《光学教程》第五版姚启钧第四章光的衍射

合集下载

《光学教程》第五版 姚启钧 第四章 光的衍射

《光学教程》第五版 姚启钧 第四章 光的衍射

4.1 光的衍射现象
光的衍射现象
衍射屏 观察屏 衍射屏
观察屏
*
S

a
L
L
S
~a

定义:光在传播过程中能绕过障碍物的边缘而偏离直线传播的 现象叫光的衍射。
4.2 惠更斯—菲涅耳原理
4.2.1惠更斯原理
波前(波阵面)上的每一点都可作为次波的波源,各自収 出球面次波;在后一时刻这些次波的包络面就是新的波前。
dx x 0 θ r0
A0 dx dE cost kr b A0 dx cost k (r0 x sin ) b
b 2 b 2
k
2

P点合振幅为:

A0 AP dE cost kr0 kx sin dx b 2 t kr0 , k sin sin
0.047 0.017
0
sin

b
b
2
b
2 b

sin u I I0 , 可得到以下结果: u
1. 主最大(中央明纹中心)位置: sin u 1 I I 0 I max 0处,u 0 u
即为几何光学像点位置
2. 极小(暗纹)位置:
衍射条纹特点: 1. 衍射图样为同心的明暗相间的圆环 2. 中心亮斑称为爱里斑
半角宽度:
0 0.61 1.22
R


D
D:为圆孔直径
4.8 平面衍射光栅
4.8.1 光栅
a. 定义 任何具有空间周期性的衍射屏都可叫做衍射光栅
光栅是由大量的等宽等间距的平行狭缝或(反射面)组成 b. 光栅的种类

《光学教程》[姚启钧]课后习题解答

《光学教程》[姚启钧]课后习题解答

《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为的绿光投射在间距为的双缝上,在距离处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。

解:改用两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P点离中央亮纹为问两束光在P点的相位差是多少?⑶求P点的光强度和中央点的强度之比。

解:⑴⑵由光程差公式⑶中央点强度:P点光强为:3、把折射率为的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为解:,设玻璃片的厚度为由玻璃片引起的附加光程差为:4、波长为的单色平行光射在间距为的双缝上、通过其中一个缝的能量为另一个的倍,在离狭缝的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。

解:由干涉条纹可见度定义:由题意,设,即代入上式得5、波长为的光源与菲涅耳双镜的相交棱之间距离为,棱到光屏间的距离为,若所得干涉条纹中相邻亮条纹的间隔为,求双镜平面之间的夹角、解:由菲涅耳双镜干涉条纹间距公式6、在题1、6图所示的劳埃德镜实验中,光源S到观察屏的距离为,到劳埃德镜面的垂直距离为。

劳埃德镜长,置于光源和屏之间的中央。

⑴若光波波长,问条纹间距是多少?⑵确定屏上能够看见条纹的区域大小,此区域内共有几条条纹?(提示:产生干涉的区域P1P2可由图中的几何关系求得)解:由图示可知:7050050010,40.4, 1.5150nm cm d mm cm r m cm λ-==⨯====①②在观察屏上能够看见条纹的区域为P 1P 2间即,离屏中央上方的范围内可看见条纹、7、试求能产生红光()的二级反射干涉条纹的肥皂膜厚度。

已知肥皂膜折射率为,且平行光与法向成300角入射。

解:由等倾干涉的光程差公式:8、透镜表面通常镀一层如M gF 2()一类的透明物质薄膜,目的是利用干涉来降低玻璃表面的反射。

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。

解:1500nm λ=7011180500100.4090.022r y cm d λ-∆==⨯⨯= 改用2700nm λ=7022180700100.5730.022r y cm d λ-∆==⨯⨯= 两种光第二级亮纹位置的距离为:21220.328y y y cm ∆=∆-∆=2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少?⑶求P 点的光强度和中央点的强度之比。

解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式210sin yr r d dr δθ=-== 0224y dr πππϕδλλ∆==⋅=⑶中央点强度:204I A =P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭012(1)0.8542I I =+=3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-()15n d λ-=()7645561061061010.5d m cm n λ---==⨯⨯=⨯=⨯-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。

通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)课后习题解答

WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
ቤተ መጻሕፍቲ ባይዱ
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享
WORD 格式 专业资料分享

《光学教程》姚启钧原著第四章光学仪器基本基本原理

《光学教程》姚启钧原著第四章光学仪器基本基本原理

《光学教程》姚启钧原著第四章光
7
学仪器基本基本原理
(四)、像面弯曲
1.现象:对较大物平面经透镜后成的像是抛物面。 2. 消除方法:采用组合系统,适当的选配各透镜
的焦距和折射率。
《光学教程》姚启钧原著第四章光
8
学仪器基本基本原理
(五)、畸变
物平面
枕形畸变
桶形畸变
1、现象:像和物不能保持几何相似。
2、成因:由于物点离主轴的距离不同,而使得横 向放大率不同所引起。
Q
说明:
P
O
l
U
① 须将物放在同一特定位置比较两像大小。
② 放大镜和显微镜:明视距离处(25cm);
望远镜:无穷远《处光。学教程》姚启钧原著第四章光
23
学仪器基本基本原理
三、放大镜
Q`
最简单的放大镜--凸透镜:
L
U‘
y`
Q
使用放大镜的视角:
P`
y
O
FP
l'
U `
y`
s`
y
f
y f`
Q
-s`
-f U‘
一、目镜
1、定义:用于放大其它光具组所成像的助视仪器。 要求:A、放大本领高;
B、能校正像差、色差。 2、结构:场镜+视镜+分划板(刻度尺)
• 场镜: 面向物体的透镜(或透镜组)
• 视镜: 接近人眼的透镜(或透镜组)
• 分划板:包含透明刻度尺,用于提高测量精度。
《光学教程》姚启钧原著第四章光
27
学仪器基本基本原理
未用放大镜的视角: y
P
U y 25
放大镜的放大本领:
25cm
O

光学教程第四版姚启钧课后题答案

光学教程第四版姚启钧课后题答案

目录第一章光的干涉 (3)第二章光的衍射 (15)第三章几何光学的基本原理 (27)第四章光学仪器的基本原理 (49)第五章光的偏振 (59)第六章光的吸收、散射和色散 (70)第七章光的量子性 (73)第一章光的干涉.波长为的绿光投射在间距d 为的双缝上,在距离处的光屏1nm 500cm 022.0cm 180上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为的红光投射到此双缝上,nm 700两个亮条纹之间的距离又为多少?算出这两种光第级亮纹位置的距离.2解:由条纹间距公式得λd r y y y j j 01=-=∆+cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ2.在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为nm 640mm 4.0.试求:(1)光屏上第亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为cm 501,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.mm 1.0解:(1)由公式λdr y 0=∆得=λd r y 0=∆cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯由公式得(3)2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆=8536.042224cos18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp .把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所3在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m .解:未加玻璃片时,、到点的光程差,由公式可知为1S 2S P 2rϕπλ∆∆=Δr =215252r r λπλπ-=⨯⨯=现在发出的光束途中插入玻璃片时,点的光程差为1S P ()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4.波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm122I I =22122A A=12A A =()()122122/0.94270.941/A A V A A ∴===≈+5.波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。

光学教程姚启钧课后习题解答

光学教程姚启钧课后习题解答

光学教程姚启钧课后习题解答Newly compiled on November 23, 2020《光学教程》(姚启钧)习题解答第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少算出这两种光第2级亮纹位置的距离。

解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少⑶求P 点的光强度和中央点的强度之比。

解:⑴ 7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式 ⑶中央点强度:204I A =P 点光强为:221cos 4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为7610m -⨯ 解: 1.5n =,设玻璃片的厚度为d由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上。

通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。

解: 7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干涉条纹可见度定义:由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)课后习题解答

《光学教程》(姚启钧)课后习题解答 - 百度文库《光学教程》(姚启钧)习题解答第一章光的干涉1 、波长为的绿光投射在间距为的双缝上,在距离处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2 级亮纹位置的距离。

解:改用两种光第二级亮纹位置的距离为:2 、在杨氏实验装置中,光源波长为,两狭缝间距为,光屏离狭缝的距离为,试求:⑴光屏上第 1 亮条纹和中央亮纹之间的距离;⑵若 P 点离中央亮纹为问两束光在 P 点的相位差是多少?⑶求 P 点的光强度和中央点的强度之比。

解:⑴⑵由光程差公式⑶中央点强度:P 点光强为:3 、把折射率为的玻璃片插入杨氏实验的一束光路中,光屏上原来第 5 级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为解:,设玻璃片的厚度为由玻璃片引起的附加光程差为:4 、波长为的单色平行光射在间距为的双缝上。

通过其中一个缝的能量为另一个的倍,在离狭缝的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。

解:由干涉条纹可见度定义:由题意,设,即代入上式得5 、波长为的光源与菲涅耳双镜的相交棱之间距离为,棱到光屏间的距离为,若所得干涉条纹中相邻亮条纹的间隔为,求双镜平面之间的夹角。

解:由菲涅耳双镜干涉条纹间距公式6 、在题 1.6 图所示的劳埃德镜实验中,光源 S 到观察屏的距离为,到劳埃德镜面的垂直距离为。

劳埃德镜长,置于光源和屏之间的中央。

⑴若光波波长,问条纹间距是多少?⑵确定屏上可以看见条纹的区域大小,此区域内共有几条条纹?(提示:产生干涉的区域 P 1 P 2 可由图中的几何关系求得)解:由图示可知:①②在观察屏上可以看见条纹的区域为 P 1 P 2 间即,离屏中央上方的范围内可看见条纹。

7 、试求能产生红光()的二级反射干涉条纹的肥皂膜厚度。

已知肥皂膜折射率为,且平行光与法向成 30 0 角入射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档