣3x +2=0.故选:B .9.解:根据题意得△=22﹣4c ≥0,解得c ≤1.故选:D .10.解:∵a 、b 是方程x 2+x ﹣2020=0的两个实数根,∴a +b =﹣1,ab =﹣2020,则原式=ab ﹣a ﹣b +1=ab ﹣(a +b )+1=﹣2020+1+1=﹣2018.故选:A .二.填空题(共5小题)11.解:把x =﹣1代入方程得1﹣2+m =0,解得m =1,故答案为1.12.解:∵关于x 的一元二次方程mx 2﹣2x ﹣1=0无实数根,∴m ≠0且△=(﹣2)2﹣4m (﹣1)<0,∴一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象限.故答案为一.13.解:设2x2+3=t,且t≥3,∴原方程化为:t2+2t﹣15=0,∴t=3或t=﹣5(舍去),∴2x2+3=3,故答案为:314.解:设中国队在本届世界杯比赛中连胜x场,则共有(x+1)支队伍参加比赛,依题意,得:x(x+1)=66,整理,得:x2+x﹣132=0,解得:x1=11,x2=﹣12(不合题意,舍去).故答案为:11.15.解:∵一元二次方程x2+2x﹣8=0的两根为x1、x2,∴x1+x2=﹣2,x1•x2=﹣8,∴+2x1x 2 +=2x1x 2 +=2×(﹣8)+=﹣16+=﹣,故答案为:﹣.三.解答题(共5小题)16.解:(1)x2+2x﹣35=0,(x+7)(x﹣5)=0,x+7=0或x﹣5=0,12(2)4x(2x﹣1)=1﹣2x,4x(2x﹣1)+(2x﹣1)=0,(2x﹣1)(4x+1)=0,(2x﹣1)=0或(4x+1)=0,,17.解:(1)(60﹣40)×[100﹣(60﹣50)×2]=1600(元).答:每天的销售利润为1600元.(2)设每件工艺品售价为x元,则每天的销售量是[100﹣2(x﹣50)]件,依题意,得:(x﹣40)[100﹣2(x﹣50)]=1350,整理,得:x2﹣140x+4675=0,解得:x1=55,x2=85(不合题意,舍去).答:每件工艺品售价应为55元.18.解:(1)设BC=xm,则AB=(33﹣3x)m,依题意,得:x(33﹣3x)=90,解得:x1=6,x2=5.当x=6时,33﹣3x=15,符合题意,当x=5时,33﹣3x=18,18>18,不合题意,舍去.答:鸡场的长(AB)为15m,宽(BC)为6m.(2)不能,理由如下:设BC=ym,则AB=(33﹣3y)m,依题意,得:y(33﹣3y)=100,整理,得:3y2﹣33y+100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m2的矩形养鸡场.19.(1)证明:∵△=(2k+1)2﹣4×4(k﹣)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)x=∴x1=2k﹣1,x2=2,∵a、b、c为等腰三角形的三边,∴2k﹣1=2或2k﹣1=3,∴k=或2.20.解:(1)设该商品平均每月的价格增长率为m,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.。
2020秋北师大版九年级数学上第一、二章检测题含答案

单元测试(一) 特殊平行四边形(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分)1.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=8,则CD的长是( )A.6 B.5 C.4 D.32.如图,矩形ABCD中,对角线AC、BD相交于点O,若∠OAD=40°,则∠COD=( )A.20° B.40° C.80° D.100°3.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是( )A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若OA=2,则BD的长为( )A.4 B.3 C.2 D.15.如果要证明ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明( )A.AB=AD且AC⊥BD B.AB=AD且AC=BDC.∠A=∠B且AC=BD D.AC和BD互相垂直平分6.菱形的两条对角线长分别是6和8,则此菱形的边长是( )A.10 B.8 C.6 D.57.在正方形ABCD中,AB=12,对角线AC,BD相交于点O,则△ABO的周长是( )A.12+12 2 B.2+6 2C.12+ 2 D.24+6 28.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为( ) A.16a B.12aC.8a D.4a9.正方形的一条对角线长为4,则这个正方形面积是( )A.8 B.4 2C.8 2 D.1610.下列命题中,错误的是( )A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等11.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED为菱形的是( )A.AB=BC B.AC=BCC.∠B=60° D.∠ACB=60°12.如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G点,若∠AEB=55°,则∠DAF=( )A.40° B.35°C.20° D.15°13.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )A.75° B.60° C.55° D.45°14.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=( )A. 2 B.2 C. 6 D.2 215.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )A.AB=BE B.DE⊥DCC.∠ADB=90° D.CE⊥DE二、填空题(本大题共5个小题,每小题5分,共25分)16.如图,菱形ABCD的一条对角线的中点O到AB的距离为2,那么O点到另一边的距离为________.17.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB的大小为________度.18.如图所示,已知ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明ABCD是矩形的有________(填写序号).19.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是________________.20.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86 cm,对角线长是13 cm,那么矩形的周长是多少?22.(8分)如图,四边形ABCD中,AB=CD,∠BAD+∠ADC=180°,AC与BD相交于点O,△AOB是等边三角形,求证:四边形ABCD是矩形.23.(10分)如图,已知正方形ABCD,延长AB到E,使AE=AC,以AE为一边作菱形AEFC,若菱形的面积为92,求正方形的边长.24.(12分)如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.25.(12分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以证明.26.(14分)以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,求线段AB的最小值.27.(16分)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD∶AB=________时,四边形MENF是正方形.参考答案1.C2.C3.B4.A5.B6.D7.A8.C9.A 10.C 11.B 12.C 13.B 14.A 15.B 16.2 17.60 18.①④ 19.AC =BD 或AB ⊥BC 20.22.521.∵△AOB 、△BOC 、△COD 和△AOD 四个小三角形的周长和为86 cm ,且AC =BD =13 cm , ∴AB +BC +CD +DA =86-2(AC +BD)=86-4×13=34(cm), 即矩形ABCD 的周长是34 cm.22.证明:∵∠BAD +∠ADC =180°, ∴AB ∥CD.又∵AB =CD ,∴四边形ABCD 是平行四边形. ∵△AOB 是等边三角形, ∴AO =BO.∴2AO =2BO ,即AC =BD. ∴四边形ABCD 是矩形. 2 23.设正方形的边长为x ,∵AC 为正方形ABCD 的对角线,∴AC =2x.∴S 菱形AEFC =AE ·CB =2x ·x =2x 2.∴2x 2=9 2. ∴x 2=9.∴x =±3.舍去x =-3. ∴正方形边长为3.24.(1)在菱形ABCD 中,AB =AD ,∠A =60°, ∴△ABD 为等边三角形. ∴∠ABD =60°.(2)由(1)可知BD =AB =4, 又∵O 为BD 的中点, ∴OB =2.又∵OE ⊥AB ,∠ABD =60°, ∴∠BOE =30°. ∴BE =12OB =1.25.(1)由图可知,∠DAG ,∠AFB ,∠CDE 与∠AED 相等. (2)选择∠AFB =∠AED ,证明如下: ∵四边形ABCD 是正方形,∴∠DAB =∠B =90°,AB =AD.在Rt △BAF 和Rt △ADE 中,⎩⎪⎨⎪⎧BA =AD ,AF =DE ,∴Rt △BAF ≌Rt △ADE(HL).∴∠AFB =∠AED.26.∵四边形CDEF 是正方形,∴∠OCD =∠ODB =45°,∠COD =90°,OC =OD. ∵AO ⊥OB , ∴∠AOB =90°.∴∠AOC +∠AOD =90°,∠AOD +∠BOD =90°. ∴∠AOC =∠BOD.∵在△COA 和△DOB 中,⎩⎪⎨⎪⎧∠OCA =∠ODB ,OC =OD ,∠AOC =∠BOD ,∴△COA ≌△DOB.∴OA =OB.∵∠AOB =90°,∴△AOB 是等腰直角三角形.由勾股定理得AB =OA 2+OB 2=2OA , 要使AB 最小,只要OA 取最小值即可, 根据垂线段最短,OA ⊥CD 时,OA 最小, ∵四边形CDEF 是正方形, ∴FC ⊥CD ,OD =OF =OC. ∴CA =DA. ∴OA =12CF =1.∴AB = 2.∴AB 的最小值为 2.27.(1)证明:∵四边形ABCD 是矩形, ∴AB =CD ,∠A =∠D =90°. 又∵M 是AD 的中点, ∴AM =DM.在△ABM 和△DCM 中,⎩⎪⎨⎪⎧AB =CD ,∠A =∠D ,AM =DM ,∴△ABM ≌△DCM(SAS).(2)四边形MENF 是菱形.证明:∵E ,F ,N 分别是BM ,CM ,CB 的中点, ∴NE ∥MF ,NE =MF.∴四边形MENF 是平行四边形. 由(1),得BM =CM , ∴ME =MF.∴四边形MENF 是菱形.(3)当AD ∶AB =2∶1时,四边形MENF 是正方形.理由: ∵M 为AD 中点, ∴AD =2AM.∵AD ∶AB =2∶1, ∴AM =AB. ∵∠A =90°,∴∠ABM =∠AMB =45°. 同理:∠DMC =45°.∴∠EMF =180°-45°-45°=90°. ∵四边形MENF 是菱形, ∴四边形MENF 是正方形. 故答案为2∶1.单元测试(二) 一元二次方程(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分) 1.下列方程中,关于x 的一元二次方程是( )A .x 2+2y =1 B.1x 2+1x-2=0C .ax 2+bx +c =0 D .x 2+2x =12.用公式法解一元二次方程3x 2-2x +3=0时,首先要确定a ,b ,c 的值,下列叙述正确的是( )A .a =3,b =2,c =3B .a =-3,b =2,c =3C .a =3,b =2,c =-3D .a =3,b =-2,c =33.若关于x 的方程2x m -1+x -m =0是一元二次方程,则m 为( )A .1B .2C .3D .04.一元二次方程x 2-2x -1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根5.一元二次方程x 2+4x -3=0的两根为x 1,x 2,则x 1·x 2的值是( )A .4B .-4C .3D .-3 6.方程x(x +2)=0的根是( )A .x =2B .x =0C .x 1=0,x 2=-2D .x 1=0,x 2=27.用配方法解方程x 2-2x -5=0时,原方程应变形为( )A .(x +1)2=6B .(x -1)2=6C .(x +2)2=9D .(x -2)2=9 8.根据下面表格中的对应值:判断方程ax 2+bx +c =A .3<x <3.23 B .3.23<x <3.24 C .3.24<x <3.25 D .3.25<x <3.26 9.解方程(x +1)(x +3)=5较为合适的方法是( )A .直接开平方法B .配方法C .公式法或配方法D .分解因式法10.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为( )A .0B .1C .2D .411.三角形两边长分别为3和6,第三边是方程x 2-6x +8=0的根,则三角形的周长为( )A .11B .13C .15D .11或13 12.下列说法不正确的是( )A .方程x 2=x 有一根为0B .方程x 2-1=0的两根互为相反数C .方程(x -1)2-1=0的两根互为相反数D .方程x 2-x +2=0无实数根13.对二次三项式x 2-10x +36,小聪同学认为:无论x 取什么实数,它的值都不可能等于11;小颖同学认为:可以取两个不同的值,使它的值等于11.你认为( )A.小聪对,小颖错 B.小聪错,小颖对C.他们两人都对 D.他们两人都错14.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7 644平方米,则道路的宽应为多少米?设道路的宽为x米,则可列方程为( )A.100×80-100x-80x=7 644B.(100-x)(80-x)+x2=7 644C.(100-x)(80-x)=7 644D.100x+80x=35615.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( )二、填空题(本大题共5小题,每小题5分,共25分)16.将方程3x(x-1)=5化为ax2+bx+c=0的形式为____________.17.若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________.18.若(m+n)(m+n+5)=6,则m+n的值是________.19.一件工艺品进价100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降低1元出售,则每天可多售出4件,要使顾客尽量得到优惠,且每天获得的利润为3 596,每件工艺品需降价________元.20.已知关于x的方程x2-(a+b)x+ab-1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x21+x22<a2+b2.则正确结论的序号是________.(填上你认为正确的所有序号)三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)选择适当的方法解下列方程:(1)(x-3)2=4;(2)x2-5x+1=0.22.(8分)已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若mn+m+n=2,求a的值.23.(10分)随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2013年销售烟花爆竹20万箱,到2015年烟花爆竹销售量为9.8万箱.求咸宁市2013年到2015年烟花爆竹年销售量的平均下降率.24.(12分)小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2.”他的说法对吗?请说明理由.25.(12分)已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程的根的情况;(2)若方程有一个根为3,求m的值.26.(14分)观察下列一元二次方程,并回答问题:第1个方程:x2+x=0;第2个方程:x2-1=0;第3个方程:x2-x-2=0;第4个方程:x2-2x-3=0;…(1)第2 016个方程是____________________;(2)直接写出第n个方程,并求出第n个方程的解;(3)说出这列一元二次方程的解的一个共同特点.27.(16分)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.参考答案1.D 2.D 3.C 4.B 5.D 6.C 7.B 8.C 9.C 10.B 11.B 12.C 13.D 14.C 15.B 16.3x 2-3x -5=0 17.-3 18.-6或1 19.6 20.①② 21.(1)x 1=1,x 2=5. (2)x 1=5+212,x 2=5-212.22.∵m ,n 是关于x 的一元二次方程x 2-3x +a =0的两个解,∴m +n =3,mn =a. ∵mn +m +n =2,∴a +3=2.解得a =-1.23.设年销售量的平均下降率为x ,依题意,得20(1-x)2=9.8. 解这个方程,得x 1=0.3,x 2=1.7. ∵x 2=1.7不符合题意, ∴x =0.3=30%.答:咸宁市2013年到2015年烟花爆竹年销售量的平均下降率为30%.24.(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(10-x)cm.由题意,得x 2+(10-x)2=58.解得x 1=3,x 2=7.4×3=12,4×7=28.答:小林把绳子剪成12 cm 和28 cm 的两段.(2)假设能围成.由(1)得x 2+(10-x)2=48.化简得x 2-10x +26=0. ∵b 2-4ac =(-10)2-4×1×26=-4<0, ∴此方程没有实数根. ∴小峰的说法是对的.25.(1)∵b 2-4ac =(2m)2-4×1×(m 2-1)=4>0, ∴方程有两个不相等的实数根.(2)将x =3代入原方程,得9+6m +m 2-1=0.解得m 1=-2,m 2=-4.26.(1)x 2-2 014x -2 015=0(2)第n 个方程是x 2-(n -2)x -(n -1)=0,解得x 1=-1,x 2=n -1.(3)这列一元二次方程的解的一个共同特点:有一根是-1. 27.(1)△ABC 是等腰三角形.理由: ∵x =-1是方程的根,∴(a +c)×(-1)2-2b +(a -c)=0. ∴a +c -2b +a -c =0. ∴a -b =0. ∴a =b.∴△ABC 是等腰三角形.(2)∵方程有两个相等的实数根,∴(2b)2-4(a +c)(a -c)=0.∴4b 2-4a 2+4c 2=0. ∴a 2=b 2+c 2.∴△ABC 是直角三角形. (3)∵△ABC 是等边三角形,∴(a +c)x 2+2bx +(a -c)=0可整理为2ax 2+2ax =0. ∴x 2+x =0.解得x 1=0,x 2=-1.。
(北师大版)成都市九年级数学上册第三单元《概率的进一步认识》检测(有答案解析)

一、选择题1.甲、乙两名同学在一次用频率去估计概率的试验中,统计了某一结果出现的频率,并绘出了如下折线统计图,则最有可能符合这一结果的试验的是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.任意写一个整数,它能被3整除的概率D.从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率2.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是()A.16B.19C.118D.2153.王老师的讲义夹里放了大小相同的试卷12张,其中语文5张,数学4张,外语3张,他随机从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率是()A.14B.13C.512D.124.一枚质地均匀的正方体骰子,其六个面上分别刻有1, 2, 3, 4, 5, 6六个数字,投掷这个骰子一次,得到的点数与3、4作为三角形三边的长,能构成三角形的概率是( )A.12B.56C.13D.235.小丽书包里准备的3只包装相同的备用口罩中有2只是医用外科口罩,由于感冒她想取一只医用外科口罩去医院就医时佩戴,则她一次取对的概率是()A.0 B.12C.13D.236.如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为()A.1 B.12C.13D.147.在一个不透明的口袋中,装有若干个红球和6个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率稳定在0.6,则估计口袋中大约有红球()A.24个B.10个C.9个D.4个8.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是()A.18B.38C.58D.129.一个不透明的袋子装有除颜色外其余均相同的2个白球和n个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在0.2附近,则n的值为()A.2 B.4 C.8 D.1010.如图为某一试验结果的频率随试验次数变化趋势图,则下列试验中不符合该图的是()A.掷一枚普通正六面体骰子,出现点数不超过2B.掷一枚硬币,出现正面朝上C.从装有2个黑球、1个白球的不透明布袋中随机摸出一球为白球D.从分别标有数字l,2,3,4,5,6,7,8,9的九张卡片中,随机抽取一张卡片所标记的数字不小于711.某市初中学业水平实验操作考试中,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小明和小颖抽到相同学科的概率是()A.13B.14C.16D.1912.如图A是某公园的进口,B,C,D是三个不同的出口,小明从A处进入公园,那么从B,C,D三个出口中恰好在C出口出来的概率为()A.14B.13C.12D.23二、填空题13.四张背面相同的卡片,分别为12,1,2,3,洗匀后背面朝上,先从中抽取一张,把抽到的点数记为a,再在剩余的卡片中抽取一张点数记为b,则点(a,b)恰好落在一次函数y=-2x+4与坐标轴所围成的三角形区域内(含边界)的概率为______________;14.已知数据:12,5,π,4,0,其中无理数出现的频率为_____.15.在一个不透明的袋子中有四个完全相同的小球,分别标号为1,2,3,4.随机摸取一个小球不放回,再随机摸取一个小球,两次摸出的小球的标号的和等于4的概率是____________.16.中缅边境实弹演习期间,空军战斗机随即将炮弹放在如图所示方格地面上(每个小方格都是边长相等的正方形),则炮弹落在阴影方格地面上的概率为_____.17.在单词“BANANA”中随机选择一个字母,选到字母“N”的概率是____.18.一个不透明的盒子里放置三张完全相同的卡片,分别标有数字1,2,3.随机抽取1张,放回后再随机抽取1张,则抽得的第二张卡片上的数字大于第一张卡片上的数字的概率为_____.19.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球5个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有___个白球.20.一个盒中装有4个均匀的球,其中2个白球,2个黑球,今从中任取出2个球,“两球同色”与“两球异色”的可能性分别记为a b、,则a与b的大小关系为__________.三、解答题21.九年级某班要召开一次“走近抗疫英雄,讲好中国故事”主题班会活动,李老师制作了编号为A、B、C、D的4张卡片(如图,除编号和内容外,其余完全相同),并将它们背面朝上洗匀后放在桌面上.(1)小明随机抽取1张卡片,抽到卡片编号为B的概率为;(2)小明从4张卡片中随机抽取1张(不放回),小丽再从余下的3张卡片中随机抽取1张,然后根据抽取的卡片讲述相关英雄的故事,求小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率(请用“画树状图”或“列表”等方法写出分析过程).22.某市合唱团为开展“百人合唱爱国歌”网络“线上云演出”活动,需招收新成员、小霞、小健、小婷、小宇四名学生报名参加了应聘活动,其中小霞、小健来自七年级,小婷、小宇来自八年级.现对这四名学生采取随机抽取的方式进行网络线上面试.(1)若随机抽取一名学生,恰好抽到学生小霞的概率为;(2)若随机抽取两名学生,请用列表法或树状图法求抽中两名学生均来自七年级的概率.23.一个袋子内装有质地大小完全相同的四个小球,分别标记数字1,2,3,4.下图是一个正六边形棋盘,现通过摸球的方式玩跳棋游戏,规则是:从袋子内随机取出一个小球,当计算完袋子内其余三个小球上的数字之和记为n后将小球放回.然后从下图中的A点开始沿着逆时针方向连续跳动n个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.()1随机摸球一次,则棋子跳动到点E处的概率是.()2随机摸球两次,用画树状图或列表的方法,求棋子最终跳动到点D处的概率.24.从2名男生和2名女生中随机抽取上海迪斯尼乐园志愿者.(1)抽取1名,恰好是男生的概率是;(2)抽取2名,用列表法或画树状图法求恰好是1名男生和1名女生的概率.25.小秋打算去某影城看电影.她用手机打开购票页面,座位已选情况如图所示(虚线边框内为黄金区域,其余为普通区域;深色为已售座位,白色为可选座位).求下列事件的概率:(1)小秋独自观影,他选择第4排或第5排的概率是_________;(2)小秋约小叶一同观影,求小秋选择2个同排相邻的座位恰好都在黄金区域的概率.26.问题情景:某校数学学习小组在讨论“随机掷两枚均匀的硬币,得到一正一反的概率是多少”时,小聪说:“随机掷两枚均匀的硬币,可以有‘二正、一正一反、二反’三种情况,所以P(一正一反)13=”小颖反驳道:“这里的‘一正一反’实际上含有‘一正一反,一反一正’这两种情况,所以P(一正一反)1. 2 =”(1)________的说法是正确的.(2)为验证二人的猜想是否正确,小聪与小颖各做了100次试验,得到如下数据:计算:小聪与小颖二人得到的“一正一反”的频率分别是多少?从他们的试验中,你能得到“一正一反”的概率是多少吗?(3)对概率的研究而言,小聪与小颖两位同学的试验说明了什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为16,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C、任意写一个整数,它能被3整除的概率为13,故此选项正确;D、从一副去掉大小王的扑克牌中,任意抽取一张,抽到黑桃的概率为131524=;故此选项错误.故选:C.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.2.B解析:B【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与掷得面朝上的点数之和是5的情况,再利用概率公式求解即可求得答案.【详解】解:列表得:∴掷得面朝上的点数之和是5的概率是:41369=.故选:B.【点睛】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.3.B解析:B【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学4页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为41123.故选:B.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.4.B解析:B【分析】骰子的六个面上分别刻有数字1,2,3,4,5,6,其中能与3、4构成三角形的有2、3、4、5、6,根据概率公式计算可得.【详解】解:骰子的六个面上分别刻有数字1,2,3,4,5,6,其中能与3、4构成三角形的有2、3、4、5、6,∴能构成等腰三角形的概率是=56,故选:B.【点睛】此题主要考查了概率公式的应用,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.5.D解析:D【分析】直接运用概率计算公式求解即可.【详解】解:∵小丽书包里有3只包装相同的备用口罩,2只是医用外科口罩,∴她取一只医用外科口罩的概率为:23,故选:D.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.6.B解析:B【分析】根据题意,先列举所有的可能结果,然后选取能组成等腰三角形的结果,根据概率公式即可求出答案.【详解】解:根据题意,在A,B,C,D四个点中任选三个点,有:△ABC、△ABD、△ACD、△BCD,共4个三角形;其中是等腰三角形的有:△ACD、△BCD,共2个;∴能够组成等腰三角形的概率为:2142P==;故选:B.【点睛】本题考查了列举法求概率,等腰三角形的性质,勾股定理与网格问题,解题的关键是熟练掌握列举法求概率,以及正确得到等腰三角形的个数.7.D解析:D【分析】设口袋中红球有x个,用黄球的个数除以球的总个数等于摸到黄球的频率,据此列出关于x的方程,解之可得答案.【详解】解:设口袋中红球有x个,根据题意,得:66x+=0.6,解得x=4,经检验:x=4是分式方程的解,所以估计口袋中大约有红球4个,故选:D.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.8.B解析:B【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案.【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种,则遇到两次红灯的概率是38,故选:B.【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键.9.C解析:C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:依题意有:22n=0.2,解得:n=8.故选:C.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn是解题关键.10.B解析:B【分析】首先根据折线统计图可得出该事件的概率在30%以上,分别计算各选项概率,即可得出答案.【详解】解:A.掷一枚普通正六面体骰子,出现点数不超过2的概率为13,符合该图;B.掷一枚硬币,出现正面朝上的概率为12,不符合该图;C.从装有2个黑球、1个白球的不透明布袋中随机摸出一球为白球的概率为13,符合该图;D.从分别标有数字l,2,3,4,5,6,7,8,9的九张卡片中,随机抽取一张卡片所标记的数字不小于7概率为13,符合该图.故选:B.【点睛】本题考查的知识点是用频率估计概率,解题的关键是从折线统计图中得出事件的概率值.11.A解析:A【分析】列树状图求出该事件的概率即可.【详解】树状图如下:共有9种等可能的情况,其中小明和小颖抽到相同学科的有3种,∴P(小明和小颖抽到相同学科)=31 93 .故选:A.【点睛】此题考查确定事件概率的大小,求事件的概率时应列表或是树状图将所有可能的结果都列举出来,避免有遗漏的情况或是重复的情况,还需注意事件是属于放回事件还是不放回事件.12.B解析:B【分析】根据概率公式求出该事件的概率即可.【详解】解:根据题意共有3种等情况数,其中“A口进C口出”有一种情况,从“A口进C口出”的概率为1 3故选:B.【点睛】本题考查的是基本的概率计算,熟悉相关概率计算是解题的关键.二、填空题13.【分析】首先画树状图列出所有可能的点(ab)并求得在y=-2x+4与坐标轴所围成的三角形区域内(含边界)上的点最后利用概率公式即可求得【详解】解:画树状图如下:总共有12种等可能结果其中点(ab)恰解析:5 12【分析】首先画树状图列出所有可能的点(a,b),并求得在y=-2x+4与坐标轴所围成的三角形区域内(含边界)上的点,最后利用概率公式即可求得.【详解】解:画树状图如下:总共有12种等可能结果,其中点(a,b)恰好落在一次函数y=-2x+4与坐标轴所围成的三角形区域内(含边界)的可能性有1,12⎛⎫⎪⎝⎭,1,22⎛⎫⎪⎝⎭,1,32⎛⎫⎪⎝⎭,11,2⎛⎫⎪⎝⎭,()1,2,共5种,其概率为5 12,故答案为:5 12.【点睛】本题考查的是用列表法或树状图法求概率,一次函数上点的坐标特征.注意本题为不放回实验.14.【分析】把每个数据进行化简对最简结果进行有理数无理数的甄别后根据频率意义计算即可【详解】∵=2∴0是有理数π是无理数∴无理数出现的频率为故答案为:【点睛】本题考查了频率的意义熟练掌握频率的数学意义是解析:25.【分析】把每个数据进行化简,对最简结果进行有理数,无理数的甄别,后根据频率意义计算即可.【详解】∵4=2,∴12,4,0是有理数,5,π是无理数,∴无理数出现的频率为25.故答案为:25.【点睛】本题考查了频率的意义,熟练掌握频率的数学意义是解题的关键.15.【分析】先画树状图展示所有12种等可能的结果数其中两次摸出的小球标号的和等于4的占3种然后根据概率的概念计算即可【详解】画树状图得:由树状图可知:所有可能情况有12种其中两次摸出的小球标号的和等于4解析:1 6【分析】先画树状图展示所有12种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【详解】画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=21 126,故答案为:16.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.16.【分析】根据几何概率的求法:炮弹落在阴影方格地面上的概率即该区域的面积与总面积的比值【详解】解:设每个小正方形的面积为1因为所有方格的面积为25阴影的面积为9所以炮弹落在阴影方格地面上的概率为;故答解析:9 25【分析】根据几何概率的求法:炮弹落在阴影方格地面上的概率即该区域的面积与总面积的比值.【详解】解:设每个小正方形的面积为1,因为所有方格的面积为25,阴影的面积为9,所以炮弹落在阴影方格地面上的概率为925;故答案为:925.【点睛】本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.17.【分析】由单词BANANA中有2个N直接利用概率公式求解即可求得答案【详解】一共有BANANA六种结果其中是N的有2种所以P选到字母N故答案为:【点睛】本题考查概率的计算方法列举出所有可能出现的结果解析:13.【分析】由单词"BANANA"中有2个N,直接利用概率公式求解即可求得答案.【详解】一共有B、A、N、A、N、A六种结果,其中是“N”的有2种,所以P选到字母“N”21 63 ==.故答案为:13.【点睛】本题考查概率的计算方法,列举出所有可能出现的结果是正确解答的前提.18.【分析】根据题意可得基本事件总3×3=9然后再确定抽得的第二张卡片上的数字大于第一张卡片上的数字的事件数最后由概率公式计算即可【详解】解:分别从标有数字123的3张卡片中随机抽取1张放回后再随机抽取解析:1 3【分析】根据题意可得基本事件总3×3=9,然后再确定抽得的第二张卡片上的数字大于第一张卡片上的数字的事件数,最后由概率公式计算即可.【详解】解:分别从标有数字1、2、3的3张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数3×3=9,抽得的第二张卡片上的数字大于第一张卡片上的数字的情况有(1,2)、(1,3)和(2,3)3种情况则抽得的第二张卡片上的数字大于第一张卡片上的数字的概率为:31 93 =.故答案为13.【点睛】本题考查了运用列举法求概率,运用列举法确定所有情况数和所需情况数是解答本题的关键.19.10【分析】先由频率=频数÷数据总数计算出频率再由简单事件的概率公式列出方程求解即可【详解】解:摸了150次其中有50次摸到黑球则摸到黑球的频率是设口袋中大约有x个白球则解得故答案为:10【点睛】考解析:10【分析】先由“频率=频数÷数据总数”计算出频率,再由简单事件的概率公式列出方程求解即可.【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是501 1503=,设口袋中大约有x个白球,则5153x=+,解得10x=.故答案为:10.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.20.【分析】分别求出两球同色与两球异色的可能性然后比较大小即可【详解】根据盒子中有2个白球2个黑球可得从中取出2个球一共有6种可能:2白2黑1白1黑(4种)∴两球同色的可能性为两球异色的可能性为∵∴故答解析:a b<【分析】分别求出“两球同色”与“两球异色”的可能性,然后比较大小即可.【详解】根据盒子中有2个白球,2个黑球可得从中取出2个球,一共有6种可能:2白、2黑、1白1黑(4种)∴“两球同色”的可能性为2163a==“两球异色”的可能性为4263 b==∵1233<∴a b<故答案为:a b<.【点睛】本题考查了概率的问题,掌握“两球同色”与“两球异色”的可能性是解题的关键.三、解答题21.(1)14;(2)图见解析,12.【分析】(1)直接利用概率公式求解即可;(2)根据题意先画树状图列出所有等可能结果数的,根据概率公式求解可得.【详解】解:(1)∵共有4张卡片,∴小明随机抽取1张卡片,抽到卡片编号为B的概率为14,故答案为:14;(2)画树状图如下:共有12种等可能的结果数,其中小明、小丽两人中恰好有一人讲述钟南山抗疫故事的有6种结果,所以小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率为:61 122=.【点睛】本题考查了概率的应用,掌握运用列表法或画树状图法列出所有可能的结果及概率的计算方法是解题的关键.22.(1)14;(2)16.【分析】(1)共有4种可能出现的结果,抽到小霞的只有1种,即可利用概率公式求出恰好抽到学生小霞的概率;(2)用树状图表示所有可能出现的结果,进而求出两个同学均来自七年级的概率.【详解】解:(1)∵共有4种可能出现的结果,抽到小霞的只有1种, ∴恰好抽到小霞的概率为:P (小霞)=14, 故答案为:14; (2)用树状图表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是七年级,即抽到小霞、小健的有2种, ∴P (小霞、小健)=212=16. 【点睛】本题考查了概率的应用,运用列表法或树状图法列举出所有可能出现的结果情况是正确解答的前提.23.()114;()214【分析】(1)当数字和为8时,可以到达点E ,根据概率公式计算即可; (2)利用列表法统计即可; 【详解】解:(1)随机取出-个小球,剩余三个小球之和为1+2+3=6,1+2+4=7,1+3+4=8,2+3+4=9, ∴有6,7,8,9四种等可能的情况∵从 A 点开始沿着逆时针方向连续跳动(2+6N)个顶点才能达到点 E ,其中 N 为正整数. ∴当和为8时棋子跳到E 处 则棋子跳到点E 处的概率为14故答案为:14()2列表如下:6 7 8 96()6,6 ()7,6 ()8,6 ()9,67()6,7 ()7,7 ()8,7 ()9,78()6,8 ()7,8()8,8 ()9,89()6,9()7,9()8,9()9,915,有4种情况,所以棋子最终落在点D 处的概率,P (落在D 处)41164== 【点睛】本题考查列表法与树状图,概率公式等知识,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 24.(1)12;(2)图表见解析,P=23【分析】(1)根据题意,抽取1名志愿者总共有4种可能,男生有2人,利用概率公式即可求解抽取1名恰好是男生的概率;(2)根据题意列表,可分别得到总共有多少种等可能的结果与符合条件的结果,根据概率公式即可求解. 【详解】(1)抽取1名,恰好是男生的概率为:2142P ==, (2)列表得:由表格可知:总共有12种等可能的结果,其中恰好是1名男生和1名女生的结果有8种结果,所以抽取2名,恰好是1名男生和1名女生的概率为:82123P ==. 【点睛】本题考查了概率的求解,解题关键是准确列出表格,得到所有的等可能结果,再从中选取符合条件的结果,然后利用概率公式计算. 25.(1)12;(2)12【分析】(1)由概率公式求解即可;(2)由概率公式求解即可.【详解】解:(1)由题意知:白色为可选座位,共2+2+1+3=8(个)其中,第4排1个空位,第5排3个空位,共4个空位,小秋独自观影,他选择第4排或第5排的概率是41 82 ,故答案为:12;(2)小秋选择2个同排相邻的座位共有4个结果,其中小秋选择2个同排相邻的座位恰好都在黄金区域的结果有2个,∴小秋选择2个同排相邻的座位恰好都在黄金区域的概率为21 =42.【点睛】.此题考查的是概率的应用与计算.用到的知识点为:概率=所求情况数与总情况数之比.26.(1)小颖;(2)0.50;0.47;12;(3)对概率的研究不能仅仅通过有限次试验得出结果,而是要通过大量的重复试验得出事件发生的频率,从而去估计该事件发生的概率.【分析】(1)要判断谁说的正确只要看他们说的情况有没有漏掉的即可.(2)根据频率=所求情况数与总情况数之比,即可得出结果.(3)在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.【详解】解:(1)“一正一反”实际上含有“一正一反,一反一正”二种情况,共四种,所以小颖的说法是正确的;故答案为:小颖;(2)小明得到的“一正一反”的频率是50÷100=0.50,小颖得到的“一正一反”的频率是47÷100=0.47,据此,我得到“一正一反”的概率是12;(3)对概率的研究不能仅仅通过有限次实验得出结果,而是要通过大量的实验得出事物发生的频率去估计该事物发生的概率.我认为小聪与小颖的实验都是合理的,有效的.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学第三、四章综合测试
班别____________ 姓名____________ 评分____________ 一、 选择题(每题3分,共30分)
“沉”到了位于它们前面那些矮一些的建筑物后面去了,这是因为( ) A 汽车开的很快 B 盲区减小 C 盲区增大 D 无法确定 2、在平行四边形ABCD 中,∠A=50 ,则∠B 和∠C 的度数是( )
A 130 和50
B 50 和130
C 40 和50
D 50 和40 3、圆锥体的主视图是( )
A 直角三角形
B 正方形
C 等腰三角形
D 矩形
4、如图,在平行四边形ABCD 中,两对角线交于点O ,若OB=4,
则OD=( )
A 2
B 4
C 6
D 8
5.小亮在上午8时、9时30分、10时、12时四次到室外的阳光
下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度
各不相同,那么影子最长的时刻为( ) A. 上午12时 B. 上午10时 C. 上午9时30分 D. 上午8时 6、如图,△ABC 中,D 、E 分别是AB 、AC 的中点,若BC=10,
则 DE 的长是( )
A 5
B 10
C 15
D 20
7、在菱形ABCD 中,AB=10,则它的周长是( )
A 20
B 30
C 40
D 50 8、一个正方形的周长是4,则它的对角线的长是( ) A 2 B 3 C 5 D 1
9、下列四幅图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是( ).
10.有一实物如图,那么它的主视图是( )
A B C D
D
A
B C
D
E
二、填空题(每题3分,共30分)
1、请写出三种视图都相同的几何体是
2、等腰梯形ABCD 中,一条对角线AC 的长是2cm ,则另一条对角线BD 的长是 3 、在某时刻的阳光照耀下,身高160cm 的阿美的影长为80cm ,•她的身旁的旗杆影长10m ,
则旗杆高为______m 4、如图,在Rt △ABC 中,D 为斜边AB 的中点,若AC=4cm ,BC=3cm ,则CD=_________
5、一个对角线为4cm 的正方形,则它的面积是___________
6、小华拿一个矩形木框在阳光下玩,•矩形木框在地面上形成的投影不可能是以下图形中的
_______
7、顺次连接任意四边形各边的中点,得到的四边形是
__________________ 8、如图,在等腰梯形ABCD 中,∠A=120 ,则∠C 的度数是___________ 9、如图,在矩形ABCD 中,两对角线交于点O ,若OA=4cm ,则BD 的长是________
10、由6个大小相同的正方体搭成的几何体如图所示,•则它的三种视图中,面积最大的是______(A 、主视图 B 、左视图
C 、俯视图)
三、作图题(每小题3分,共6分)
1、(1)请你确定并画出路灯灯泡所在的位置.(2)请你在图中画出想像中的小明.
四、证明题(共34分)
A
第8题图
C
第9题图
第10题图
1、在平行四边形ABCD中,BE=DF,求证:四边形AECF 是平行四边形。
(5分)
2、在直角坐标系中放置如图所示的平行
四边形ABCD若点A的坐标为(,3
7 3)
∠A=0
30求B、C、D三点的坐标。
(5分)
3、如图,在△ABC中,D、E、F分别是三边的
中点,且∠1=∠2,求证:四边形ADEF是菱形。
(5分)
4
、如图,把一张长为8cm、宽为4cm的矩形纸片沿对角
D
B
C
E
C
D
A1
线折叠(1)重叠部分是什么图形?说说你的理由(4分) (2)求重叠部分的面积。
(4分)
5、在△ABC 中,AB=AC ,AD ⊥BC ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,连接DE 交AC 于F 。
(1)、求证:四边形ADCE 为矩形。
(4分)
(2)、求证:DF ∥AB 。
DF=AB 2
1。
(4分)
(3)、当△ABC 满足什么条件时,四边形ADCE 是一个正方 形?说明你的理由。
(3分)
A B
C
D E
F
M
N。