2014一轮复习指导资料 第8章 第4节 直线与圆、圆与圆的位置关系
高考数学一轮复习第8章平面解析几何第4节直线与圆、圆与圆的位置关系教师用书

第四节直线与圆、圆与圆的位置关系1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系:d<r⇔相交;d=r⇔相切;d>r⇔相离.(2)代数法:联立直线l与圆C的方程,消去y(或x),得一元二次方程,计算判别式Δ=b2-4ac,Δ>0⇔相交,Δ=0⇔相切,Δ<0⇔相离.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.( )(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( )(3)如果两圆的圆心距小于两半径之和,则两圆相交.( )(4)若两圆相交,则两圆方程相减消去二次项后得到的二元一次方程是公共弦所在直线的方程.( )[解析]依据直线与圆、圆与圆的位置关系,只有(4)正确.[答案](1)×(2)×(3)×(4)√2.(教材改编)圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为( )A.内切B.相交C.外切D.相离B[两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d=42+1=17.∵3-2<d <3+2,∴两圆相交.]3.(2017·嘉兴调研)直线3x +4y =b 与圆x 2+y 2-2x -2y +1=0相切,则b 的值是( )A .-2或12B .2或-12C .-2或-12D .2或12D [由圆x 2+y 2-2x -2y +1=0,知圆心(1,1),半径为1,所以|3×1+4×1-b |32+42=1,解得b =2或12.]4.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为__________.2555[圆心为(2,-1),半径r =2. 圆心到直线的距离d =|2+--3|1+4=355,所以弦长为2r 2-d 2=222-⎝⎛⎭⎪⎫3552=2555.] 5.设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________. 【导学号:51062274】4π [圆C :x 2+y 2-2ay -2=0化为标准方程是C :x 2+(y -a )2=a 2+2,所以圆心C (0,a ),半径r =a 2+2.|AB |=23,点C 到直线y =x +2a 即x -y +2a =0的距离d =|0-a +2a |2,由勾股定理得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|0-a +2a |22=a 2+2,解得a 2=2,所以r =2,所以圆C 的面积为π×22=4π.]+(y -1)2=5的位置关系是( )A .相交B .相切C .相离D .不确定(2)若点P (1,2)在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为__________. (1)A (2)x +2y -5=0 [(1)法一:∵圆心(0,1)到直线l 的距离d =|m |m 2+1<1< 5.故直线l 与圆相交.法二:直线l :mx -y +1-m =0过定点(1,1),∵点(1,1)在圆C :x 2+(y -1)2=5的内部,∴直线l 与圆C 相交.(2)∵以原点O 为圆心的圆过点P (1,2), ∴圆的方程为x 2+y 2=5. ∵k OP =2,∴切线的斜率k =-12.由点斜式可得切线方程为y -2=-12(x -1),即x +2y -5=0.][规律方法] 1.(1)利用圆心到直线的距离可判断直线与圆的位置关系,也可利用直线的方程与圆的方程联立后得到的一元二次方程的判别式来判断直线与圆的位置关系;(2)注意灵活运用圆的几何性质,联系圆的几何特征,数形结合,简化运算.如“切线与过切点的半径垂直”等.2.与弦长有关的问题常用几何法,即利用弦心距、半径和弦长的一半构成直角三角形进行求解.[变式训练1] (1)(2017·宁波中学模拟)过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=0(2)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=__________.(1)B (2)4 [(1)依题意知,点(3,1)在圆(x -1)2+y 2=r 2上,且为切点. ∴圆心(1,0)与切点(3,1)连线的斜率为12.因此切线的斜率k =-2.故圆的切线方程为y -1=-2(x -3),即2x +y -7=0. (2)由圆x 2+y 2=12知圆心O (0,0),半径r =2 3. ∴圆心(0,0)到直线x -3y +6=0的 距离d =61+3=3,|AB |=212-32=2 3.过C 作CE ⊥BD 于E .如图所示,则|CE |=|AB |=2 3.∵直线l 的方程为x -3y +6=0, ∴k AB =33,则∠BPD =30°,从而∠BDP =60°. ∴|CD |=|CE |sin 60°=|AB |sin 60°=2332=4.]已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离B [法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0得两交点为(0,0),(-a ,a ).∵圆M 截直线所得线段长度为22, ∴a 2+-a2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0,即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2. 又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=-2+-2= 2.∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3,∴两圆相交. 法二:∵x 2+y 2-2ay =0(a >0)⇔x 2+(y -a )2=a 2(a >0), ∴M (0,a ),r 1=a .∵圆M 截直线x +y =0所得线段的长度为22,∴圆心M 到直线x +y =0的距离d =a2=a 2-2,解得a =2.以下同法一.][规律方法] 1.圆与圆的位置关系取决于圆心距与两个半径的和与差的大小关系. 2.若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到.3.若两圆相交,则两圆的连心线垂直平分公共弦.[变式训练2] 若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是__________.4 [由题意⊙O 1与⊙O 在A 处的切线互相垂直,则两切线分别过另一圆的圆心,∴O 1A ⊥OA .又∵|OA |=5,|O 1A |=25, ∴|OO 1|=5.又A ,B 关于OO 1对称,∴AB 为Rt △OAO 1斜边上高的2倍. 又∵12·OA ·O 1A =12OO 1·AC ,得AC =2.∴AB =4.]M :x 2+y 2-12x-14y +60=0及其上一点A (2,4).图841(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程. [解] 圆M 的标准方程为(x -6)2+(y -7)2=25, 所以圆心M (6,7),半径为5.2分(1)由圆心N 在直线x =6上,可设N (6,y 0). 因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1.4分 因此,圆N 的标准方程为(x -6)2+(y -1)2=1.6分 (2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m , 即2x -y +m =0, 则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5.10分 因为BC =OA =22+42=25, 而MC 2=d 2+⎝ ⎛⎭⎪⎫BC 22, 所以25=m +25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.15分[规律方法] 1.(1)设出圆N 的圆心N (6,y 0),由条件圆M 与圆N 外切,求得圆心与半径,从而确定圆的标准方程.(2)依据平行直线,设出直线l 的方程,根据点到直线的距离公式及勾股定理求解.2.求弦长常用的方法:①弦长公式;②半弦长、半径、弦心距构成直角三角形,利用勾股定理求解(几何法).[变式训练3] 在直角坐标系xOy 中,以坐标原点O 为圆心的圆与直线:x -3y =4相切.(1)求圆O 的方程;(2)若圆O 上有两点M ,N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程. 【导学号:51062275】[解] (1)依题意,圆O 的半径r 等于原点O 到直线x -3y =4的距离, 则r =41+3=2.4分所以圆O 的方程为x 2+y 2=4.6分(2)由题意,可设直线MN 的方程为2x -y +m =0. 则圆心O 到直线MN 的距离d =|m |5.10分由垂径分弦定理,得m 25+(3)2=22,即m =± 5.12分所以直线MN 的方程为2x -y +5=0或2x -y -5=0.15分[思想与方法]1.直线与圆的位置关系体现了圆的几何性质和代数方程的结合,解题时要抓住圆的几何性质,重视数形结合思想方法的应用.2.计算直线被圆截得的弦长的常用方法:(1)几何方法:运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.(2)代数方法:弦长公式|AB|=1+k2|x A-x B|=+k2x A+x B2-4x A x B].[易错与防范]1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为“-1”列方程来简化运算.2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.课时分层训练(四十六)直线与圆、圆与圆的位置关系A组基础达标(建议用时:30分钟)一、选择题1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是( ) A.相切B.相交C.相离D.不确定B [由题意知点在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b 2<1,故直线与圆相交.]2.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( ) A .21 B .19 C .9D .-11C [圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9.]3.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-8B [由x 2+y 2+2x -2y +a =0, 得(x +1)2+(y -1)2=2-a ,所以圆心坐标为(-1,1),半径r =2-a ,圆心到直线x +y +2=0的距离为|-1+1+2|2=2,所以22+(2)2=2-a ,解得a =-4.]4.(2017·浙江金丽衢十二校模拟)过点P (4,2)作圆x 2+y 2=4的两条切线,切点分别为A ,B ,O 为坐标原点,则△OAB 外接圆的方程是( )【导学号:51062276】A .(x -2)2+(y -1)2=5 B .(x -4)2+(y -2)2=20 C .(x +2)2+(y +1)2=5 D .(x +4)2+(y +2)2=20A [由题意知,O ,A ,B ,P 四点共圆,所以所求圆的圆心为线段OP 的中点(2,1). 又圆的半径r =12|OP |=5,所以所求圆的方程为(x -2)2+(y -1)2=5.]5.(2017·杭州二中三模)已知圆C :(x -1)2+y 2=25,则过点P (2,-1)的圆C 的所有弦中,以最长弦和最短弦为对角线的四边形的面积是( )A .1013B .921C .1023D .911C [易知最长弦为圆的直径10.又最短弦所在直线与最长弦垂直,且|PC |=2,∴最短弦的长为2r 2-|PC |2=225-2=223.故所求四边形的面积S =12×10×223=1023].二、填空题6.已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A ,B 两点,则线段AB 的中垂线方程为________________.x +y -3=0 [∵圆C 1的圆心C 1(3,0),圆C 2的圆心C 2(0,3),∴直线C 1C 2的方程为x +y-3=0,AB 的中垂线即直线C 1C 2,故其方程为x +y -3=0.]7.若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =__________.2 [如图,过点O 作OD ⊥AB 于点D ,则|OD |=532+-2=1.∵∠AOB =120°,OA =OB , ∴∠OBD =30°,∴|OB |=2|OD |=2,即r =2.]8.(2017·浙江金华十校联考)已知圆C :(x +2)2+y 2=4,直线l :kx -y -2k =0(k ∈R ),若直线l 与圆C 恒有公共点,则实数k 的最小值是__________.【导学号:51062277】-33[圆心C (-2,0),半径r =2. 又圆C 与直线l 恒有公共点.所以圆心C (-2,0)到直线l 的距离d ≤r . 因此|-2k -2k |k 2+1≤2,解得-33≤k ≤33.所以实数k 的最小值为-33.] 三、解答题9.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5). (1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连接OA ,OC ,求△AOC 的面积S . [解] (1)由圆C :x 2+y 2-4x -6y +12=0,得(x -2)2+(y -3)2=1,圆心C (2,3).当斜率存在时,设过点A 的圆的切线方程为y -5=k (x -3),即kx -y +5-3k =0.3分由d =|2k -3+5-3k |k 2+1=1,得k =34.又斜率不存在时直线x =3也与圆相切, 故所求切线方程为x =3或3x -4y +11=0.6分 (2)直线OA 的方程为y =53x ,即5x -3y =0,又点C 到OA 的距离d =|5×2-3×3|52+-2=134.12分又|OA |=32+52=34. 所以S =12|OA |d =12.15分10.(2017·宁波镇海中学模拟)已知定点M (0,2),N (-2,0),直线l :kx -y -2k +2=0(k 为常数).(1)若点M ,N 到直线l 的距离相等,求实数k 的值;(2)对于l 上任意一点P ,∠MPN 恒为锐角,求实数k 的取值范围. [解] (1)∵点M ,N 到直线l 的距离相等, ∴l ∥MN 或l 过MN 的中点.∵M (0,2),N (-2,0),∴直线MN 的斜率k MN =1,MN 的中点坐标为C (-1,1).3分又∵直线l :kx -y -2k +2=0过定点D (2,2), ∴当l ∥MN 时,k =k MN =1; 当l 过MN 的中点时,k =k CD =13.综上可知,k 的值为1或13.6分(2)∵对于l 上任意一点P ,∠MPN 恒为锐角,∴l 与以MN 为直径的圆相离,即圆心(-1,1)到直线l 的距离大于半径,10分 ∴d =|-k -1-2k +2|k 2+1>2,解得k <-17或k >1.15分B 组 能力提升(建议用时:15分钟)1.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R )内切,则ab 的最大值为( ) A. 2B .2C .4D .2 2 B [圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R ).化为(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1.∵圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R )内切, ∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2. ∴ab 的最大值为2.]2.(2017·杭州质检)过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=__________. 【导学号:51062278】32[如图所示,可知OA ⊥AP ,OB ⊥BP ,OP =1+3=2. 又OA =OB =1,可以求得AP =BP =3,∠APB =60°.故PA →·PB →=3×3×cos 60°=32.] 3.已知圆C 的方程为x 2+(y -4)2=4,点O 是坐标原点,直线l :y =kx 与圆C 交于M ,N 两点.(1)求k 的取值范围;(2)直线l 能否将圆C 分割成弧长的比为13的两段弧? 若能,求出直线l 的方程;若不能,请说明理由.[解] (1)将y =kx 代入圆C 的方程x 2+(y -4)2=4.得(1+k 2)x 2-8kx +12=0.2分∵直线l 与圆C 交于M ,N 两点,∴Δ=(-8k )2-4×12(1+k 2)>0,得k 2>3,(*)∴k 的取值范围是(-∞,-3)∪(3,+∞).6分(2)假设直线l 将圆C 分割成弧长的比为13的两段弧,则劣弧所对的圆心角∠MCN=90°,由圆C:x2+(y-4)2=4知圆心C(0,4),半径r=2.9分在Rt△MCN中,可求弦心距d=r·sin 45°=2,故圆心C(0,4)到直线kx-y=0的距离|0-4|1+k2=2,∴1+k2=8,k=±7,经验证k=±7满足不等式(*),12分故l的方程为y=±7x.因此,存在满足条件的直线l,其方程为y=±7x.15分。
2014届高三一轮复习《课堂新坐标》理科数学(人教A版)第八章第四节直线、圆的位置关系

高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
k), ∴直线l的方程为y=kx+1. |2k-3+1| 4- 7 4+ 7 由 <1,得 <k< . 2 3 3 k +1
课 后 作 业
菜
单
新课标 ·理科数学(广东专用)
自 主 落 实 · 固 基 础
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
【解析】
∵直线y=ax+1恒过定点(0,1),又点(0,
课 后 作 业
1)在圆(x-1)2+y2=4的内部,故直线与圆相交. 【答案】 B
菜
单
新课标 ·理科数学(广东专用)
自 主 落 实 · 固 基 础
2.(2012·山东高考)圆(x+2)2+y2=4与圆(x-2)2+(y-
(2)设M(x1,y1)、N(x2,y2), 将y=kx+1代入方程(x-2)2+(y-3)2=1, 得(1+k2)x2-4(1+k)x+7=0, 4(1+k) 7 ∴x1+x2= ,x1x2= , 1+k2 1+k2 → → ∴OM·ON=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1.
=2R=2. 【答案】 D
菜
单
新课标 ·理科数学(广东专用)
自 主 落 实 · 固 基 础
4.(2013·肇庆质检)若过点A(4,0)的直线l与曲线(x-
2)2+y2=1有公共点,则直线l的斜率的最小值为________.
【解析】 设直线l的方程为y=k(x-4), 即kx-y-4k=0, 当直线l与圆相切时,k有最大值或最小值. |2k-4k| 1 2 由 2 =1得k = , 3 k +1 3 ∴k=± . 3
2014届高考一轮复习教学案直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系[知识能否忆起]一、直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)二、圆与圆的位置关系(⊙O1、⊙O2半径r1、r2,d=|O1O2|)[小题能否全取]1.(教材习题改编)圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是()A.相切B.相交但直线不过圆心C.相交过圆心D.相离解析:选B由题意知圆心(1,-2)到直线2x+y-5=0的距离d=5,0<d<6,故该直线与圆相交但不过圆心.2.(2012·银川质检)由直线y=x+1上的一点向圆x2+y2-6x+8=0引切线,则切线长的最小值为()A.7 B.2 2C.3 D. 2解析:选A由题意知,圆心到直线上的点的距离最小时,切线长最小.圆x2+y2-6x+8=0可化为(x-3)2+y2=1,则圆心(3,0)到直线y=x+1的距离为42=22,切线长的最小值为(22)2-1=7.3.直线x -y +1=0与圆x 2+y 2=r 2相交于A ,B 两点,且AB 的长为2,则圆的半径为( )A.322B.62C .1D .2解析:选B 圆心(0,0)到直线x -y +1=0的距离d =12.则r 2=⎝⎛⎭⎫12|AB |2+d 2=32,r =62. 4.(教材习题改编)若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k 2>1,解得-3<k < 3. 答案:(-3, 3)5.已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x -2y +4=0. 答案:x -2y +4=01.求圆的弦长问题,注意应用圆的几何性质解题,即用圆心与弦中点连线与弦垂直的性质,可用勾股定理或斜率之积为-1列方程来简化运算.2.对于圆的切线问题,要注意切线斜率不存在的情况.典题导入[例1] (2012·陕西高考) 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( ) A .l 与C 相交 B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能[自主解答] 将点P (3,0)的坐标代入圆的方程,得 32+02-4×3=9-12=-3<0, 所以点P (3,0)在圆内.故过点P 的直线l 定与圆C 相交. [答案] A本例中若直线l 为“x -y +4=0”问题不变. 解:∵圆的方程为(x -2)2+y 2=4, ∴圆心(2,0),r =2. 又圆心到直线的距离为d =62=32>2. ∴l 与C 相离.由题悟法判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. (2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.以题试法1.(2012·哈师大附中月考)已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 解析:选C 易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k (x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.典题导入[例2] (1)(2012·广东高考)在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .33B .2 3 C. 3D .1(2)(2012·天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)[自主解答] (1)圆x 2+y 2=4的圆心(0,0),半径为2,则圆心到直线3x +4y -5=0的距离d =532+42=1. 故|AB |=2r 2-d 2=24-1=2 3.(2)圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n+1=mn ≤14(m +n )2,整理得[(m +n )-2]2-8≥0,解得m +n ≥2+22或m +n ≤2-2 2.[答案] (1)B (2)D由题悟法1.圆的弦长的常用求法:(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. [注意] 常用几何法研究圆的弦的有关问题.2.求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无解;若点在圆上,有一解;若点在圆外,有两解.以题试法2.(2012·杭州模拟)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0B.⎣⎡⎦⎤-33,33 C .[-3, 3]D.⎣⎡⎦⎤-23,0解析:选B 如图,设圆心C (2,3)到直线y =kx +3的距离为d ,若|MN |≥23,则d 2=r 2-⎝⎛⎭⎫12|MN |2≤4-3=1,即|2k |21+k2≤1,解得-33≤k ≤ 33.典题导入[例3] (1)(2012·山东高考)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离(2)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=________. [自主解答] (1)两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)由题意可设两圆的方程为(x -r i )2+(y -r i )2=r 2i ,r i >0,i =1,2.由两圆都过点(4,1)得(4-r i )2+(1-r i )2=r 2i ,整理得r 2i -10r i +17=0,此方程的两根即为两圆的半径r 1,r 2,所以r 1r 2=17,r 1+r 2=10,则|C 1C 2|=(r 1-r 2)2+(r 1-r 2)2=2×(r 1+r 2)2-4r 1r 2= 2×100-68=8.[答案] (1)B (2)8由题悟法两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.以题试法3.(2012·青岛二中月考)若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.解析:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △O O 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4. 答案:4一、选择题1.(2012·人大附中月考)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m 2,圆半径为m .因为d -r =1+m 2-m =12(m -2m +1)=12(m -1)2≥0,所以直线与圆的位置关系是相切或相离.2.(2012·福建高考)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2 5B .2 3 C. 3D .1解析:选B 因为圆心(0,0)到直线x +3y -2=0的距离为1,所以AB =24-1=2 3. 3.(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析:选C 欲使直线x -y +1=0与圆(x -a )2+y 2=2有公共点,只需使圆心到直线的距离小于等于圆的半径2即可,即|a -0+1|12+(-1)2≤2,化简得|a +1|≤2,解得-3≤a ≤1.4.过圆x 2+y 2=1上一点作圆的切线与x 轴,y 轴的正半轴交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1.分别令x =0,y =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |= ⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2.当且仅当x 0=y 0时,等号成立.5.(2013·兰州模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)解析:选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离 2+1.6.(2013·临沂模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A. 2B.212C .2 2D .2解析:选D 圆心C (0,1)到l 的距离d =5k 2+1, 所以四边形面积的最小值为2×⎝⎛⎭⎫12×1×d 2-1=2, 解得k 2=4,即k =±2. 又k >0,即k =2.7.(2012·朝阳高三期末)设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33.答案:±338.(2012·东北三校联考)若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为 2 4-⎝ ⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3. 答案:2 39.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是( 2, 2).答案:( 2, 2)10.(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程; (2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |=12-89=13,又∵|MQ |=|MA |2|MP |,∴|MQ |=3.设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx -2y +3=0,所以直线AB 恒过定点⎝⎛⎭⎫0,32. 11.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程. 解:(1)证明:由题设知,圆C 的方程为 (x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2, 化简得x 2-2tx +y 2-4t y =0,当y =0时,x =0或2t ,则A (2t,0); 当x =0时,y =0或4t ,则B ⎝⎛⎭⎫0,4t , 所以S △AOB =12|OA |·|OB |=12|2t |·⎪⎪⎪⎪4t =4为定值. (2)∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C 、H 、O 三点共线,则直线OC 的斜率 k =2t t =2t 2=12,∴t =2或t =-2.∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1)、B (x 2,y 2)则OA +OB=(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.②又y 1+y 2=k (x 1+x 2)+4.③因P (0,2)、Q (6,0),PQ=(6,-2),所以OA +OB 与PQ共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k.1.已知两圆x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.解析:由两圆的方程x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230.答案:2x +y -5=0 2302.(2012·上海模拟)已知圆的方程为x 2+y 2-6x -8y =0,a 1,a 2,…,a 11是该圆过点(3,5)的11条弦的长,若数列a 1,a 2,…,a 11成等差数列,则该等差数列公差的最大值是________.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265.答案:5-2653.(2012·江西六校联考)已知抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO |=|BO |=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ,·PF,的最小值;(3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.解:(1)易得B (1,3),A (-1,-3),设圆M 的方程为(x -a )2+y 2=a 2(a >0), 将点B (1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y 2=4,因为点A (-1,-3)在准线l 上,所以p2=1,p =2,所以抛物线C 的方程为y 2=4x .(2)由(1)得,M (2,0),F (1,0),设点P (x ,y ),则PM ,=(2-x ,-y ),PF,=(1-x ,-y ),又点P 在抛物线y 2=4x 上,所以PM ,·PF ,=(2-x )(1-x )+y 2=x 2-3x +2+4x =x 2+x+2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF,的最小值为2.(3)证明:设点Q (-1,m ),则|QS |=|QT |=m 2+5,以Q 为圆心,m 2+5为半径的圆的方程为(x +1)2+(y -m )2=m 2+5,即x 2+y 2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,② 由①②两式相减即得直线ST 的方程3x -my -2=0, 显然直线ST 恒过定点⎝⎛⎭⎫23,0.1.两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条解析:选B 由题知C 1:(x +1)2+(y +1)2=4,则圆心C 1(-1,-1),C 2:(x -2)2+(y -1)2=4,圆心C 2(2,1),两圆半径均为2,又|C 1C 2|=(2+1)2+(1+1)2=13<4,则两圆相交⇒只有两条外公切线.2.(2012·江苏高考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.解析:设圆心C (4,0)到直线y =kx -2的距离为d ,则d =|4k -2|k 2+1,由题意知,问题转化为d ≤2,即d =|4k -2|k 2+1≤2,得0≤k ≤43,所以k max =43. 答案:433.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为 2,则直线l 的斜率为________.解析:将圆的方程化成标准方程为(x -1)2+(y -1)2=1,其圆心为(1,1),半径r =1.由弦长为2得弦心距为22.设直线方程为y +2=k (x +1),即kx -y +k -2=0,则|2k -3|k 2+1=22,化简得7k 2-24k +17=0,得k =1或k =177. 答案:1或1774.圆O 1的方程为x 2+(y +1)2=4,圆O 2的圆心为O 2(2,1).(1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A 、B 两点,且|AB |=22,求圆O 2的方程.解:(1)设圆O 2的半径为r 2,∵两圆外切,∴|O 1O 2|=r 1+r 2,r 2=|O 1O 2|-r 1=2(2-1),故圆O 2的方程是(x -2)2+(y -1)2=4(2-1)2.(2)设圆O 2的方程为(x -2)2+(y -1)2=r 22,又圆O 1的方程为x 2+(y +1)2=4,此两圆的方程相减,即得两圆公共弦AB 所在直线的方程:4x +4y +r 22-8=0.因为圆心O 1(0,-1)到直线AB 的距离为|r 22-12|42= 4-⎝⎛⎭⎫2222=2,解得r22=4或r22=20.故圆O2的方程为(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.。
高中数学高考高三理科一轮复习资料第8章 8.4 直线与圆、圆与圆的位置关系

题型探究 题型一 直线和圆相交 例 1 已知圆 C:(x-1)2+(y-2)2=25,直线 l:(2m+1)x +(m+1)y-7m-4=0(m∈R). (1)证明:无论 m 取何实数,直线 l 与圆恒交于两点; (2)求直线 l 被圆 C 截得的线段的最短长度以及此时直线 l 的方程.
高中数学
8.4 直线与圆、圆与圆的位置关系
考纲点击 1.能根据给定直线、圆的方程判断直线与圆的位置关系; 能根据给定两个圆的方程判断两圆的位置关系. 2.能用直线和圆的方程解决一些简单的问题. 3.初步了解用代数方法处理几何问题的思想.
说基础
课前预习读教材
考点梳理 一、直线与圆的位置关系 1.直线与圆的位置关系有三种:相离、相切、相交. 判断直线与圆的位置关系常见的有两种方法: (1)代数法:利用判别式 Δ>0⇔① 判别式 Δ=0⇔② ――→ 2 Δ=b -4ac Δ<0⇔③ (2)几何法: 利用圆心到直线的距离 d 和圆半径 r 的大小关 系 d<r⇔④______;d=r⇔⑤______;d>r⇔⑥______.
说考点
拓展延伸串知识
疑点清源 一、圆的切线方程的求法 1.求过圆上的一点(x0,y0)的切线方程 先求切点与圆心连线的斜率 k,由垂直关系知切线斜率为 1 - k ,由点斜式方程可求切线方程.若切线斜率不存在,则由 图形写出切线方程 x=x0.
2.求过圆外一点(x0,y0)的圆的切线方程 (1)几何方法 当斜率存在时,设为 k,切线方程为 y-y0=k(x-x0),即 kx-y+y0-kx0=0.由圆心到直线的距离等于半径, 即可得出切 线方程. (2)代数方法 设切线方程为 y-y0=k(x-x0),即 y=kx-kx0+y0,代入 圆方程,得一个关于 x 的一元二次方程,由 Δ=0,求得 k,切 线方程即可求出. 【说明】 过圆外一点作圆的切线有两条, 若在解题过程中, 只解出一个答案,说明另一条直线的斜率不存在.
第8章 第4讲 直线与圆、圆与圆的位置关系

解析几何
第四讲 直线与圆、圆与圆的位置关系
知识梳理·双基自测 考点突破·互动探究 名师讲坛·素养提升
知识梳理·双基自测
高考一轮总复习 • 数学
返回导航
知识点一 直线与圆的位置关系 设直线l:Ax+By+C=0(A2+B2≠0), 圆:(x-a)2+(y-b)2=r2(r>0), d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的 一元二次方程的判别式为Δ.
过点 P 的直线的距离最大,所求的弦长最短,根据弦长公式最小值为
2 9-|CP|2=2 9-8=2,故选 B.
第八章 解析几何
考点突破·互动探究
ቤተ መጻሕፍቲ ባይዱ
高考一轮总复习 • 数学
返回导航
考点一
直线与圆的位置关系——自主练透
例1 (1)(2022·重庆巴蜀中学月考)直线l:mx+(m+1)y-5m-3=
0(m∈R)与圆O1:x2-6x+y2-8y+16=0的位置关系是
A.相交
B.相切
( A)
C.相离
D.与m有关
(2)(2021·广东广州综合测试)若直线kx-y+1=0与圆x2+y2+2x-4y
+1=0有公共点,则实数k的取值范围是
( D)
A.[-3,+∞)
B.(-∞,-3]
C.(0,+∞)
D.(-∞,+∞)
第八章 解析几何
高考一轮总复习 • 数学
返回导航
(3)(2022·四川资阳、遂宁等七市联考)圆 x2+y2+2x-2y-2=0 上到
第八章 解析几何
高考一轮总复习 • 数学
返回导航
判断直线与圆的位置关系的常见方法 (1)几何法:利用d与r的关系. (2)代数法:联立方程之后利用Δ判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直 线与圆相交. (4)判断圆上到定直线的距离为定值的点的个数问题的关键是比较定 值、圆心到直线的距离、半径的大小.
高考数学 第八章 第4课时 直线与圆、圆与圆的位置关系

A.x+ 3y-2=0
B.x+ 3y-4=0
C.x- 3y+4=0
D.x- 3y+2=0
3.(2013·高考广东卷)垂直于直线 y=x+1 且与圆 x2+y2=1
相切于第一象限的直线方程是( A )
A.x+y- 2=0
B.x+y+1=0
C.x+y-1=0
D.x+y+ 2=0
4.(2013·高考浙江卷) 直线y=2x+3被圆x2+y2-6x-8y= 0所截得的弦长等于__4___5___. 5.若圆x2+y2=1与直线y=kx+2没有公共点,则实 数k的 取值范围是__(_-___3_,____3_)___.
1.(2012·高考安徽卷)若直线 x-y+1=0 与圆(x-a)2+y2=2
有公共点,则实数 a 的取值范围是( C )
A.[-3,-1]
B.[-1,3]
C.[-3,1]
D.(-∞,-3]∪[1,+∞)
【解析】 由题意知,圆心为(a,0),半径 r= 2. 若直线与圆有公共点,则圆心到直线的距离小于或等于半径, 即|a-0+1|≤ 2,∴|a+1|≤2.∴-3≤a≤1.
圆的切线与弦长
(1)(2013·高考山东卷文)过点(3,1)作圆(x-2)2+(y-
2)2=4 的弦,其中最短弦的长为__2___2___.
(2)(2013·高考山东卷理)过点(3,1)作圆(x-1)2+y2=1 的两
条切线,切点分别为 A,B,则直线 AB 的方程为 ( A )
A.2x+y-3=0
位置关系
r2的关系
代数法:两圆方程联 立组成方程组的解的
情况
相离 外切
_d_>_r_1+__r_2 _ _d_=__r_1+__r_2
高考数学一轮总复习 第8章 解析几何 第4节 直线与圆、圆与圆的位置关系课件 理 新人教版

[由题悟法] 1.圆的切线方程的 2 种求法 (1)代数法:设切线方程为 y-y0=k(x-x0),与圆的方程 组成方程组,消元后得到一个一元二次方程,然后令判别式 Δ=0 进而求得 k. (2)几何法:设切线方程为 y-y0=k(x-x0),利用点到直 线的距离公式表示出圆心到切线的距离 d,然后令 d=r,进 而求出 k. [提醒] 若点 M(x0,y0)在圆 x2+y2=r2 上,则过 M 点的 圆的切线方程为 x0x+y0y=r2.
2.若圆x2+y2=1与圆(x+4)2+(y-a)2=25相切,则常数 a=________. 答案:±2 5或0
考点一 直线与圆的位置关系 基础送分型考点——自主练透
[题组练透]
1.(2016·湖北七市联考)将直线x+y-1=0绕点(1,0)沿逆时针
方向旋转15°得到直线l,则直线l与圆(x+3)2+y2=4的位
3,
3).
答案:k∈(- 3, 3)
[谨记通法] 判断直线与圆的位置关系的 2 大策略 (1)若两方程已知或圆心到直线的距离易表达,则用几 何法. (2)若方程中含有参数,或圆心到直线的距离的表达较 繁琐,则用代数法.能用几何法,尽量不用代数法.如“题 组练透”第 2 题、第 3 题.
考点二 切线、弦长问题 重点保分型考点——师生共研
A.-53或-35
B.-32或-23
C.-54或-45
D.-43或-34
解析
考点三 圆与圆的位置关系 题点多变型考点——纵引横联
_d_=__r1_
_|r_1-__r_2_|<__ d_=__|_r_1-__r_2_| d_<__|_r_1-__r_2_|
_+__r2_ _d_<_r_1_+__r_2
高考数学一轮总复习第8章平面解析几何第4节直线与圆圆与圆的位置关系教师用书

第四节直线与圆、圆与圆的位置关系考试要求:能判断直线与圆、圆与圆的位置关系.一、教材概念·结论·性质重现1.直线与圆的位置关系的判断(1)几何法:利用圆心到直线的距离d和圆的半径r的大小关系进行判断.d<r ⇔相交;d=r⇔相切;d>r⇔相离.(2)代数法:联立直线与圆的方程,求联立后所得方程的判别式Δ,直线与圆的位置关系体现了圆的几何性质和代数方法的结合,代数法与几何法是不同的方法和思路,解题时要根据题目特点灵活选择.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=(r1>0),圆O2:(x-a2)2+(y-b2)2=(r2>0).位置关系方法几何法:圆心距d与r1,r2的关系代数法:两圆方程联立组成方程组的解的情况相离d>r1+r2无解外切d=r1+r2一组实数解相交|r1-r2|<d<r1+r2两组不同的实数解内切d=|r1-r2|(r1≠r2)一组实数解内含0≤d<|r1-r2|(r1≠r2)无解(1)用代数法判断两圆的位置关系时,要准确区分两圆内切、外切或相离、内含.(2)两圆的位置关系与公切线的条数:①内含:0条.②内切:1条.③相交:2条.④外切:3条.⑤外离:4条.(1)当两圆相交(切)时,两圆方程(x2,y2项的系数相同)相减便可得公共弦(内公切线)所在的直线方程.两圆相交时,两圆连心线垂直平分公共弦;两圆相切时,两圆连心线必过切点.(2)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)·(y -b)=r2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在的直线方程为x0x+y0y=r2.(4)直线与圆相交时,弦心距d、半径r、弦长的一半l满足关系式r2=d2+.(5)过圆内一点的最长的弦是直径,最短的是垂直这点与圆心连线的弦.二、基本技能·思想·活动经验1.判断下列说法的正误,对的画“√”,错的画“×”.(1)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( ×)(2)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.( ×) (3)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B 四点共圆且直线AB的方程是x0x+y0y=r2. ( √)(4)圆C1:x2+y2+2x+2y-2=0与圆C2:x2+y2-4x-2y+1=0的公切线有且仅有2条.( √)2.“k=0”是“直线y=kx-与圆x2+y2=2相切”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件C 解析:直线与圆相切⇔=⇔k=0.3.圆C1:x2+(y-1)2=1与圆C2:(x+4)2+(y-1)2=4的公切线的条数为( )A.4 B.3C.2 D.1A 解析:两圆的圆心距|C1C2|=4>2+1,所以两圆外离,两圆的公切线有4条.4.圆x2+y2=4与圆x2+y2-4x+4y-12=0的公共弦所在直线和两坐标轴所围成图形的面积为( )A.1 B.2C.4 D.8B 解析:由(x2+y2-4)-(x2+y2-4x+4y-12)=0得公共弦所在直线的方程为x-y+2=0,它与两坐标轴分别交于(-2,0),(0,2),所以直线和两坐标轴所围成图形的面积为×2×2=2.5.直线l:3x-y-6=0与圆x2+y2-2x-4y=0相交于A,B两点,则|AB|=________.解析:圆的方程可化为(x-1)2+(y-2)2=()2,又圆心(1,2)到直线l的距离为,所以|AB|=2=.考点1 直线与圆的位置关系——基础性1.直线ax-by=0与圆x2+y2-ax+by=0的位置关系是( )A.相交B.相切C.相离D.不能确定B 解析:将圆的方程化为标准方程得+=,所以圆心坐标为,半径r==.因为圆心到直线ax-by=0的距离d===r,所以直线与圆相切.故选B.2.圆x2+y2-2x+4y=0与直线2tx-y-2-2t=0(t∈R)的位置关系为( )A.相离B.相切C.相交D.以上都有可能C 解析:由2tx-y-2-2t=0(t∈R),得(2x-2)t-(y+2)=0,所以直线2tx-y-2-2t=0(t∈R)恒过点(1,-2).因为1+4-2-8=-5<0,所以(1,-2)在圆x2+y2-2x+4y=0内部,所以直线2tx-y-2-2t=0(t∈R)与圆x2+y2-2x+4y=0相交.故选C.3.若过点A(4,0)的直线l与曲线(x-2)2+y2=1有公共点,则直线l的斜率的取值范围为( )A.[-] B.(-)C.D.C 解析:设直线方程为y=k(x-4),即kx-y-4k=0,直线l与曲线(x-2)2+y2=1有公共点,所以圆心到直线的距离小于等于半径,即d=≤1,得4k2≤k2+1,k2≤,即-≤k≤.故选C.1.注意常用方法:判断直线与圆的位置关系一般用几何法,即d与r的关系进行判断.2.注意直线上定点的作用:若直线恒过定点且定点在圆内,可判断直线与圆相交.考点2 圆与圆的位置关系——综合性(1)若圆(x+1)2+y2=m与圆x2+y2-4x+8y-16=0内切,则实数m的值为( ) A.1 B.11C.121 D.1或121D 解析:对x2+y2-4x+8y-16=0进行整理,可得(x-2)2+(y+4)2=36,故两圆的圆心坐标为(-1,0),(2,-4),半径分别为,6.因为圆(x+1)2+y2=m与圆x2+y2-4x+8y -16=0内切,所以圆心距d满足d=|r2-r1|,即=|-6|,解得m =1或121.(2)已知两圆C1:x2+y2-2x-6y-1=0和C2:x2+y2-10x-12y+45=0.①求证:圆C1和圆C2相交;②求圆C1和圆C2的公共弦所在直线的方程和公共弦长.①证明:由题意可知,圆C1的圆心为C1(1,3),半径r1=,圆C2的圆心为C2(5,6),半径r2=4,两圆的圆心距d=|C1C2|=5,r1+r2=+4,|r1-r2|=4-,所以|r1-r2|<d<r1+r2,所以圆C1和C2相交.②解:圆C1和圆C2的方程左右两边分别相减,整理得4x+3y-23=0,所以两圆的公共弦所在直线的方程为4x+3y-23=0.圆心C2(5,6)到直线4x+3y-23=0的距离d==3,故公共弦长为2=2.本例(1)中若两圆内含,求实数m的取值范围.解:圆(x+1)2+y2=m的圆心为(-1,0),半径为;圆x2+y2-4x+8y-16=0,即(x-2)2+(y+4)2=36,故圆心为(2,-4),半径为6.由两圆内含得<|-6|,解得m<1或m>121.(1)判断两圆位置关系常用几何法,即用两圆圆心距与两圆半径和及差的绝对值的大小关系判断,一般不用代数法.注意两圆相切时,应分外切、内切两种情况.(2)两圆相交时,两圆的公共弦所在直线的方程,可由两圆的方程作差消去x2,y2项得到.(3)求两圆公共弦长,常选其中一圆,由弦心距d、半弦长、半径r构成直角三角形,利用勾股定理求解.1.已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )A.内切B.相交C.外切D.相离B 解析:将圆M的方程化为x2+(y-a)2=a2,则圆心M(0,a),半径r1=a.点M到直线x +y=0的距离d=,则+2=a2,得a=2,故M(0,2),r1N的圆心N(1,1),半径r2=1,所以|MN|=,而|r1-r2|<|MN|<|r1+r2|,所以两圆相交.故选B.2.若圆O1:x2+y2=5与圆O2:(x+m)2+y2=20相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是( )A.3 B.4C.2D.8B 解析:如图,连接O1A,O2A,由于⊙O1与⊙O2在点A处的切线互相垂直,因此O1A⊥O2A,所以=O1A2+O2A2,即m2AB 交x轴于点C.在Rt△O1AO2中,sin ∠AO2O1=,所以在Rt△ACO2中,AC=AO2·sin ∠AO2O1=2=2,所以AB=2AC=4.故选B.考点3 直线与圆的综合问题——应用性考向1 弦长问题已知圆C:(x-4)2+(y-2)2=r2截y轴所得的弦长为2,过点(0,4)且斜率为k 的直线l与圆C交于A,B两点.若|AB|=2,则k的值为( )A.-B.C.-D.D 解析:已知圆C:(x-4)2+(y-2)2=r2截y轴所得的弦长为2,所以圆心坐标为(4,2),半径为r,则42+()2=r2,解得r=3.由于过点(0,4)且斜率为k的直线l与圆C交于A,B两点,|AB|=2,则设直线l的方程为y=kx+4,由点到直线的距离公式可得:=,解得k=.求弦长的两种求法(1)代数方法:将直线和圆的方程联立,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.(2)几何方法:若弦心距为d,圆的半径长为r,则弦长l=2.考向2 圆的切线问题若过直线3x+4y-2=0上一点M向圆C:(x+2)2+(y+3)2=4作一条切线切于点T,则|MT|的最小值为( )A.B. 4C. 2D. 2D 解析:根据题意,圆C:(x+2)2+(y+3)2=4,其圆心为(-2,-3),半径r=2,过点M向圆C作一条切线切于点T,则|MT|==.当|MC|取得最小值时,|MT|的值最小,而|MC|的最小值为点C到直线3x+4y-2=0的距离,则|MC|min ==4,则|MT|的最小值为=2.故选D.(1)圆的切线问题的处理要抓住圆心到直线的距离等于半径这一关系,从而建立方程解决问题.(2)过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.1.若直线l与曲线y=和圆x 2+y2=都相切,则l的方程为( )A.y=2x+1 B.y =2x+C.y=x+1 D.y =x+D 解析:圆x2+y2=的圆心为原点,半径为,经检验原点与选项A,D中的直线y=2x +1,y =x+的距离均为,即两直线与圆x2+y2=均相切,原点与选项B,C中的直线y=2x +,y=x+1的距离均不是,即两直线与圆x2+y2=均不相切,所以排除选项BC.将直线方程y=2x+1代入y=,得2()2-+1=0,判别式Δ<0,所以直线y=2x+1与曲线y=不相切,所以排除选项A.故选D.2.已知直线x-y+8=0和圆x2+y2=r2(r>0)相交于A,B两点.若|AB|=6,则r的值为________.5 解析:设圆心为O(0,0),圆心到直线的距离d=AB的中点M,连接OM(图略),则OM⊥AB.在Rt△OMA中,r==5.一个圆与y轴相切,圆心在直线x-3y=0上,且在直线y=x上截得的弦长为2,求此圆的方程.[四字程序]读想算思求圆的标准方程或一般方程如何求圆的方程?1.圆的标准方程是什么?2.圆的一般方程是什么数形结合1.圆的圆心在直线上.2.圆与直线相切.3.圆在直线上截得的根据题目条件设出圆的标准方程或一般方程,利用待定系数法求解1.(x-a)2+(y-b)2=r2.2.x2+y2+Dx+Ey+F=0借助于圆的几何性质求解弦长为思路参考:根据圆心在直线上,设出圆心.由圆与直线相切,表示出半径,结合弦长求出圆的方程.解:因为所求圆的圆心在直线x-3y=0上,且与y轴相切,所以设所求圆的圆心为C (3a,a),半径为r=3|a|.又圆在直线y=x上截得的弦长为2,圆心C(3a,a)到直线y=x的距离为d=,所以有d2+()2=r2,即2a2+7=9a2,所以a=±1.故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.思路参考:设出圆的标准方程.利用圆心到直线的距离公式表示出半径,结合弦长求出圆的方程.解:设所求的圆的方程是(x-a)2+(y-b)2=r2,则圆心(a,b)到直线x-y=0的距离为,所以r2=+()2,即2r2=(a-b)2+14.①由于所求的圆与y轴相切,所以r2=a2.②又因为所求圆心在直线x-3y=0上,所以a-3b=0.③联立①②③,解得a=3,b=1,r2=9或a=-3,b=-1,r2=9.故所求的圆的方程是(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.思路参考:设出圆的一般方程,用待定系数法求解.解:设所求的圆的方程是x2+y2+Dx+Ey+F=0,圆心为,半径为.令x=0,得y2+Ey+F=0.由圆与y轴相切,得Δ=0,即E2=4F.④又圆心到直线x-y=0的距离为,由已知,得+()2=r2,即(D-E)2+56=2(D2+E2-4F).⑤又圆心在直线x-3y=0上,所以D-3E=0.⑥联立④⑤⑥,解得D=-6,E=-2,F=1或D=6,E=2,F=1.故所求圆的方程是x2+y2-6x-2y+1=0或x2+y2+6x+2y+1=0,即(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.1.本题考查圆的方程的求法,解法灵活多变,基本解题策略是设出圆的方程,借助待定系数法求解.2.基于课程标准,解答本题需要掌握圆的标准方程和一般方程的一般形式.本题的解答体现了数学运算、直观想象的核心素养.3.基于高考评价体系,本题通过圆的代数性质和几何性质之间相互联系和转化,体现了基础性.已知圆C的圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2),则圆C 的方程为______________.(x-1)2+(y+4)2=8 解析:(方法一)如图,设圆心).依题意得=1,解得x0=1,即圆心坐标为(1,-4),半径r=2,故圆的方程为(x-1)2+(y+4)2=8. (方法二)设所求方程为(x-x0)2+(y-y0)2=r2.根据已知条件得解得因此所求圆的方程为(x-1)2+(y+4)2=8.课时质量评价(四十六)A组全考点巩固练1.(2022·北京卷)若直线2x+y-1=0是圆(x-a)2+y2=1的一条对称轴,则a=( ) A.B.-C.1 D.-1A 解析:由题可知圆心为(a,0),因为直线是圆的对称轴,所以圆心在直线上,即2a+0-1=0,解得a=.故选A.2.(2023·济南质检)圆x2+(y-2)2=4与圆x2+2mx+y2+m2-1=0至少有三条公切线,则m的取值范围是( )A.(-∞,-]B.[,+∞)C.[-]D.(-∞,-]∪[,+∞)D 解析:将x2+2mx+y2+m2-1=0化为标准方程得(x+m)2+y2=1,即圆心为(-m,0),半径为1,圆x2+(y-2)2x2+(y-2)2=4与圆x2+2mx+y2+m2-1=0至少有三条公切线,所以两圆的位置关系为外切或相离,所以≥2+1,即m2≥5,解得m∈(-∞,-]∪[,+∞). 故选D.3.(多选题)若直线x-y=2被圆(x-a)2+y2=4所截得的弦长为2,则实数a的值可能为( )A.0 B.4C.-2 D.6AB 解析:由圆的方程,可知圆心坐标为(a,0),半径r,所以圆心到直线的距离d==.又d=,所以|a-2|=2,解得a=4或0.故选AB.4.已知圆的方程是x2+y2=1,则在y轴上截距为的切线方程为( )A.y=x+B.y=-x+C.y=x+或y=-x+D.x=1或y=x+C 解析:由题意知切线斜率存在,故设切线方程为y=kx+,则=1,所以k=±1,故所求切线方程为y=x+或y=-x+.5.过点P(1,2)的直线与圆x2+y2=1相切,且与直线ax+y-1=0垂直,则实数a的值为( )A.0 B.-C.0或D.C 解析:当a=0时,直线ax+y-1=0,即直线y=1,此时过点P(1,2)且与直线y=1垂直的直线为x=1,而x=1是与圆相切,满足题意,所以a=0成立.当a≠0时,过点P(1,2)且与直线ax+y-1=0垂直的直线斜率为,可设该直线方程为y -2=(x-1),即x-ay+2a-1=0,再根据直线与圆相切,即圆心到直线距离为1,可得=1,解得a=.故选C.6.直线l:y=kx+4与圆O:x2+y2=4交于A(x1,y1),B(x2,y2)两点.若x1x2+y1y2=0,则k2的值为( )A.3 B.7C.8 D.13B 解析:由条件可得x1x2≠0,圆O的圆心为(0,0),半径为2,由x1x2+y1y2=0可得·=-1,故OA⊥OB,故△AOB为等腰直角三角形.故点O到直线l的距离为,即=,解得k2=7.故选B.7.早在两千多年前,我国的墨子给出了圆的定义——一中同长也.已知O为坐标原点,P(-1,).若⊙O,⊙P的“长”分别为1,r,且两圆相切,则r=________.1或3 解析:由题意,O为坐标原点,P(-1,),根据圆的定义可知,⊙O的圆心为O(0,0),半径为1,⊙P的圆心为P(-1,),半径为r,因为两圆相切,则有|PO|=r+1或|PO|=r-1,则有r+1=2或r-1=2,解得r=1或3.8.已知圆O:x2+y2=5与圆C1:x2+y2-5x=0相交于M,N两点,点P的坐标为(3,-4).若圆C2经过M,N,P三点,则C2的方程为________.(x-5)2+y2=20 解析:把圆O:x2+y2=5与圆C1:x2+y2-5x=0相减,可得公共弦MN的方程为x=1,故M,N两点的坐标为(1,2),(1,-2).又点P的坐标为(3,-4),故要求的圆的圆心C2在x轴上,设C2(m,0),由C2M=C2P,求得m=5,故要求的圆的圆心C2(5,0),半径为C2M=,故要求的圆C2的方程为(x-5)2+y2=20.9.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若·=12,其中O为坐标原点,求|MN|.解:(1)由题意可得,直线l的斜率存在.设过点A(0,1)且斜率为k的直线l的方程:y=kx+1,即kx-y+1=0.由已知可得圆C的圆心C的坐标为(2,3),半径R=1.由直线l与圆C交于M,N两点,则<1,解得<k<.所以k的取值范围为.(2)设M(x1,y1),N(x2,y2),由题意可得,经过点M,N,A的直线方程为y=kx+1,代入圆C的方程(x-2)2+(y-3)2=1,可得(1+k2)x2-4(k+1)x+7=0,所以x1+x2=,x1x2=,所以y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1=.由·=x1x2+y1y2==12,解得k=1,故直线l的方程为y=x+1,即x-y+1=0.圆心C在直线l上,MN的长即为圆的直径.所以|MN|=2.B组新高考培优练10.已知直线l:x+y-5=0与圆C:(x-2)2+(y-1)2=r2(r>0)相交所得的弦长为2,则圆C的半径r=( )A.B.2C.2D.4B 解析:依题意,得圆C的圆心坐标为(2,1),圆心到直线l的距离d==,因为弦长为2,所以2=2,所以r=2.11.已知直线x+ay-1=0是圆C:x2+y2-4x-2y+1=0的对称轴,过点A(-4,a)作圆C 的一条切线,切点为B,则|AB|=( )A.2 B.6C.4D.2B 解析:因为圆C:x2+y2-4x-2y+1=0,即(x-2)2+(y-1)2=4,所以圆心为C(2,1),半径r=2.由题意可得,直线l:x+ay-1=0经过圆C的圆心(2,1),故有2+a-1=0,所以a=-1,点A(-4,-1).因为|AC|==2,|CB|=r=2,所以|AB|==6.故选B.12.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“|AB|=”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A 解析:依题意,注意到|AB|2=()2=等价于圆心O到直线l的距离等于,即有=,k=±1.因此,“k=1”是“|AB|=”的充分不必要条件.13.(多选题)已知直线l:x+y-4=0,圆O:x2+y2=2,M是l上一点,MA,MB分别是圆O的切线,则( )A.直线l与圆O相切B.圆O上的点到直线l的距离的最小值为C.存在点M,使∠AMB=90°D.存在点M,使△AMB为等边三角形BD 解析:对于A选项,圆心到直线的距离d==2>=r,所以直线和圆相离,故A错误;对于B选项,圆O上的点到直线l的距离的最小值为d-r=,故B正确;对于C选项,当OM⊥l时,∠AMB有最大值60°,故C错误;对于D选项,当OM⊥l时,△AMB 为等边三角形,故D正确. 故选BD.14.(多选题)(2022·德州期末)已知点A是直线l:x+y-=0上一定点,点P,Q是圆x2+y2=1上的动点.若∠PAQ的最大值为90°,则点A的坐标可以是( )A.(0,) B.(1,-1)C.(,0) D.(-1,1)AC 解析:如下图所示:原点到直线l的距离为d==1,则直线l与圆x2+y2=1相切.由图可知,当AP,AQ均为圆x2+y2=1的切线时,∠PAQ取得最大值,连接OP,OQ,由于∠PAQ的最大值为90°,且∠APO=∠AQO=90°,|OP|=|OQ|=1,则四边形APOQ为正方形,所以|OA|=|OP|=.由两点间的距离公式得设A(t,-t),|OA|==,整理得2t2-2t=0,解得t=0或,因此,点A的坐标为(0,)或(,0).故选AC.15.在①被x轴、y轴所截得的弦长均为4,且圆C的圆心位于第四象限,②与直线4x -3y+18=0相切于点B(-3,2),③过点B(-2,-5),且圆心在直线x+y=0上这三个条件中任选一个补充在下面的问题中,并加以解答.问题:已知圆C过点A(-2,3),________,求圆C的方程.解:若选①,设圆C:(x-a)2+(y-b)2=r2(a>0,b<0),由题意可知解得因此,圆C的方程为(x-1)2+(y+1)2②,由题意知圆心必在过切点B(-3,2)且垂直于切线4x-3y+18=0的直线上,可求得此直线方程为3x+4y+1=0.直线AB的斜率k AB==1,线段AB的中点坐标为,则线段AB的垂直平分线方程为y-=-,即y=-x.可知圆心必在线段AB的垂直平分线y=-x上,联立可求得圆心C(1,-1),则r=|BC|==5,因此,圆C的方程为(x-1)2+(y+1)2=25.若选③,由题意知圆心必在AB的垂直平分线上,所以AB的垂直平分线方程为y=-1.将直线y+1=0与直线x+y=0联立,可得圆心坐标C(1,-1).因为r=|BC|==5,因此,圆C的方程为(x-1)2+(y+1)2=25. 16.已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l 的右上方.(1)求圆C的方程;(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.解:(1)设圆心C(a,0),则=2,解得a=0或a=-5(舍).所以圆C:x2+y2=4.(2)如图,当直线AB⊥x轴时,x轴平分∠ANB.当直线AB的斜率存在时,设直线AB的方程为y=k(x-1),N(t,0),A(x1,y1),B(x2,y2),由得(k2+1)x2-2k2x+k2-4=0,Δ=(-2k2)2-4(k2+1)(k2-4)=12k2+16>0,所以x1+x2=,x1x2=.若x轴平分∠ANB,则k AN=-k BN⇒=0⇒=0⇒2x1x2-(t+1)(x1+x2)+2t=0⇒+2t=0⇒t=4.所以当点N为(4,0)时,能使得x轴平分∠ANB.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点为切点,切线只有一条;若点在圆外,切线应有两条.
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
解决直线与圆相交的问题时,一定要注意由弦心距、半
径、半弦长构成的直角三角形的应用.
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
二、圆与圆的位置关系 设圆 O1:(x-a1)2+(y-b1)2=r2(r1>0),圆 O2:(x-a2)2 1
答案:B
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
3.(文)⊙O1:x2+y2-2x=0与⊙O2:x2+y2-4y=0的位置
关系是(
)
B.相交 D.内切
A.相离 C.外切
解析:⊙O1:(x-1)2+y2=1,⊙O2:x2+(y-2)2=4, 圆心距d= 1-02+0-22 = 5 ,故|r1-r2|<d<r1+ r2,即1<d<3,因此两圆相交.
【典例剖析】 (1)(2013·湛江模拟)已知点P(a,b)(ab≠0)是圆O:x2 +y2=r2内一点,直线l的方程为ax+by+r2=0,那么直线l与圆O
的位置关系是
A.相离 C.相交 B.相切 D.不确定
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
(2)“a=3”是“直线y=x+4与圆(x-a)2+(y-3)2=8相切” 的 A.充分不必要条件 C.充要条件 B.必要不充分条件 D.既不充分也不必要条件
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
解析:(1)由点P(a,b)是圆O内一点得 a2+b2 <r,得a2 +b2<r2. |a×0+b×0+r2| r2 故圆心到直线l的距离d= = 2 2 2 2> a +b a +b r,所以直线l与圆相离.
答案:A
新课标高考总复习· 数学(RJA版)
设l的方程为y=k(x-4),即kx-y-4k=0. |2k-4k| 2|k| 3 3 由题意知 2 = 2 ≤1,解得- 3 ≤k≤ 3 . k +1 k +1 答案:C
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
【考向探寻】
1.判定圆与圆的位置关系. 2.与圆的位置关系有关的综合问题.
相减,所得方程即为公共弦所在直线的方程.
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
1.(2012·陕西高考)已知圆C:x2 +y2 -4x=0,l是过点 P(3,0)的直线,则( )
A.l与C相交
C.l与C相离
B.l与C相切
D.以上三个选项均有可能
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
【活学活用】 1.(1)直线l:x=my+2与圆M:x2+2x+y2+2y=0相 切,则m的值为( A.1或-6 C.-1或7 ) B.1或-7 1 D.1或- 7
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
解析:由题意可知,圆M:x2+2x+y2+2y=0的圆心 (-1,-1)到直线l:x=my+2的距离为圆的半径 到直线的距离公式可知m=1或m=-7.
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
位置关 系
相交
相切
相离
图形
几何法 d <r Δ >0 d =r Δ = 0 d >r Δ < 0
代数法
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
1.在求过一定点的圆的切线方程时,应注意什么? 提示:应首先判断这点与圆的位置关系,若点在圆上则该
(3)(2012·江苏高考)在平面直角坐标系xOy中,圆C的方程为
x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该 点为圆心,1为半径的圆与圆C有公共点,则k的最大值是 ________.
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
题号 分析 (1) 根据圆心到直线的距离与半径的关系判断. (2) 先确定相切的充要条件,再进行判断. 由圆心到直线的距离不大于2建立关于k的不等 (3) 式,解不等式可得结论.
答案:B
2 ,由点
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
(2)若过点A(4,0)的直线l与曲线(x-2)2+y2=1有公共 点,则直线l斜率的取值范围为( A.[- 3, 3]
C.-
)
B.(- 3, 3)
D.-
3 3 ,3 3
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
【典例剖析】
(1)已知圆C1:x2+y2-2mx+m2=4,圆C2:x2+ y2+2x-2my=8-m2(m>3),则两圆的位置关系是 A.相交 C.外切 B.内切 D.相离
(2)已知圆C1:x2+y2-6x-7=0与圆C2:x2+y2-6y- 27=0相交于A、B两点,则线段AB的中垂线方程为 ________.
第八章 平面解析几何
第四节
直线与圆、圆与圆的位置关系
基础知识回扣
热点考向聚焦
活 页 作 业
考纲要求
1.能根据给定直线、圆的 方程,判断直线与圆的位 置关系;能根据给定两个 圆的方程,判断两圆的位 置关系. 2.能用直线和圆的方程解 决一些简单的问题. 3.初步了解用代数方法处 理几何问题的思想.
考情分析 1.从考查内容看,高考中 主要侧重于对直线和圆位 置关系的判定及应用的考 查,特别是直线与圆相 切、相交的问题,是高考 的重点和热点. 2.从考查形式看,多以选 择题、填空题的形式出 现,有时也出现在综合性 较强的解答题中,难度中 等.
3
)处的切线方程为
B.x+ 3y-4=0 D.x- 3y+2=0
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
解析:方法一:圆方程为(x-2)2+y2=4,圆心(2,0), 半径为2,点P在圆上,设切线方程为y- 3=k(x-1), |2k-k+ 3| 3 即kx-y-k+ 3=0,∴ =2,解得k= . 2 3 k +1 3 ∴切线方程为y- 3= 3 (x-1),即x- 3y+2=0.
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
(1)判定直线和圆的位置关系时常用几何法,即根据圆心到
直线的距离与半径的大小关系来确定.
(2)已知直线和圆的位置关系时,常用几何法将位置关系转 化为圆心到直线的距离与半径的大小关系,并以此来确定参数 的取值或范围
新课标高考总复习· 数学(RJA版)
答案:B
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
4.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C
与直线x+y+3=0相切,则圆C的方程为________.
解析:在方程x-y+1=0中,令y=0,得x=-1,故圆 |-1+0+3| 心坐标为(-1,0).又由题意知半径r= = 2, 2 所以圆C的方程为(x+1)2+y2=2.
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
新课标高考总复习· 数页 作 业
【考向探寻】
1.直线与圆的位置关系的判定. 2.直线与圆的位置关系的逆向问题.
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
(3)已知圆C与圆C1:x2+y2-2x=0相外切,并且与直线 l:x+ 3y=0相切于点P(3,- 3),求圆C的方程.
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
(1)根据两圆圆心距与两半径的关系判断即可. (2)AB的中垂线即为两圆的连心线. (3)根据条件确定圆心及半径,然后求圆方程.
答案:(x+1)2+y2=2
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
5.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共 弦的长为2 3,则a=________.
1 解析:x +y +2ay=6,x +y =4,两方程相减得y=a.
2 2 2 2
1 y= , 4a2-1 由 a 消去y得x2= a2 (a>0). x2+y2=4, 4a2-1 由公共弦长为2 3知2 =2 3,解得a=1. a 答案:1
2 +(y-b2)2=r2(r2>0).
相离
图形 d> r1+r2
外切
相交
内切
内含
d= r1+r2
几何法
d= |r1-r2|< d<r1+r2 |r1-r2|
d< | r1-r2|
新课标高考总复习· 数学(RJA版)
基础知识回扣
热点考向聚焦
活 页 作 业
2.两圆相交时,公共弦所在直线的方程与两圆的方程有何 关系? 提示:两圆的方程中,若x2、y2项的系数相同时,将两方程
答案:A
新课标高考总复习· 数学(RJA版)