高考数学小题精练+B卷及解析:专题(07)等差数列及解析 含答案

合集下载

高考数学等差数列选择题专项训练(讲义及答案)含答案

高考数学等差数列选择题专项训练(讲义及答案)含答案

一、等差数列选择题1.等差数列{}n a 中,若26a =,43a =,则5a =( ) A .32B .92C .2D .9解析:A 【分析】由2a 和4a 求出公差d ,再根据54a a d =+可求得结果. 【详解】 设公差为d ,则423634222a a d --===--, 所以5433322a a d =+=-=. 故选:A2.在1与25之间插入五个数,使其组成等差数列,则这五个数为( ) A .3、8、13、18、23 B .4、8、12、16、20 C .5、9、13、17、21 D .6、10、14、18、22解析:C 【分析】根据首末两项求等差数列的公差,再求这5个数字. 【详解】在1与25之间插入五个数,使其组成等差数列, 则171,25a a ==,则712514716a a d --===-, 则这5个数依次是5,9,13,17,21. 故选:C3.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则99S a =( ) A .9 B .5C .1D .59解析:B 【分析】由已知条件,结合等差数列通项公式得1a d =,即可求99S a . 【详解】4123425S a a a a a =+++=,即有13424a a a a ++=,得1a d =,∴1999()452a a S d ⨯+==,99a d =,且0d ≠,∴995S a =. 故选:B4.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237n n S n T n =+,则63a b 的值为( ) A .511B .38C .1D .2解析:C 【分析】令22n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则63a b 可得. 【详解】令22n S n λ=,()37n T n n λ=+,可得当2n ≥时,()()221221221n n n a S S n n n λλλ-=-=--=-,()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,()232n b n λ=+故622a λ=,322b λ=, 故631a b =. 【点睛】由n S 求n a 时,11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,注意验证a 1是否包含在后面a n 的公式中,若不符合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解. 5.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220aa a +++=( )A .10B .145C .300D .320解析:C 【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解。

2023年高考理科数学B卷真题及答案详解

2023年高考理科数学B卷真题及答案详解

2023年高考理科数学B卷真题及答案详解2023 年高考已经落下帷幕,对于理科考生来说,数学试卷的难度和题型一直是大家关注的焦点。

下面我们就来详细分析一下 2023 年高考理科数学 B 卷的真题及答案。

首先来看选择题部分。

第 1 题考查了集合的基本运算。

题目给出了两个集合,要求求出它们的交集。

这道题属于基础知识的考查,只要掌握了集合交集的定义,就能轻松得出答案。

第 2 题是关于复数的计算。

需要将复数进行化简,然后判断其所在的象限。

对于这道题,需要熟练掌握复数的四则运算以及复数在复平面内的表示。

第 3 题考查了函数的性质。

给出一个函数表达式,判断其奇偶性。

通过对函数表达式进行变形,然后根据奇偶性的定义来判断。

第 4 题是一道三角函数的题目。

涉及到三角函数的诱导公式以及特殊角的三角函数值。

第 5 题考查了向量的运算。

需要根据已知条件计算向量的数量积。

选择题的后几道题难度逐渐增加,对知识点的综合运用能力要求较高。

接下来是填空题部分。

第 11 题考查了数列的通项公式。

需要根据给出的数列前几项,找出规律,推导出通项公式。

第 12 题是关于立体几何的。

给出一个几何体,要求计算其体积或表面积。

第 13 题考查了线性规划。

需要画出可行域,然后求出目标函数的最值。

第14 题是一道概率统计的题目。

需要根据题目中的条件计算概率。

填空题部分注重对基础知识的灵活运用和对数学思维的考察。

再看解答题部分。

第 17 题通常是数列题。

要求证明数列的通项公式或者求和。

这道题需要掌握数列的基本方法,如等差数列和等比数列的通项公式和求和公式。

第 18 题是三角函数的综合应用。

可能涉及到解三角形、三角函数的图像和性质等知识点。

第 19 题往往是立体几何题。

需要证明线面平行、垂直关系,或者计算空间角和距离。

第 20 题一般是概率统计题。

可能会要求根据样本数据进行分析、计算期望和方差等。

第 21 题通常是解析几何题。

涉及到直线与圆锥曲线的位置关系,计算弦长、中点坐标等。

专题07 数列(习题)-2021届沪教版高考数学一轮复习(上海专用)

专题07 数列(习题)-2021届沪教版高考数学一轮复习(上海专用)

2021届高考数学一轮复习 专题07 数列一、填空题1.(2020·上海高三其他)设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= ________.【答案】24 【解析】设等差数列{}n a 的公差为d , 则,∴148a d +=. ∴.故答案为24.2.(2020·上海高三其他)设无穷等比数列n a 的公比为q ,首项10a >,则公比q 的取值范围是________. 【答案】 【解析】 因为21231lim()211n n a a qa a a a q q→∞•+++==>--,又10a >且01q <<, 解得2,13q ⎛⎫∈⎪⎝⎭. 3.(2017·上海闵行高三一模)已知数列的前n 项和为,则此数列的通项公式为___________. 【答案】 【解析】当1n =时,11211a S ==-=,当2n ≥时,()11121212n n n n n n a S S ---=-=---=,又1121-=,所以12n n a .故答案为:12n na .4.(2020·宝山上海交大附中高三其他)若n a 是()()*2,2,nx n N n x R +∈≥∈展开式中2x 项的系数,则 . 【答案】8 【解析】 由题意,,∴88n =-,∴23232228lim()lim(8)8n n n n a a a n →∞→∞++⋅⋅⋅+=-=.5.(2020·上海高三其他)已知数列{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________. 【答案】(-3,+∞) 【解析】因为数列{a n }是单调递增数列, 所以a n +1-a n >0 (n ∈N *)恒成立.又a n =n 2+λn (n ∈N *),所以(n +1)2+λ(n +1)-(n 2+λn )>0恒成立,即2n +1+λ>0.所以λ>-(2n +1) (n ∈N *)恒成立.而n ∈N *时,-(2n +1)的最大值为-3(n =1时),所以λ的取值范围为(-3,+∞).6.(2020·上海嘉定高三二模)设各项均为正数的等比数列的前n 项和为,则6S =______. 【答案】63. 【解析】 由,得()661126312S -⇒==-.故答案为: 637.(2020·上海普陀高三二模)设n S 是等差数列的前n 项和(n *∈N )若86286S S -=-,则2lim 2→∞=nn S n ______.【答案】12-【解析】∵数列{}n a 是等差数列,21()22n d dS n a n ∴=+-(其中d 是公差),,∵86286S S -=-, (86)22d∴-=-,2d =-. 即 21(1)n S n a n =-++,.故答案为:12-8.(2020·上海高三其他)设数列{}n a 的前n 项和为n S ,且对任意正整数n ,都有01011012n na n S -=-,则1a =___ 【答案】1- 【解析】由011101011(2)1021212n n n n n na a a S n n S nn S -=-=++=---,令1n =,得11(2)10a a ++=,解得11a =-。

高考数学等差数列习题及答案doc

高考数学等差数列习题及答案doc

一、等差数列选择题1.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237n n S n T n =+,则63a b 的值为( ) A .511B .38C .1D .22.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13B .14C .15D .163.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11B .10C .6D .34.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231n n a n b n =+,则2121S T 的值为( )A .1315B .2335C .1117 D .495.设等差数列{}n a 的前n 项和为n S ,10a <且11101921a a =,则当n S 取最小值时,n 的值为( ) A .21B .20C .19D .19或206.已知等差数列{}n a ,其前n 项的和为n S ,3456720a a a a a ++++=,则9S =( ) A .24B .36C .48D .647.已知等差数列{}n a 中,前n 项和215n S n n =-,则使n S 有最小值的n 是( )A .7B .8C .7或8D .98.已知数列{}n a 中,132a =,且满足()*1112,22n n n a a n n N -=+≥∈,若对于任意*n N ∈,都有n a nλ≥成立,则实数λ的最小值是( ) A .2B .4C .8D .169.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于( ) A .1B .2C .3D .410.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220a a a +++=( )A .10B .145C .300D .32011.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a +=B .560a a +=C .670a a +=D .890a a +=12.设等差数列{}n a 的前n 项和为n S ,且71124a a -=,则5S =( ) A .15B .20C .25D .3013.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<14.已知递减的等差数列{}n a 满足2219a a =,则数列{}n a 的前n 项和取最大值时n =( )A .4或5B .5或6C .4D .515.若数列{}n a 满足121()2n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020D .202116.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18B .19C .20D .2117.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若p m n q <<<且()*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )A .22p p S p a =⋅B .p q m n a a a a >C .1111p q m n a a a a +<+D .1111p q m nS S S S +>+ 18.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60B .120C .160D .24019.在等差数列{}n a 中,520164a a +=,S ,是数列{}n a 的前n 项和,则S 2020=( ) A .2019B .4040C .2020D .403820.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( ) A .12尺布 B .518尺布 C .1631尺布 D .1629尺布 二、多选题21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 22.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =23.题目文件丢失!24.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+25.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .01q <<B .681a a >C .n S 的最大值为7SD .n T 的最大值为6T26.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-B .310na nC .228n S n n =- D .24n S n n =-27.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的是( ) A .110S =B .10n n S S -=(110n ≤≤)C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥28.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ⋅< B .224154a a +≥C .15111a a +> D .1524a a a a ⋅>⋅29.定义11222n nn a a a H n-+++=为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .2020202320202S = D .2S ,4S ,6S 成等差数列30.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( )A .0d >B .0d <C .80a =D .n S 的最大值是8S 或者9S【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.C 【分析】令22n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则63a b 可得. 【详解】令22n S n λ=,()37n T n n λ=+,可得当2n ≥时,()()221221221n n n a S S n n n λλλ-=-=--=-,()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,()232n b n λ=+故622a λ=,322b λ=, 故631a b =. 【点睛】由n S 求n a 时,11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,注意验证a 1是否包含在后面a n 的公式中,若不符合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解. 2.A 【分析】利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A 3.A 【分析】利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】由3914a a +=,23a =, 又{}n a 为等差数列, 得39121014a a a d +=+=,213a a d =+=,解得12,1a d ==, 则101+92911a a d ==+=; 故选:A. 4.C 【分析】利用等差数列的求和公式,化简求解即可 【详解】2121S T =12112121()21()22a ab b ++÷=121121a a b b ++=1111a b =2113111⨯⨯+=1117.故选C 5.B 【分析】 由题得出1392a d =-,则2202n dS n dn =-,利用二次函数的性质即可求解.【详解】设等差数列{}n a 的公差为d ,由11101921a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392a d =-,10a <,0d ∴>,()211+2022n n n dS na d n dn -∴==-,对称轴为20n =,开口向上, ∴当20n =时,n S 最小.故选:B. 【点睛】方法点睛:求等差数列前n 项和最值,由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 6.B【分析】利用等差数列的性质进行化简,由此求得9S 的值. 【详解】由等差数列的性质,可得345675520a a a a a a ++++==,则54a =19592993622a a aS +=⨯=⨯= 故选:B 7.C 【分析】215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.【详解】22152251524n S n n n ⎛⎫=-=--⎪⎝⎭,∴数列{}n S 的图象是分布在抛物线21522524y x ⎛⎫=--⎪⎝⎭上的横坐标为正整数的离散的点.又抛物线开口向上,以152x =为对称轴,且1515|7822-=-|, 所以当7,8n =时,n S 有最小值. 故选:C 8.A 【分析】 将11122n n n a a -=+变形为11221n n n n a a --=+,由等差数列的定义得出22n n n a +=,从而得出()22nn n λ+≥,求出()max22n n n +⎡⎤⎢⎥⎣⎦的最值,即可得出答案. 【详解】 因为2n ≥时,11122n n n a a -=+,所以11221n n n n a a --=+,而1123a = 所以数列{}2nn a 是首项为3公差为1的等差数列,故22nn a n =+,从而22n nn a +=. 又因为n a n λ≥恒成立,即()22nn n λ+≥恒成立,所以()max22n n n λ+⎡⎤≥⎢⎥⎣⎦.由()()()()()()()1*121322,221122n n nn n n n n n n n n n n +-⎧+++≥⎪⎪∈≥⎨+-+⎪≥⎪⎩N 得2n = 所以()()2max2222222n n n +⨯+⎡⎤==⎢⎥⎣⎦,所以2λ≥,即实数λ的最小值是2 故选:A 9.C 【分析】利用等差数列的下标和性质以及基本量运算,可求出1a . 【详解】设等差数列{}n a 的公差为d ,则3856522a a a a a +=+=+,解得652d a a =-=,212112228S a a a d a =+=+=+=,解得13a =故选:C 10.C 【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解。

高考数学等差数列习题及答案doc

高考数学等差数列习题及答案doc

一、等差数列选择题1.已知数列{}n a 的前n 项和为n S ,112a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列说法中错误的是( )A .214a =-B .648211S S S =+ C .数列{}12n n n S S S +++-的最大项为712D .1121n n n n nT T T n n +-=++ 2.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7B .12C .14D .213.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13 B .14 C .15 D .16 4.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8B .10C .12D .145.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72B .90C .36D .456.设等差数列{}n a 的前n 项和为n S ,公差1d =,且6210S S ,则34a a +=( )A .2B .3C .4D .57.设数列{}n a 的前n 项和21n S n =+. 则8a 的值为( ).A .65B .16C .15D .148.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231n n a n b n =+,则2121S T 的值为( )A .1315B .2335C .1117 D .499.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大212,则该数列的项数是( ) A .8B .4C .12D .1610.已知数列{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋅⋅⋅+=( ) A .278B .52C .3D .411.在1与25之间插入五个数,使其组成等差数列,则这五个数为( )A .3、8、13、18、23B .4、8、12、16、20C .5、9、13、17、21D .6、10、14、18、2212.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为( )(注:一丈=十尺,一尺=十寸) A .一丈七尺五寸 B .一丈八尺五寸 C .二丈一尺五寸D .二丈二尺五寸13.已知数列{}n a 的前项和221n S n =+,n *∈N ,则5a =( )A .20B .17C .18D .1914.等差数列{}n a 的前n 项和为n S ,已知58a =,36S =,则107S S -的值是( ) A .48B .60C .72D .2415.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )A .7B .9C .21D .4216.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( )A .24B .23C .17D .1617.已知递减的等差数列{}n a 满足2219a a =,则数列{}n a 的前n 项和取最大值时n =( )A .4或5B .5或6C .4D .518.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36B .48C .56D .7219.记n S 为等差数列{}n a 的前n 项和,若542S S =,248a a +=,则5a 等于( ) A .6B .7C .8D .1020.设等差数列{}n a 的前n 项和为n S ,10a <且11101921a a =,则当n S 取最小值时,n 的值为( ) A .21B .20C .19D .19或20二、多选题21.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =22.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )A .数列{}n a 的公差d <0B .数列{}n a 中S n 的最大项为S 10C .S 10>0D .S 11>023.题目文件丢失!24.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >25.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 26.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=27.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-B .310na nC .228n S n n =- D .24n S n n =-28.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =C .95S S >D .67n S S S 与均为的最大值29.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( )A .{}n a 为等差数列B .0n a >C .n S 最小值为214-D .{}n a 为单调递增数列30.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为21【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.D 【分析】当2n ≥且*n ∈N 时,由1n n n a S S -=-代入120n n n a S S -+=可推导出数列1n S ⎧⎫⎨⎬⎩⎭为等差数列,确定该数列的首项和公差,可求得数列1n S ⎧⎫⎨⎬⎩⎭的通项公式,由221a S S =-可判断A 选项的正误;利用n S 的表达式可判断BC 选项的正误;求出n T ,可判断D 选项的正误. 【详解】当2n ≥且*n ∈N 时,由1n n n a S S -=-, 由120n n n a S S -+=可得111112020n n n n n nS S S S S S ----+=⇒-+=, 整理得1112n n S S --=(2n ≥且n +∈N ). 则1n S ⎧⎫⎨⎬⎩⎭为以2为首项,以2为公差的等差数列()12122n n n S ⇒=+-⋅=,12n S n ∴=. A 中,当2n =时,221111424a S S =-=-=-,A 选项正确; B 中,1n S ⎧⎫⎨⎬⎩⎭为等差数列,显然有648211S S S =+,B 选项正确; C 中,记()()1212211221n n n n b S S n n n S ++=+-=+-++, ()()()1123111212223n n n n b S S S n n n ++++=+-=+-+++,()()()1111602223223n n n b b n n n n n n ++∴-=--=-<++++,故{}n b 为递减数列, ()1123max 111724612n b b S S S ∴==+-=+-=,C 选项正确; D 中,12n n S =,()()2212n n n T n n +∴==+,()()112n T n n +∴=++. ()()()()()()11112112111n n n n T T n n n n n n n n n n n n n n +-=⋅++⋅++=+--+++++222122212n n n n n n T =-++=+-≠,D 选项错误.【点睛】关键点点睛:利用n S 与n a 的关系求通项,一般利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩来求解,在变形过程中要注意1a 是否适用,当利用作差法求解不方便时,应利用1n n n a S S -=-将递推关系转化为有关n S 的递推数列来求解. 2.C 【分析】判断出{}n a 是等差数列,然后结合等差数列的性质求得7S . 【详解】∵212n n n a a a ++=-,∴211n n n n a a a a +++-=-,∴数列{}n a 为等差数列. ∵534a a =-,∴354a a +=,∴173577()7()1422a a a a S ++===. 故选:C 3.A 【分析】利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A 4.C 【分析】利用等差数列的通项公式即可求解. 【详解】 {a n }为等差数列,S 3=12,即1232312a a a a ++==,解得24a =. 由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=. 故选:C 5.B 【分析】由题意结合248,,a a a 成等比数列,有2444(4)(8)a a a =-+即可得4a ,进而得到1a 、n a ,即可求9S .由题意知:244a a =-,848a a =+,又248,,a a a 成等比数列,∴2444(4)(8)a a a =-+,解之得48a =,∴143862a a d =-=-=,则1(1)2n a a n d n =+-=,∴99(229)902S ⨯+⨯==,故选:B 【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量 1、由,,m k n a a a 成等比,即2k m n a a a =; 2、等差数列前n 项和公式1()2n n n a a S +=的应用. 6.B 【分析】根据等差数列的性质,由题中条件,可直接得出结果. 【详解】因为n S 为等差数列{}n a 的前n 项和,公差1d =,6210S S ,所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=. 故选:B. 7.C 【分析】利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】由21n S n =+得,12a =,()2111n S n -=-+,所以()221121n n n a S S n n n -=-=--=-,所以2,121,2n n a n n =⎧=⎨-≥⎩,故828115a =⨯-=.故选:C. 【点睛】本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 8.C 【分析】利用等差数列的求和公式,化简求解即可 【详解】2121S T =12112121()21()22a ab b ++÷=121121a a b b ++=1111a b =2113111⨯⨯+=1117.故选C 9.A 【分析】设项数为2n ,由题意可得()21212n d -⋅=,及6S S nd -==奇偶可求解. 【详解】设等差数列{}n a 的项数为2n , 末项比首项大212, ()212121;2n a a n d ∴-=-⋅=① 24S =奇,30S =偶,30246S S nd ∴-=-==奇偶②.由①②,可得32d =,4n =, 即项数是8, 故选:A. 10.A 【分析】根据数列{}n a 是等差数列,且1109a a a +=,求出首项和公差的关系,代入式子求解. 【详解】因为1109a a a +=, 所以11298a d a d +=+, 即1a d =-,所以()11295101019927278849a a a a a d a a d d a d ++⋅⋅⋅+====++. 故选:A 11.C 【分析】根据首末两项求等差数列的公差,再求这5个数字. 【详解】在1与25之间插入五个数,使其组成等差数列, 则171,25a a ==,则712514716a a d --===-, 则这5个数依次是5,9,13,17,21.故选:C 12.D 【分析】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,已知条件为985.5S =,14731.5a a a ++=,由等差数列性质即得5a ,4a ,由此可解得d ,再由等差数列性质求得后5项和. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和, 则()19959985.52a a S a +===(尺),所以59.5a =(尺),由题知1474331.5a a a a ++==(尺),所以410.5a =(尺),所以公差541d a a =-=-, 则()8910111210555522.5a a a a a a a d ++++==+=(尺). 故选:D . 13.C 【分析】根据题中条件,由554a S S =-,即可得出结果. 【详解】因为数列{}n a 的前项和2*21,n S n n N =+∈, 所以22554(251)(241)18a S S =-=⨯+-⨯+=. 故选:C . 14.A 【分析】根据条件列方程组,求首项和公差,再根据107891093S S a a a a -=++=,代入求值. 【详解】由条件可知114832362a d a d +=⎧⎪⎨⨯+=⎪⎩,解得:102a d =⎧⎨=⎩, ()10789109133848S S a a a a a d -=++==+=.故选:A 15.C 【分析】利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解. 【详解】设等差数列{}n a 的公差为d ,则()1212121632a a S +==, 所以1216a a +=,即1126a =,所以113a =, 所以()()()2582022051781411a a a a a a a a a a a ++++=++++++111111111122277321a a a a a =+++==⨯=,故选:C 【点睛】关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,()()()2582022051781411117a a a a a a a a a a a a ++++=++++++=即可求解.16.A 【分析】 由题意可得5282045252a a d --===---,再由220a =可求出1a 的值 【详解】解:根据题意,5282045252a a d --===---,则1220(4)24a a d =-=--=, 故选:A. 17.A 【分析】由2219a a =,可得14a d =-,从而得2922n d d S n n =-,然后利用二次函数的性质求其最值即可 【详解】解:设递减的等差数列{}n a 的公差为d (0d <),因为2219a a =,所以2211(8)a a d =+,化简得14a d =-,所以221(1)9422222n n n d d d dS na d dn n n n n -=+=-+-=-, 对称轴为92n =, 因为n ∈+N ,02d<, 所以当4n =或5n =时,n S 取最大值, 故选:A 18.A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果.【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =,所以()1999983622a a S +⨯===.故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键. 19.D 【分析】由等差数列的通项公式及前n 项和公式求出1a 和d ,即可求得5a . 【详解】解:设数列{}n a 的首项为1a ,公差为d , 则由542S S =,248a a +=,得:111154435242238a d a d a d a d ⨯⨯⎛⎫+=+ ⎪⎝⎭+++=⎧⎪⎨⎪⎩,即{1132024a d a d +-+=, 解得:{123a d =-=,51424310a a d ∴=+=-+⨯=.故选:D. 20.B 【分析】 由题得出1392a d =-,则2202n dS n dn =-,利用二次函数的性质即可求解.【详解】设等差数列{}n a 的公差为d ,由11101921a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392a d =-,10a <,0d ∴>,()211+2022n n n dS na d n dn -∴==-,对称轴为20n =,开口向上,∴当20n =时,n S 最小.故选:B. 【点睛】方法点睛:求等差数列前n 项和最值,由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.二、多选题21.BCD 【分析】由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】设等差数列数列{}n a 的公差为d .由13522,a a S +=有()1112542252a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176773212S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113137131302a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,属于中档题. 22.AC 【分析】由564S S S >>,可得650,0a a ,且650a a +>,然后逐个分析判断即可得答案 【详解】解:因为564S S S >>,所以650,0a a ,且650a a +>,所以数列的公差0d <,且数列{}n a 中S n 的最大项为S 5,所以A 正确,B 错误, 所以110105610()5()02a a S a a +==+>,11111611()1102a a S a +==<, 所以C 正确,D 错误, 故选:AC23.无24.BC 【分析】根据递推公式,得到11n n nn n a a a +-=-,令1n =,得到121a a =,可判断A 错,B 正确;根据求和公式,得到1n n nS a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】由121n n n a n a a n +=+-可知2111n n n n n a n n n a a a a ++--==+,即11n n nn n a a a +-=-, 当1n =时,则121a a =,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321111102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=+++=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:由递推公式求通项公式的常用方法:(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解;(2)累乘法,形如()1n na f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通项时,常需要构造成等比数列求解;(4)已知n a 与n S 的关系求通项时,一般可根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解.25.AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d daa d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断. 26.AC 【分析】由该数列的性质,逐项判断即可得解. 【详解】对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,32121,a a a a a ⋅⋅⋅=+=,各式相加得()2022202120202021202020192012182a a a a a a a a a ++⋅⋅⋅+=+++⋅⋅⋅++, 所以202220202019201811a a a a a a =++⋅⋅⋅+++,故D 错误. 故选:AC. 【点睛】关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项. 27.AD 【分析】设等差数列{}n a 的公差为d ,根据已知得1145460a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故25n a n =-,24n S n n =-.解:设等差数列{}n a 的公差为d ,因为450,5S a ==所以根据等差数列前n 项和公式和通项公式得:1145460a d a d +=⎧⎨+=⎩,解方程组得:13,2a d =-=,所以()31225n a n n =-+-⨯=-,24n S n n =-.故选:AD. 28.ABD 【分析】由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项. 【详解】因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确;()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确. 故选:ABD 【点睛】本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型. 29.AD 【分析】利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断【详解】解:当1n =时,11154a S ==-=-,当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,当1n =时,14a =-满足上式, 所以26n a n =-,由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列, 因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225255()24n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误,【点睛】此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题 30.BC 【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D . 【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对;由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭ *n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错; 故选:BC 【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.。

高考数学等差数列习题及答案 百度文库

高考数学等差数列习题及答案 百度文库

一、等差数列选择题1.设等差数列{}n a 的前n 项和为n S ,且71124a a -=,则5S =( ) A .15B .20C .25D .302.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于( ) A .1B .2C .3D .43.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n -B .nC .21n -D .2n4.设等差数列{}n a 的前n 项和为n S ,10a <且11101921a a =,则当n S 取最小值时,n 的值为( ) A .21B .20C .19D .19或205.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且713n n S n T n -=,则55a b =( ) A .3415B .2310C .317D .62276.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .857.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121B .161C .141D .1518.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( ) A .12尺布 B .518尺布 C .1631尺布 D .1629尺布 9.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161B .155C .141D .13910.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237n n S n T n =+,则63a b 的值为( ) A .511B .38C .1D .211.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333122n n n a a a ++=+,则10a 等于( ) A .10BC .64D .412.在等差数列{}n a 中,10a >,81335a a =,则n S 中最大的是( ) A .21SB .20SC .19SD .18S13.已知等差数列{}n a 的前n 项和为n S ,且2n S n =.定义数列{}n b 如下:()*1m m b m m+∈N 是使不等式()*n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b ++++=( )A .25B .50C .75D .10014.已知数列{}n a 满足25111,,25a a a ==且*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19B .20C .21D .2215.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13 B .26 C .52 D .56 16.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( )A .24B .23C .17D .1617.已知递减的等差数列{}n a 满足2219a a =,则数列{}n a 的前n 项和取最大值时n =( )A .4或5B .5或6C .4D .518.记n S 为等差数列{}n a 的前n 项和,若542S S =,248a a +=,则5a 等于( ) A .6B .7C .8D .1019.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15B .30C .3D .6420.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220a a a +++=( )A .10B .145C .300D .320二、多选题21.题目文件丢失! 22.题目文件丢失!23.若数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为( ) A .15B .25C .45D .6524.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值25.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.26.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >D .数列{}na 也是等差数列27.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减D .数列{}n S 有最大值28.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=B .27S S =C .5S 最小D .50a =29.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列 D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列30.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.B 【分析】设出数列{}n a 的公差,利用等差数列的通项公式及已知条件,得到124a d +=,然后代入求和公式即可求解 【详解】设等差数列{}n a 的公差为d ,则由已知可得()()111261024a d a d a d +-+=+=, 所以()5115455254202S a d a d ⨯=+=+=⨯= 故选:B 2.C 【分析】利用等差数列的下标和性质以及基本量运算,可求出1a . 【详解】设等差数列{}n a 的公差为d ,则3856522a a a a a +=+=+,解得652d a a =-=,212112228S a a a d a =+=+=+=,解得13a =故选:C 3.B 【分析】根据条件列出关于首项和公差的方程组,求解出首项和公差,则等差数列{}n a 的通项公式可求. 【详解】因为3518a S +=,633a a =+,所以11161218523a d a d a d +=⎧⎨+=++⎩,所以111a d =⎧⎨=⎩,所以()111n a n n =+-⨯=,故选:B.4.B 【分析】 由题得出1392a d =-,则2202n dS n dn =-,利用二次函数的性质即可求解.【详解】设等差数列{}n a 的公差为d ,由11101921a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392a d =-,10a <,0d ∴>,()211+2022n n n dS na d n dn -∴==-,对称轴为20n =,开口向上, ∴当20n =时,n S 最小.故选:B. 【点睛】方法点睛:求等差数列前n 项和最值,由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 5.D 【分析】利用等差数列的性质以及前n 项和公式即可求解. 【详解】由713n n S n T n-=, ()()19551991955199927916229239272a a a a a a Sb b b b b b T ++⨯-======++⨯. 故选:D 6.C 【分析】可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】因为{}n a ,{}n b 是等差数列,且3221n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-,∴1215(6121)71(4151)59a kb k ⨯-==⨯-, 故选:C . 7.B 【分析】由条件可得127a =,然后231223S a =,算出即可. 【详解】因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =所以231223161S a == 故选:B 8.D 【分析】设该女子第()N n n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,根据15a =,30390S =可求得d 的值. 【详解】设该女子第()N n n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,由题意可得30130293015015293902S a d d ⨯=+=+⨯=,解得1629d =.故选:D. 9.B 【分析】画出图形分析即可列出式子求解. 【详解】所给数列为高阶等差数列,设该数列的第8项为x ,根据所给定义:用数列的后一项减去前一项得到一个新数列,得到的新数列也用后一项减去前一项得到一个新数列,即得到了一个等差数列,如图:由图可得:3612107y x y -=⎧⎨-=⎩ ,解得15548x y =⎧⎨=⎩.故选:B. 10.C【分析】令22n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则63a b 可得.【详解】令22n S n λ=,()37n T n n λ=+,可得当2n ≥时,()()221221221n n n a S S n n n λλλ-=-=--=-,()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,()232n b n λ=+故622a λ=,322b λ=,故631a b =. 【点睛】由n S 求n a 时,11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,注意验证a 1是否包含在后面a n 的公式中,若不符合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解. 11.D 【分析】利用等差中项法可知,数列{}3n a 为等差数列,根据11a =,22a =可求得数列{}3n a 的公差,可求得310a 的值,进而可求得10a 的值. 【详解】对*n N ∀∈都有333122n n n a a a ++=+,由等差中项法可知,数列{}3n a 为等差数列,由于11a =,22a =,则数列{}3n a 的公差为33217d a a =-=,所以,33101919764a a d =+=+⨯=,因此,104a .故选:D. 12.B 【分析】设等差数列的公差为d .由已知得()()1137512a d a d +=+,可得关系1392a d =-.再运用求和公式和二次函数的性质可得选项. 【详解】设等差数列的公差为d .由81335a a =得,()()1137512a d a d +=+,整理得,1392a d =-. 又10a >,所以0d <,因此222120(20)2002222n d d d dS n a n n dn n d ⎛⎫=+-=-=-- ⎪⎝⎭, 所以20S 最大. 故选:B. 13.B 【分析】先求得21n a n =-,根据n a m ≥,求得12m n +≥,进而得到21212k k b --=,结合等差数列的求和公式,即可求解. 【详解】由题意,等差数列{}n a 的前n 项和为n S ,且2n S n =,可得21n a n =-,因为n a m ≥,即21n m -≥,解得12m n +≥, 当21m k =-,(*k N ∈)时,1m m b k m+=,即()()11212m m m mk m b m m +===++, 即21212k k b --=, 从而()13519113519502b b b b ++++=++++=.故选:B. 14.B 【分析】由等差数列的性质可得数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,再由等差数列的通项公式可得1n n a ,进而可得1n a n=,再结合基本不等式即可得解. 【详解】 因为*121210,n n n n a a a ++-+=∈N ,所以12211n n n a a a ++=+, 所以数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,设其公差为d , 由25111,25a a a ==可得25112,115a a a ==⋅, 所以111121145d a d a a ⎧+=⎪⎪⎨⎪+=⋅⎪⎩,解得1111a d ⎧=⎪⎨⎪=⎩,所以()1111n n d n a a =+-=,所以1n a n=, 所以不等式100n n a a +≥即100n a n+≥对任意的*n N ∈恒成立,又10020n n +≥=,当且仅当10n =时,等号成立, 所以20a ≤即实数a 的最大值是20. 故选:B. 【点睛】关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用. 15.B 【分析】利用等差数列的下标性质,结合等差数列的求和公式即可得结果. 【详解】由等差数列的性质,可得3542a a a +=,891371013103a a a a a a a ++=++=, 因为()()3589133224a a a a a ++++=, 可得410322324a a ⨯+⨯=,即4104a a +=, 故数列的前13项之和()()11341013131313426222a a a a S ++⨯====. 故选:B. 16.A 【分析】 由题意可得5282045252a a d --===---,再由220a =可求出1a 的值 【详解】 解:根据题意,5282045252a a d --===---,则1220(4)24a a d =-=--=, 故选:A. 17.A 【分析】由2219a a =,可得14a d =-,从而得2922n d dS n n =-,然后利用二次函数的性质求其最值即可 【详解】解:设递减的等差数列{}n a 的公差为d (0d <),因为2219a a =,所以2211(8)a a d =+,化简得14a d =-,所以221(1)9422222n n n d d d dS na d dn n n n n -=+=-+-=-,对称轴为92n =, 因为n ∈+N ,02d<, 所以当4n =或5n =时,n S 取最大值, 故选:A 18.D 【分析】由等差数列的通项公式及前n 项和公式求出1a 和d ,即可求得5a . 【详解】解:设数列{}n a 的首项为1a ,公差为d , 则由542S S =,248a a +=,得:111154435242238a d a d a d a d ⨯⨯⎛⎫+=+ ⎪⎝⎭+++=⎧⎪⎨⎪⎩,即{1132024a d a d +-+=, 解得:{123a d =-=,51424310a a d ∴=+=-+⨯=.故选:D. 19.A 【分析】设等差数列{}n a 的公差为d ,根据等差数列的通项公式列方程组,求出1a 和d 的值,12111a a d =+,即可求解.【详解】设等差数列{}n a 的公差为d ,则111681631a d a d a d +++=⎧⎨+=⎩,即117831a d a d +=⎧⎨+=⎩ 解得:174174d a ⎧=⎪⎪⎨⎪=-⎪⎩,所以12117760111115444a a d =+=-+⨯==, 所以12a 的值是15, 故选:A 20.C 【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解。

高三数学等差数列试题答案及解析

高三数学等差数列试题答案及解析

高三数学等差数列试题答案及解析1.已知{an }是等差数列,其前n项的和为Sn, {bn}是等比数列,且a1=b1=2,a4+b4=21,S4+b4=30.(1)求数列{an }和{bn}的通项公式;(2)记cn =anbn,n∈N*,求数列{cn}的前n项和.【答案】(1)an =n+1,bn=2n,(2)Tn=n·2n+1【解析】(1)求等差数列及等比数列通项公式,通常利用待定系数法求解. 设等差数列{an}的公差为d,等比数列{bn }的公比为q.由a1=b1=2,得a4=2+3d,b4=2q3,S4=8+6d.由条件a4+b4=21,S4+b4=30,得方程组解得.所以an=n+1,bn=2n,n∈N*.(2)数列{cn }是等差乘等比型,因此其和用错位相减法求. 记Tn=c1+c2+c3++cn.2 Tn=2×22+3×23++(n-1)×2n-1+n×2n+ (n+1)2n+1,所以-Tn =2×2+(22+23++2n )-(n+1)×2n+1,即Tn=n·2n+1,n∈N*.试题解析:解:(1)设等差数列{an }的公差为d,等比数列{bn}的公比为q.由a1=b1=2,得a4=2+3d,b4=2q3,S4=8+6d. 3分由条件a4+b4=21,S4+b4=30,得方程组解得所以an =n+1,bn=2n,n∈N*. 7分(2)由题意知,cn=(n+1)×2n.记Tn =c1+c2+c3++cn.则Tn =c1+c2+c3++cn=2×2+3×22+4×23++n×2n-1 +(n+1)×2n,2 Tn= 2×22+3×23++(n-1)×2n-1+n×2n+ (n+1)2n+1,所以-Tn=2×2+(22+23++2n )-(n+1)×2n+1, 11分即Tn=n·2n+1,n∈N*. 14分【考点】等差数列及等比数列通项公式,错位相减法求和2.已知等差数列的前n项和为,且(1)求数列的通项公式;(2)设,求数列的前n项和Tn.【答案】(1);(2)【解析】(1)根据等差数列的性质以及可以求出首项和公差,进而求得数列的通项公式;(2)结合(1)可得是一个等比数列,利用等比数列求和公式可以求得Tn.试题解析:(1)设公差为d,则 3分解得:∴所以数列的通项公式为; 6分(2)由(1)得 9分∴ 12分【考点】等差数列,等比数列,通项公式,前n项和公式.3.已知函数,.(1)函数的零点从小到大排列,记为数列,求的前项和;(2)若在上恒成立,求实数的取值范围;(3)设点是函数与图象的交点,若直线同时与函数,的图象相切于点,且函数,的图象位于直线的两侧,则称直线为函数,的分切线.探究:是否存在实数,使得函数与存在分切线?若存在,求出实数的值,并写出分切线方程;若不存在,请说明理由.【答案】(1);(2);(3)当时,函数与存在分切线,为直线.【解析】本题考查三角函数、导数及其应用、等差数列等基础知识;考查运算求解能力、等价转化能力;考查化归与转化、函数与方程、有限与无限等数学思想方法.第一问,先解三角方程,零点值构成等差数列,利用等差数列的通项公式,求和公式求;第二问,先将恒成立转化为,利用导数判断函数的单调性,求出最大值,得到a的取值范围;第三问,将函数和存在分切线转化为“”或“”在上恒成立,结合(1)(2)判断是否符合题意,再进行证明.试题解析:(1)∵,∴∴,. 1分∴, 2分∴. 4分(2)∵在上恒成立,∴在上恒成立. 5分设,∴, 6分∴在单调递增,单调递减,单调递增,单调递增,∴的极大值为,∴的最大值为,∴. 8分(3)若函数与存在分切线,则有“”或“”在上恒成立,∵当时,,.∴,使得,∴在不恒成立.∴只能是在上恒成立. 9分∴由(2)可知,∵函数与必须存在交点,∴. 10分当时,函数与的交点为,∵,∴存在直线在点处同时与、相切,∴猜测函数与的分切线为直线. 11分证明如下:①∵,设,则.令,则有.∴在上单调递增,∴在上有且只有一个零点.又∵,∴在单调递减,在单调递增,∴,∴,即在上恒成立.∴函数的图象恒在直线的上方. 13分②∵在上恒成立,∴函数的图象恒在直线的下方.∴由此可知,函数与的分切线为直线,∴当时,函数与存在分切线,为直线. 14分【考点】三角函数、导数及其应用、等差数列.4.已知数列{an }是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(1)求数列{an}的通项公式;(2)设bn =an+2an,求数列{bn}的前n项和Sn.【答案】(1)an=2n.(2)Sn=n2+n+ (4n-1).【解析】解:(1)设数列{an }的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2=(2+d)(3+3d),解得d=2或d=-1.当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2.∴an =a1+(n-1)d=2+2(n-1)=2n,即数列{an }的通项公式为an=2n.(2)∵bn=2n+22n=2n+4n,∴Sn=(2+41)+(4+42)+…+(2n+4n)=(2+4+…+2n)+(41+42+…+4n)=+=n2+n+ (4n-1).5. [2013·重庆高考]已知{an }是等差数列,a1=1,公差d≠0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=________.【答案】64【解析】因为{an }为等差数列,且a1,a2,a5成等比数列,所以a1(a1+4d)=(a1+d)2,解得d=2a1=2,所以S8=64.6.已知数列满足奇数项成等差数列,而偶数项成等比数列,且,成等差数列,数列的前项和为.(1)求通项;(2)求.【答案】(1)(2)【解析】(1)设等差数列的公差为,等比数列的公比为,则,,解得.于是,,即数列的通项(2)于是当为偶数时,数列奇数项的和为,偶数项的和为,故.当为奇数时,.于是7.在等差数列中,,,则公差_____;____.【答案】,.【解析】有等差数列的性质得;由此可得,数列的通项公式为,所以.【考点】等差数列的通项公式.8.设为等差数列的前项和,已知.(1)求;(2)设,数列的前项和记为,求证:.【答案】(1);(2)详见解析.【解析】(1)将题设代入等差数列的公式得方程组:,解这个方程组求出,,从而可得通项公式.(2)由(1)得,,所以,用裂项法求得,再用放缩法将变为即得.(1)设数列的公差为,由题得 3分解得, 5分∴ 6分(2)由(1)得, 8分∴ 10分∴12分∴ 13分【考点】1、等差数列;2、裂项法;3、不等式的证明.,已知,且对一切都9.设各项均为正数的数列的前n项和为Sn成立.(1)若λ=1,求数列的通项公式;(2)求λ的值,使数列是等差数列.【答案】(1);(2).【解析】(1)本题已知条件是,我们要从这个式子想办法得出与的简单关系式,变形为,这时我们联想到累乘法求数列通项公式的题型,因此首先由得,又,这个式子可化简为,这样就变成我们熟悉的已知条件,已知解法了;(2)这种类型问题,一种方法是从特殊到一般的方法,可由成等差数列,求出,然后把代入已知等式,得,,这个等式比第(1)题难度大点,把化为,有当n≥2时,,整理,得,特别是可变形为,这样与第(1)处理方法相同,可得,即,从而说不得是等差数列.试题解析:(1)若λ=1,则,.又∵,∴, 2分∴,化简,得.① 4分∴当时,.②②-①,得,∴(). 6分∵当n=1时,,∴n=1时上式也成立,∴数列{an }是首项为1,公比为2的等比数列,an=2n-1(). 8分(2)令n=1,得.令n=2,得. 10分要使数列是等差数列,必须有,解得λ=0. 11分当λ=0时,,且.当n≥2时,,整理,得,, 13分从而,化简,得,所以. 15分综上所述,(),所以λ=0时,数列是等差数列. 16分【考点】递推公式,累乘法,与的关系,等差数列.10.设各项均为正数的数列的前n项和为Sn,已知,且对一切都成立.(1)若λ = 1,求数列的通项公式;(2)求λ的值,使数列是等差数列.【答案】(1)an=2n-1(2)λ=0.【解析】(1)本题属于“已知求”,利用化简关系式. 因为,所以先分离与,即,这是类等比,利用叠乘法得到,再利用,消去得.求数列{an}通项公式时,需讨论当n = 1时是否满足的情形.(2)解答本题需注意逻辑关系,由数列是等差数列得λ = 0,这是一个必要条件,还需验证其充分性,即λ = 0时,数列是等差数列.这可类似(1)的解答过程.试题解析:解:(1)若λ = 1,则,.又∵,∴, 2分∴,化简,得.① 4分∴当时,.②② -①,得,∴(). 6分∵当n = 1时,,∴n = 1时上式也成立,∴数列{an}是首项为1,公比为2的等比数列, an = 2n-1(). 8分(2)令n = 1,得.令n = 2,得. 10分要使数列是等差数列,必须有,解得λ = 0. 11分当λ = 0时,,且.当n≥2时,,整理,得,, 13分从而,化简,得,所以 15分综上所述,(),所以λ = 0时,数列是等差数列. 16分【考点】已知求11.为了保障幼儿园儿童的人身安全,国家计划在甲、乙两省试行政府规范购置校车方案,计划若干时间内(以月为单位)在两省共新购1000辆校车.其中甲省采取的新购方案是:本月新购校车10辆,以后每月的新购量比上一月增加50%;乙省采取的新购方案是:本月新购校车40辆,计划以后每月比上一月多新购m辆.(1)求经过n个月,两省新购校车的总数S(n);(2)若两省计划在3个月内完成新购目标,求m的最小值.【答案】(1);(2)m的最小值为278.【解析】本题主要考查实际问题、等差等比数列的前n项和公式、不等式的解法等数学知识,考查学生将实际问题转化为数学问题的能力,考查学生分析问题解决问题的能力和计算能力.第一问,通过对题意的分析可知甲方案能构成等比数列,而乙方案能构成等差数列,利用等差等比数列的前n项和公式分别求和,再相加即可;第二问,利用第一问的结论,得出且,直接解不等式即可得到m的取值范围,并写出最小值.试题解析:(1)设an ,bn分别为甲省,乙省在第n月新购校车的数量.依题意,{an}是首项为10,公比为1+50%=的等比数列;{bn }是首项为40,公差为m的等差数列.{an}的前n项和,{bn}的前n项和.所以经过n个月,两省新购校车的总数为S(n)=. (8分)(2)若计划在3个月内完成新购目标,则S(3)≥1000,所以,解得m≥277.5.又m∈N*,所以m的最小值为278.(13分)【考点】1.等比数列的前n项和;2.等差数列的前n项和;3.一元一次不等式的解法.12.已知各项均为正数的数列{an }的前n项的乘积Tn=(n∈N*),bn=log2an,则数列{bn}的前n项和Sn取最大时,n=________.【答案】3【解析】当n=1时,a1=T1=45=210,当n≥2时,an==214-4n,此式对n=1也成立,所以an =214-4n,从而bn=log2an=14-4n,可以判断数列{bn}是首项为10,公差为-4的等差数列,因此Sn =-2n2+12n,故当n=3时,Sn有最大值.13.设数列{an }满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x满足f′=0.(1)求数列{an}的通项公式;(2)若bn =2(an+),求数列{bn}的前n项和Sn.【答案】(1) an =n+1 (2) Sn=n2+3n+1-【解析】解:(1)由题设可得,f′(x)=an -an+1+an+2-an+1sin x-an+2cos x.对任意n∈N*,f′=an -an+1+an+2-an+1=0,即an+1-an=an+2-an+1,故{an}为等差数列.由a1=2,a2+a4=8,解得数列{an}的公差d=1,所以an=2+1×(n-1)=n+1.(2)由bn =2(an+)=2(n+1+)=2n++2知,Sn =b1+b2+…+bn=2n+2·+ =n2+3n+1-.14.已知各项均为正数的数列{an }的前n项和满足Sn>1,且6Sn=(an+1)(an+2),n∈N*.求{an}的通项公式.【答案】an=3n-1【解析】解:由a1=S1=(a1+1)(a1+2),解得a1=1或a1=2,由已知a1=S1>1,因此a1=2.又由an+1=Sn+1-Sn=(an+1+1)(an+1+2)- (an+1)(an+2),得(an+1+an)(an+1-an-3)=0,因为an >0,所以an+1-an-3=0.即an+1-an=3,从而{an}是公差为3,首项为2的等差数列,故{an}的通项为an=3n-1.15.设Sn 为等差数列{an}的前n项和,S8=4a3,a7=-2,则a9=()A.-6B.-4 C.-2D.2【答案】A【解析】根据等差数列的定义和性质可得,S8=4(a3+a6),又S8=4a3,所以a6=0.又a7=-2,所以a8=-4,a9=-6.16.已知数列{an },an+1=a n+2,a1=1,数列的前n项和为,则n=________.【答案】18【解析】因为an+1=a n+2,所以数列是公差为2的等差数列,所以a n=2n-1.又因为=,所以Sn=(-+-+…+-)===,解得n=18.17.已知函数f(n)=n2cos(nπ),且an =f(n)+f(n+1),则a1+a2+a3+…+a100=()A.-100B.0C.100D.200【答案】A【解析】若n为偶数,则an =f(n)+f(n+1)=n2-(n+1)2=-(2n+1),它是首项为a2=-5,公差为-4的等差数列;若n为奇数,则an =f(n)+f(n+1)=-n2+(n+1)2=2n+1,它是首项为a1=3,公差为4的等差数列.所以a1+a2+a3+…+a100=(a1+a3+…+a99)+(a2+a4+…+a100)=50×3+×4+50×(-5) ×4=-100,选A.18.设{an }是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=________.【答案】105【解析】a1+a2+a3=15⇒3a2=15⇒a2=5,a1a2a3=80⇒(a2-d)a2(a2+d)=80,将a2=5代入,得d=3(舍去d=-3),从而a11+a12+a13=3a12=3(a2+10d)=3×(5+30)=105.19.已知公差不为零的等差数列{an }的前4项和为10,且a2,a3,a7成等比数列.(1)求通项公式an;(2)设bn =2an,求数列{bn}的前n项和Sn.【答案】(1)an=3n-5(n∈N*).(2)【解析】(1)由题意知,解得所以an=3n-5(n∈N*).(2)∵bn =2an=23n-5=·8n-1,∴数列{bn}是首项为,公比为8的等比数列,所以Sn=20.已知数列满足:,则__________.【答案】【解析】由题设知是等差数列,公差为1,所以.【考点】等差数列.21.在等差数列{an }中,a1=3,a4=2,则a4+a7+…+a3n+1等于________.【答案】【解析】设公差为d,则a4=a1+3d,所以d=,所以a4+a7+…+a3n+1=na4+×3d=2n-=.22.设为等差数列的前项和,若,则正整数= .【答案】5【解析】因为,所以,因此公差,由,所以.【考点】等差数列前项和与等差数列通项关系23.数列是递增的等差数列,且,.(1)求数列的通项公式;(2)求数列的前项和的最小值;(3)求数列的前项和.【答案】(1) ;(2);(3).【解析】(1)这是等差数列的基础题型,可直接利用基本量(列出关于的方程组)求解,也可利用等差数列的性质,这样可先求出,然后再求出,得通项公式;(2)等差数列的前和是关于的二次函数的形式,故可直接求出,然后利用二次函数的知识得到最小值,当然也可根据数列的特征,本题等差数列是首项为负且递增的数列,故可求出符合的的最大值,这个最大值就使得最小(如果,则和都使最小);(3)由于前几项为负,后面全为正,故分类求解(目的是根据绝对值定义去掉绝对值符号),特别是时,,这样可利用第(2)题的结论快速得出结论.试题解析:(1)由,得、是方程的二个根,,,此等差数列为递增数列,,,公差,. 4分(2),,8分(3)由得,解得,此数列前四项为负的,第五项为0,从第六项开始为正的. 10分当且时,. 12分当且时,. 14分【考点】(1)等差数列的通项公式;(2)等差数列的前项和公式;(3)绝对值与分类讨论.24.已知数列{an }是首项为-1,公差d 0的等差数列,且它的第2、3、6项依次构成等比数列{bn}的前3项。

高考数学等差数列习题及答案百度文库

高考数学等差数列习题及答案百度文库

一、等差数列选择题1.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60B .11C .50D .552.设等差数列{}n a 的前n 项和为n S ,公差1d =,且6210S S ,则34a a +=( )A .2B .3C .4D .53.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11B .10C .6D .34.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45B .50C .60D .805.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231n n a n b n =+,则2121S T 的值为( )A .1315B .2335C .1117 D .496.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -B .322n - C .3122n - D .3122n + 7.已知数列{}n a 的前n 项和n S 满足()12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项的和为( ) A .89B .910C .1011D .11128.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10B .9C .8D .79.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于( ) A .1B .2C .3D .410.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为( )(注:一丈=十尺,一尺=十寸) A .一丈七尺五寸 B .一丈八尺五寸 C .二丈一尺五寸D .二丈二尺五寸11.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项 B .133项 C .134项 D .135项 12.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( )A .9B .12C .15D .18 13.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则99S a =( ) A .9B .5C .1D .5914.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13 B .26 C .52 D .56 15.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( )A .24B .23C .17D .1616.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18B .19C .20D .2117.在1与25之间插入五个数,使其组成等差数列,则这五个数为( )A .3、8、13、18、23B .4、8、12、16、20C .5、9、13、17、21D .6、10、14、18、2218.已知数列{}n a 的前n 项和为n S ,且()11213n n n n S S a n +++=+-+,现有如下说法:①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为( ) A .0B .1C .2D .319.在等差数列{}n a 中,520164a a +=,S ,是数列{}n a 的前n 项和,则S 2020=( ) A .2019B .4040C .2020D .403820.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2B .43C .4D .4-二、多选题21.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n= B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1{}nS 为递增数列22.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >23.(多选)在数列{}n a 中,若221(2,,n n a a p n n N p *--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .(){}1n- 是等方差数列C .{}2n是等方差数列.D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 24.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( ) A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2n S n n a =-+,则0a =25.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列26.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( )A .2-B .23 C .32D .327.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+28.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <29.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .10a =0B .10S 最小C .712S S =D .190S =30.设等差数列{}n a 的前n 项和为n S ,公差为d ,且满足10a >,1118S S =,则对n S 描述正确的有( ) A .14S 是唯一最小值 B .15S 是最小值 C .290S =D .15S 是最大值【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.D 【分析】根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()1111161111552a a S a +===.故选:D. 2.B 【分析】根据等差数列的性质,由题中条件,可直接得出结果. 【详解】因为n S 为等差数列{}n a 的前n 项和,公差1d =,6210S S ,所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=. 故选:B. 3.A 【分析】利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】由3914a a +=,23a =,又{}n a 为等差数列, 得39121014a a a d +=+=,213a a d =+=,解得12,1a d ==, 则101+92911a a d ==+=; 故选:A. 4.C 【分析】利用等差数列性质当m n p q +=+ 时m n p q a a a a +=+及前n 项和公式得解 【详解】{}n a 是等差数列,3944a a a +=+,4844a a a ∴+=+,84a =1158158()15215156022a a a S a +⨯⨯====故选:C 【点睛】本题考查等差数列性质及前n 项和公式,属于基础题 5.C 【分析】利用等差数列的求和公式,化简求解即可 【详解】2121S T =12112121()21()22a ab b ++÷=121121a a b b ++=1111a b =2113111⨯⨯+=1117.故选C 6.C 【分析】根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】因为数列{}n a 为等差数列,11a =,34a =, 则公差为31322a a d -==, 因此通项公式为()33111222n a n n =+-=-. 故选:C. 7.C 【分析】首先根据()12n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得到答案. 【详解】当1n =时,111a S ==, 当2n ≥时,()()11122n n n n n n n a S S n -+-=-=-=. 检验111a S ==,所以n a n =. 设()1111111n n n b a a n n n n +===-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…. 故选:C 8.A 【分析】利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】在等差数列{}n a 中,设公差为d ,由467811a a a =⎧⇒⎨+=⎩444812311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A 9.C 【分析】利用等差数列的下标和性质以及基本量运算,可求出1a . 【详解】设等差数列{}n a 的公差为d ,则3856522a a a a a +=+=+,解得652d a a =-=,212112228S a a a d a =+=+=+=,解得13a =故选:C 10.D 【分析】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,已知条件为985.5S =,14731.5a a a ++=,由等差数列性质即得5a ,4a ,由此可解得d ,再由等差数列性质求得后5项和. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===(尺),所以59.5a =(尺),由题知1474331.5a a a a ++==(尺),所以410.5a =(尺),所以公差541d a a =-=-, 则()8910111210555522.5a a a a a a a d ++++==+=(尺). 故选:D . 11.D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列. 12.A 【分析】在等差数列{a n }中,利用等差中项由95132a a a =+求解. 【详解】在等差数列{a n }中,a 5=3,a 9=6, 所以95132a a a =+,所以139522639a a a =-=⨯-=, 故选:A 13.B 【分析】由已知条件,结合等差数列通项公式得1a d =,即可求99S a . 【详解】4123425S a a a a a =+++=,即有13424a a a a ++=,得1a d =,∴1999()452a a S d ⨯+==,99a d =,且0d ≠, ∴995S a =. 故选:B【分析】利用等差数列的下标性质,结合等差数列的求和公式即可得结果. 【详解】由等差数列的性质,可得3542a a a +=,891371013103a a a a a a a ++=++=, 因为()()3589133224a a a a a ++++=, 可得410322324a a ⨯+⨯=,即4104a a +=, 故数列的前13项之和()()11341013131313426222a a a a S ++⨯====. 故选:B. 15.A 【分析】 由题意可得5282045252a a d --===---,再由220a =可求出1a 的值 【详解】 解:根据题意,5282045252a a d --===---,则1220(4)24a a d =-=--=, 故选:A. 16.B 【分析】由已知判断出数列{}n a 是以1为首项,以2为公差的等差数列,求出通项公式后即可求得10a .【详解】()122n n a a n --=≥,且11a =,∴数列{}n a 是以1为首项,以2为公差的等差数列,通项公式为()12121n a n n =+-=-,10210119a ∴=⨯-=,故选:B. 17.C 【分析】根据首末两项求等差数列的公差,再求这5个数字. 【详解】在1与25之间插入五个数,使其组成等差数列,则171,25a a ==,则712514716a a d --===-, 则这5个数依次是5,9,13,17,21.18.D 【分析】由()11213n n n n S S a n +++=+-+得到()11132n n n a a n ++=-+-,再分n 为奇数和偶数得到21262k k a a k +=-+-,22165k k a a k -=+-,然后再联立递推逐项判断. 【详解】因为()11213n n n n S S a n +++=+-+,所以()11132n n n a a n ++=-+-,所以()212621k k a a k +=-+-,()221652k k a a k -=+-, 联立得:()212133k k a a +-+=, 所以()232134k k a a +++=, 故2321k k a a +-=,从而15941a a a a ===⋅⋅⋅=,22162k k a a k ++=-,222161k k a a k ++=++,则222121k k a a k ++=-,故()()()4012345383940...S a a a a a a a a =++++++++,()()()()234538394041...a a a a a a a a =++++++++,()()201411820622k k =+⨯=-==∑1220,故①②③正确. 故选:D 19.B 【分析】由等差数列的性质可得52012016024a a a a +==+,则()15202020202016202010102a a a a S +=⨯=⨯+可得答案. 【详解】 等差数列{}n a 中, 52012016024a a a a +==+()12020202052016202010104101040402a a a a S +===⨯=+⨯⨯ 故选:B 20.C 【分析】由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差.解:()11111611111322a a S a+⨯===,612a ∴=,又5620a a +=,58a ∴=,654d a a ∴=-=.故选:C .二、多选题21.AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 11104n n n S S S -≠∴-= 因此数列1{}n S 为以114S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n=+-=∴=,即A 正确; 当2n ≥时111144(1)4(1)n n n a S S n n n n -=-=-=--- 所以1,141,24(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,即B ,C 不正确;故选:AD 【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题. 22.ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可. 23.BD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}na 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确; 对于C ,数列{}2n中,()()22221112234n n n n n aa ----=-=⨯不是常数,{}2n∴不是等方差数列,故C 错误; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BD. 【点睛】关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断. 24.AD 【分析】对于A ,作差后利用等差数列的通项公式运算可得答案;对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案; 对于D ,由n S 求出n a 及1a ,根据数列{}n a 为等差数列可求得0a =. 【详解】对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,所以24619150a a a a d -=>,所以4619a a a a >,故A 正确;对于B ,因为130S >,140S <,所以77713()1302a a a +=>,即70a >,787814()7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以7878||||0a a a a -=+<,即78||||a a <,故B 不正确;对于C ,因为915S S =,所以101114150a a a a ++++=,所以12133()0a a +=,即12130a a +=,当0d >时,等差数列{}n a 递增,则12130,0a a <>,所以n S 中的最小值是12S ,无最大值;当0d <时,等差数列{}n a 递减,则12130,0a a ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;对于D ,若2n S n n a =-+,则11a S a ==,2n ≥时,221(1)(1)n n n a S S n n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,所以12120a a =⨯-==,故D 正确. 故选:AD 【点睛】关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键. 25.BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 26.BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n na a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题. 27.AC 【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式 【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --==-.故选:AC. 【点睛】本题考查等差数列,考查运算求解能力. 28.BC 【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】A 选项,若1011091002S a d ⨯=+=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确; B 选项,若412S S =,则()5611128940a a a a a a ++++=+=,又因为10a >,所以前8项为正,从第9项开始为负, 因为()()116168916802a a S a a +==+=, 所以使0n S >的最大的n 为15.故B 正确; C 选项,若()115158151502a a S a +==>,()()116168916802a a S a a +==+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC . 【点睛】本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型. 29.ACD 【分析】由13623a a S +=得100a =,故A 正确;当0d <时,根据二次函数知识可知n S 无最小值,故B 错误;根据等差数列的性质计算可知127S S =,故C 正确;根据等差数列前n 项和公式以及等差数列的性质可得190S =,故D 正确. 【详解】因为13623a a S +=,所以111236615a a d a d ++=+,所以190a d +=,即100a =,故A 正确;当0d <时,1(1)(1)922n n n n n S na d dn d --=+=-+2(19)2dn n =-无最小值,故B 错误;因为127891*********S S a a a a a a -=++++==,所以127S S =,故C 正确; 因为()1191910191902a a S a+⨯===,故D 正确.故选:ACD. 【点睛】本题考查了等差数列的通项公式、前n 项和公式,考查了等差数列的性质,属于中档题. 30.CD 【分析】根据等差数列中1118S S =可得数列的公差0d <,再根据二次函数的性质可知15S 是最大值,同时可得150a =,进而得到290S =,即可得答案; 【详解】1118S S =,∴0d <,设2n S An Bn =+,则点(,)n n S 在抛物线2y Ax Bx =+上,抛物线的开口向下,对称轴为14.5x =,∴1514S S =且为n S 的最大值,1118S S =12131815070a a a a ⇒+++=⇒=,∴129291529()2902a a S a +===, 故选:CD. 【点睛】本题考查利用二次函数的性质研究等差数列的前n 项和的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018高考数学小题精练+B 卷及解析:专题(07)等差数列及解析 专题(07)等差数列1.等差数列{}n a 的前n 项和为n s ,已知58a =,36s =,则9a =( ) A . 8 B . 12 C . 16 D . 24 【答案】C【解析】设等差数列{}n a 的首项为a 1,公差为d ,由58a =,36s =,得: a 1+4d =8,3a 1+3d =6,解得:a 1=0,d =2. ∴9a =a 1+8d =8×2=16. 故答案为:16.2.设 n s 是等差数列{}n a 的前n 项和,已知366,8S S ==, 9S =( )A . 6B . 8C . 10D . 12 【答案】A点睛:等差数列的性质:等差数列{}n a ,等差数列的前N 项和的规律知道, 36396,,s s s s s -- 仍然是等差数列,所以重新构造等差数列,求出即可. 3.已知等差数列中,,( )A . 8B . 16C . 24D . 32 【答案】D【解析】∵,又,∴ ,故选D .4.在等差数列{a n }中, 1233,a a a ++= 282930165a a a ++=,则此数列前30项和等于( )A . 810B . 840C . 870D . 900【答案】B【解析】数列前30项和可看作每三项一组,共十组的和,显然这十组依次成等差数列,因此和为()1031658402+= ,选B .5.已知是等差数列的前项和,若,则数列的公差为 ( )A .B .C .D . 【答案】C【解析】 ,故选C;点睛:数列中的结论: ,其中为奇数,巧妙应用这个结论,做题就很快了.6.等差数列中,则( )A . 45B . 42C . 21D . 84 【答案】A点睛:等差数列的基本量运算问题的常见类型及解题策略:(1)化基本量求通项.求等比数列的两个基本元素和,通项便可求出,或利用知三求二,用方程求解.(2)化基本量求特定项.利用通项公式或者等差数列的性质求解. (3)化基本量求公差.利用等差数列的定义和性质,建立方程组求解.(4)化基本量求和.直接将基本量代入前项和公式求解或利用等差数列的性质求解. 7.已知数列{n a }为等差数列,其前n 项和为n S ,2a 7-a 8=5,则S 11为 A . 110 B . 55 C . 50 D . 不能确定 【答案】B【解析】∵数列{n a }为等差数列,2a 7-a 8=5,∴()6885a a a +-=,可得a 6=5,∴ S 11=()111112a a +⨯=611a=55.故选:B .8.已知等差数列{n a }满足:31313,33a a ==,求7a ( ) A . 19 B . 20 C . 21 D . 22 【答案】C【解析】等差数列{}n a 中, 133d 10a a -==2,则73413821a a d =+=+= 故选C9.已知等差数列的公差和首项都不等于,且,,成等比数列,则等于( )A .B .C .D . 【答案】D考点:等差数列的通项公式.10.已知等差数列{}n a 的首项是1a ,公差0d ≠,且2a 是1a 与4a 的等比中项,则d =( ) A .1- B .C .2-D .2【答案】B考点:等差数列的基本性质.11.已知数列{}n a 为等差数列,满足32013OA a OB a OC =+,其中,,A B C 在一条直线上,O为直线AB 外一点,记数列{}n a 的前n 项和为n S ,则2015S 的值为( )A .20152B . 2015C .2016D .2013【答案】A 【解析】试题分析:依题意有320131a a +=,故3201320152015201522a a S +=⋅=. 考点:数列求和,向量运算.12.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49%C .62%D .88%【答案】B考点:等差数列.专题07 等差数列1.等差数列{}n a 的前n 项和为n s ,已知58a =, 36s =,则9a =( ) A . 8 B . 12 C . 16 D . 24 【答案】C故答案为:16.2.已知数列{a n }为等差数列,若11011-<a a ,且它们的前n 项和S n 有最大值,则使得S n >0的n 的最大值为( )A . 11B . 19C . 20D . 21 【答案】B 【解析】由题意可得1110100a a a +<,又由n S 有最大值,可知等差数列{a n }的10,0a d ><,所以101110110,0,0a a a a ><+<,所以()1910201011190,100S a S a a =>=+<,即S n >0的n 的最大值为19.选B .3.等差数列{}n a 的公差0d ≠,且30a =,若k a 是6a 与6k a +的等比中项,则k =( ) A . 5 B . 6 C . 9 D . 11 【答案】C【解析】等差数列{}n a 的公差0d ≠,由30a =得2a d =-,可得122a a d d =-=-,则()()113n a a n d n d =+-=-,若k a 是6a 与6k a +的等比中项,既有266k k a a a +=,即为()()22333k d d k d -=⋅+,由d 不为0,可得290k k -=,解得9(0k =舍去),故选C . 4.设 n s 是等差数列{}na 的前n 项和,已知366,8S S ==, 9S =( )A . 6B . 8C . 10D . 12 【答案】A【解析】由等差数列的前N 项和的规律知道, 36396,,s s s s s -- 仍然是等差数列,96,2,8s - 仍然是等差数列.则9S =6;故选A .点睛:等差数列的性质:等差数列{}n a ,等差数列的前N 项和的规律知道, 36396,,s s s s s -- 仍然是等差数列,所以重新构造等差数列,求出即可. 5.已知数列{}n a 为正项等差数列,其前9项和9 4.5S =,则2814a a +的最小值为 A . 8 B . 9 C . 12 D . 16 【答案】B【解析】∵数列{}n a 为正项等差数列,∴()1999922a a S +⨯==,∴191aa +=,即281a a +=()822828282841414559a a a a a a a a a a ⎛⎫+=++=++≥+= ⎪⎝⎭, 故选:B6.在等差数列{a n }中, 1233,a a a ++= 282930165a a a ++=,则此数列前30项和等于( )A . 810B . 840C . 870D . 900【答案】B7.已知数列{n a }为等差数列,其前n 项和为n S ,2a 7-a 8=5,则S 11为 A . 110 B . 55 C . 50 D . 不能确定 【答案】B【解析】∵数列{n a }为等差数列,2a 7-a 8=5,∴()6885a a a +-=,可得a 6=5,∴S 11=()111112a a +⨯=611a=55.故选:B .8.《九章算术》之后,人们进一步地用等差数列求和公式来解决更多的问题,《张邱建算经》卷上第22题为:今有女善织,日益功疾(注:从第2天起每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织420尺布,则第2天织的布的尺数为( ) A .16329 B . 16129 C . 8115 D . 8015【答案】C【解析】设公差为d ,由题意可得:前30项和30S =420=30×5+30292⨯d ,解得d =1829. ∴第2天织的布的尺数=5+d =16329. 故选:A .9.设公差不为零的等差数列{}n a 的前n 项和为n S ,若)(2324a a a +=,则47S S 等于( ) A .47 B .514C .7D .14 【答案】C 【解析】试题分析:因为()()4234142,2a a a a a a =+∴=+,则()()()17741441477227442a a S a a a S a a +⨯===++,故选C .考点:1、等差数列的性质;2、等差数列前n 项和公式. 10.已知等差数列{}a,n S 为数列{}n a 的前n 项和,若244n S an n a =++-(a R ∈),记数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则10T =( )A .18B .14C .940D .522【答案】D 【解析】考点:1、等差数列的前n 项和公式;2、裂项相消法求和的应用.11.记等差数列{a n }前n 项和为S n .若a m =10,S 2m -1=110, 则m 的值为__________. 【答案】6 【解析】{}n a 是等差数列,()()()2112212110211102m m m a a S m m a m -+∴=⨯-=-=-=,可得6m =,故答案为6. 12.记数列{}n a 的前n 和为n S ,若n n S a ⎧⎫⎨⎬⎩⎭是公差为d 的等差数列,则{}n a 为等差数列时,d 的值为 . 【答案】或12【解析】考点:1.等差数列的前n 项和;2.等差数列的通项公式.。

相关文档
最新文档