初中数学《圆》全章讲义有例题培训讲学

合集下载

第二十四章《圆》复习课件

第二十四章《圆》复习课件

.r
O
S = nπr2
360
2024/10/13

S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2024/10/13
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2024/10/13
a 侧面
底面
常见的基本图形及结论:
AC
本 第1部分 圆的基本性质
章 第2部分 与圆有关的位置关系

排 第3部分 正多边形和圆
复 习
第4部分
弧长和面积的计算
内 容
第5部分
有关作图
2024/10/13
一.圆的基本概念: 1.圆的定义:到定点的距离等于定长的点的 集合叫做圆. 2.有关概念: (1)弦、直径(圆中最长的弦)
(2)弧、优弧、劣弧、等弧
∴ OA⊥ l l
切线长定理:
从圆外一点引圆的两条切线,它们 的切线长相等;这点与圆心的连线平分 这两条切线的夹角。
.A
. O . B
2024/10/13
∵PA、PB为⊙O的切线 ∴PA=PB, P ∠APO= ∠BPO
三角形的外接圆与内切圆:
A.
A
B. O.

C
B

O C
三角形的外心就是三角形各边垂直平分线的交点.
三角形的内心就是三角形各角平分线的交点.
不在同一直线上的三点确定一个圆.
2024/10/13
特别的:
等边三角形的外心与内心重合. 内切圆半径与外接圆半径的比是1:2.

初中数学专题讲义-圆(含答案)

初中数学专题讲义-圆(含答案)

初中数学专题讲义-圆【考纲说明】【知识梳理】一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

(1)半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧叫做半圆。

(1)劣弧:小于半圆的弧。

(2)优弧:大于半圆的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质 1、圆的对称性(1)圆是轴对称图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是旋转对称图形。

2、垂径定理(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:➢ 平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

➢ 平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、点与圆的位置关系:设⊙O 的半径为r ,OP=d 。

7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角三角形的外心就是斜边的中点。

)8、直线与圆的位置关系。

d 表示圆心到直线的距离,r 表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;9、圆的切线判定。

(1)d=r 时,直线是圆的切线。

初中九年级数学圆的讲义

初中九年级数学圆的讲义

初中九年级数学圆的讲义圆一、基本概念与性质在平面内把线段OP绕着端点O旋转一周,端点P所形成的图形叫做圆。

其中,点O叫做圆心,线段OP叫做半径。

以点O为圆心的圆,记作⊙O ,读作圆O 。

点和圆的位置关系:如果⊙O的半径是r,点P到圆心O的距离为d,则d>r时,点P在__________d=r时,点P在__________d<r时,点p在__________< p="">圆是中心对称图形,圆心是它的对称中心。

圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。

弦与弧连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径,是圆最长的弦。

圆上任意两点间的部分叫圆弧,简称弧,符号:以C、D为端点的弧,记作,读作圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。

顶点在圆心的角叫做圆心角,顶点在圆上且两边与圆相交的角叫做圆周角。

圆心相同,半径不相等的两个圆叫做同心圆,能够互相重合的两个圆叫做等圆,能够互相重合的弧叫做等弧。

同圆或等圆的半径相等。

圆心角、弧、弦之间的关系:1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

2.推论:在同圆或等圆中,若两条弧相等,那么它们所对的圆心角和弦都相等。

在同圆或等圆中,若两条弦相等,则它们所对的圆心角和弧都相等。

3.圆心角的度数与它所对的弧的度数相等。

圆心角与圆周角的关系:1.同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

2.推论:半圆(或直径)所对的圆周角是直角,90°圆周角所对的弦是直径。

垂径定理:1.垂直弦的直径平分弦,并且平分弦所对的两条弧。

2.推论:平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧确定圆的条件:1.经过一点A作圆2.经过A、B两点作圆3.经过A、B、C三点作圆——a)当三点位于一条直线时b)当三点不在一条直线上时4.结论:不在同一条直线上的三点确定一个圆三角形的三个顶点确定一个圆。

(完整版)初三数学圆的经典讲义

(完整版)初三数学圆的经典讲义

圆目录圆的定义及相关概念垂经定理及其推论圆周角与圆心角圆心角、弧、弦、弦心距关系定理圆内接四边形会用切线, 能证切线切线长定理三角形的内切圆了解弦切角与圆幂定理(选学)圆与圆的位置关系圆的有关计算一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。

经过圆心的每一条直线都是它的对称轴。

圆心是它的对称中心。

考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

直径是圆中最大的弦。

弦心距:圆心到弦的距离叫做弦心距。

弧:圆上任意两点间的部分叫做弧。

弧分为半圆,优弧、劣弧三种。

(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。

弓高:弓形中弦的中点与弧的中点的连线段。

(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。

如下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。

考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种。

①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ;【典型例题】例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。

例2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。

M A B C DOEBC例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。

初中数学《圆》全章讲义

初中数学《圆》全章讲义

初中数学《圆》全章讲义内容简介:1、圆的相关概念;2、垂径定理;3、圆心角、圆周角定理;4、与圆有关的位置关系;5、切线及切线长定理;6、弧长及扇形面积。

【知识要点1】圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

【知识要点2】点与圆的位置关系<⇒点C在圆内;1、点在圆内⇒d r=⇒点B在圆上;2、点在圆上⇒d r>⇒点A在圆外;3、点在圆外⇒d r【知识要点3】直线与圆的位置关系>⇒无交点;1、直线与圆相离⇒d r=⇒有一个交点;2、直线与圆相切⇒d r<⇒有两个交点;3、直线与圆相交⇒d rr d=r r dd圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;图1rRd图3rR d【知识要点5】垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

《圆》 讲义

《圆》 讲义

《圆》讲义一、圆的定义在平面几何中,圆是一个非常重要的图形。

圆可以被定义为平面上到一个定点的距离等于定长的所有点组成的图形。

这个定点称为圆心,定长称为圆的半径。

我们可以想象一下,如果用一根绳子的一端固定在一个点上,另一端绑着一支笔,然后让笔绕着这个固定点旋转一周,那么笔尖所画出的轨迹就是一个圆。

圆是一种非常完美和对称的图形。

无论从哪个角度观察,它的形状都保持不变。

这种对称性使得圆在数学和实际生活中都有广泛的应用。

二、圆的基本元素1、圆心圆心是圆的中心位置,决定了圆的位置。

通常用字母 O 表示。

2、半径半径是连接圆心和圆上任意一点的线段。

它决定了圆的大小。

用字母 r 表示。

3、直径通过圆心并且两端都在圆上的线段叫做直径。

直径是半径的两倍,用字母 d 表示,即 d = 2r 。

4、弧圆上任意两点间的部分叫做弧。

弧分为优弧和劣弧。

大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。

5、弦连接圆上任意两点的线段叫做弦。

直径是圆中最长的弦。

6、圆心角顶点在圆心的角叫做圆心角。

7、圆周角顶点在圆上,并且两边都与圆相交的角叫做圆周角。

三、圆的性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

圆也是中心对称图形,其对称中心是圆心。

2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

例如,在圆 O 中,直径 AB 垂直于弦 CD ,则 CE = DE ,弧 AC =弧 AD ,弧 BC =弧 BD 。

3、弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

4、圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

四、圆的周长和面积1、圆的周长圆的周长是指绕圆一周的长度。

圆的周长公式为 C =2πr 或 C =πd ,其中π是圆周率,约等于 314 。

例如,如果一个圆的半径是 5 厘米,那么它的周长就是 2×314×5 =314 厘米。

初三数学圆的典讲义

初三数学圆的典讲义

圆目录一.圆的定义及相关概念二.垂经定理及其推论三.圆周角与圆心角四.圆心角、弧、弦、弦心距关系定理五.圆内接四边形六.会用切线, 能证切线七.切线长定理八.三角形的内切圆九.了解弦切角与圆幂定理(选学)十.圆与圆的位置关系十一.圆的有关计算十二.圆的基础综合测试十三.圆的终极综合测试一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。

经过圆心的每一条直线都是它的对称轴。

圆心是它的对称中心。

考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

直径是圆中最大的弦。

弦心距:圆心到弦的距离叫做弦心距。

弧:圆上任意两点间的部分叫做弧。

弧分为半圆,优弧、劣弧三种。

(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。

弓高:弓形中弦的中点与弧的中点的连线段。

(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。

如下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。

考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种。

①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ;【典型例题】例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。

例2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。

M AB C DOEBAC例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。

初三数学圆经典终极讲义

初三数学圆经典终极讲义

一.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。

经过圆心的每一条直线都是它的对称轴。

圆心是它的对称中心。

考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

直径是圆中最大的弦。

弦心距:圆心到弦的距离叫做弦心距。

弧:圆上任意两点间的部分叫做弧。

弧分为半圆,优弧、劣弧三种。

(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。

弓高:弓形中弦的中点与弧的中点的连线段。

(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。

如下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。

考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种。

①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ;【典型例题】例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。

例2.已知,如图,CD 是直径,︒=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。

例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。

例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少?MABCDOEB CB例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA , 求CD 的长.例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数.例7.如图,已知在ABC ∆中,︒=∠90A ,AB=3cm ,AC=4cm ,以点A 为圆心,AC 长为半径画弧交CB 的延长线于点D ,求CD 的长.例8、如图,有一圆弧开桥拱,拱的跨度AB =16cm ,拱高CD =4cm ,那么拱形的半径是__m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《圆》
内容简介:1、圆的相关概念;2、垂径定理;3、圆心角、圆周角定理;4、与圆有关的位置关系;
5、切线及切线长定理;
6、弧长及扇形面积。

【知识要点1】
圆的概念
集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;
2、圆的外部:可以看作是到定点的距离大于定长的点的集合;
3、圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);
3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

例1 已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB上的点,且AC=BD.求证:AD=BC.
例2 如图,在⊙O中,AB,CD为⊙O的两条直径,AE=BF,求证四边形CEDF 是平行四边形.
点与圆的位置关系
1、点在圆内⇒d r
<⇒点C在圆内;
2、点在圆上⇒d r
=⇒点B在圆上;
3、点在圆外⇒d r
>⇒点A在圆外;
【知识要点3】
直线与圆的位置关系
1、直线与圆相离⇒d r
>⇒无交点;
2、直线与圆相切⇒d r
=⇒有一个交点;
3、直线与圆相交⇒d r
<⇒有两个交点;
d
r d=r r d 【知识要点4】
圆与圆的位置关系外离(图1)⇒无交点⇒d R r
>+;
外切(图2)⇒有一个交点⇒d R r
=+;
相交(图3)⇒有两个交点⇒R r d R r
-<<+;
内切(图4)⇒有一个交点⇒d R r
=-;
内含(图5)⇒无交点⇒d R r
<-;
r
R
d
图3r
R d
r R
d
图4
r
R
d
图5
r
R
d
垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:
①AB是直径②AB CD
⊥③CE DE
=④弧BC=弧BD⑤弧AC=弧AD
中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O中,∵AB∥CD
∴弧AC=弧BD
例3如图,CE为⊙O的直径,AB为⊙O的弦,且AB⊥CE,垂足为点D,设⊙O的半径为r,AB+CD=2r,CD=1,求⊙O的半径.
例4如图,在⊙O中,AB=2CD.试判断与2是否相等,并说明理由.
O
E
D
C
B
A
O
C D
A B
圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =;
③OC OF =;④ 弧BA =弧BD
【知识要点7】
圆周角定理
1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠
2、圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;
即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。

即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径
推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

即:在△ABC 中,∵OC OA OB ==
∴△ABC 是直角三角形或90C ∠=︒
注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

F
E D
C
B
A
O
C
B
A O
D
C
B
A
O
C
B
A
O
C
B
A O

5
如图,射线AM 交一圆于点B 、C ,射线AN 交该圆于点D 、E ,且
=,求证:AC =AE .
如图,△ABC 是⊙O 的内接三角形,点C 是优弧AB 上一点(点C 不与A ,B 重合),设∠OAB =α ,
∠C =β .
(1)当α =35°时,求β 的度数;
(2)猜想α 与β 之间的关系,并给予证明.
【知识要点8】
圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

即:在⊙O 中,
∵四边形ABCD 是内接四边形
∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒ DAE C ∠=∠
E
D
C
B
A
【知识要点9】
切线的性质与判定定理
(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 的切线
(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。

推论2:过切点垂直于切线的直线必过圆心。

以上三个定理及推论也称二推一定理:
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

【知识要点10】
切线长定理
切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

即:∵PA 、PB 是的两条切线 ∴PA PB = PO 平分BPA ∠
经典心理压力测试题 看你的压力程度
核心提示:你有心理压力吗,你想知道你在生活中处理心理压力的能力吗?在下面的测验中找出最接近你实际生活的一种情况,如果没有经历过这类事情,可选择最接近你的想法的一种。

1、生日,婚礼……,免不了花钱。

N
M
O
P
B
O
A、你不想在这类场合出现,以免花钱买礼物;
B、尽管不少花钱,可在各种场合,你还是乐天选择小巧而特别的礼物;
C、只在对你很重要的场合送礼;
2、你的自行车与别人的车相撞,你不得不与对方约个时间解决这个问题。

A、这件事引起的焦虑和不安使你失眠;
B、这并非重要的事情,只是生活中发生的许多事情中的一件,你会在问题解决后,做点自己喜欢的事情,以便尽快忘掉那不愉快的事;
C、开始时你不去管它,只要在解决问题的那一天到来时再想办法应付它;
3、你的家具或电器由于水管破裂被损坏了,而且发现你的财产保险不能完全弥补损失。

A、你很失望,痛苦地抱怨保险公司;
B、开始自己修复家具;
C、考虑撤销保险,并向有关事务机关投诉;
4、你由于某件生活中的小事和邻居发生了争执,却没能解决任何问题。

A、回到家,你拼命喝酒,想轻松一下,忘掉这件事;。

相关文档
最新文档