广东省清远市中考数学试题及答案
2023清远中考数学试题及答案

2023清远中考数学试题及答案2023年清远中考数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个数是整数?A. 3.14B. 0.5C. -2D. 0.33333答案:C2. 以下哪个表达式等于2?A. 3 + 1B. 2 × 1C. 4 ÷ 2D. 5 - 3答案:C3. 如果一个数的平方是9,那么这个数可能是?A. 3B. -3C. 3和-3D. 以上都不是答案:C4. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 任意三角形答案:B5. 以下哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D6. 以下哪个方程的解是x=2?A. 2x - 4 = 0B. 3x + 6 = 12C. x^2 - 4 = 0D. 2x + 3 = 7答案:A7. 以下哪个函数是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = √x答案:A8. 以下哪个选项是正确的三角函数值?A. sin(30°) = 1/2B. cos(60°) = √3/2C. tan(45°) = √2D. cot(30°) = √3答案:A9. 以下哪个选项是正确的统计量?A. 平均数B. 中位数C. 众数D. 以上都是答案:D10. 以下哪个选项是正确的几何定理?A. 勾股定理B. 泰勒斯定理C. 欧拉定理D. 以上都是答案:A二、填空题(每题3分,共30分)11. 一个数的相反数是-5,那么这个数是______。
答案:512. 如果一个角的补角是120°,那么这个角是______。
答案:60°13. 一个等腰三角形的底角是45°,那么顶角是______。
答案:90°14. 一个圆的半径是5cm,那么它的周长是______。
精选题库广东省清远市中考数学试卷〔含参考答案〕

D. 60°
9.( 3 分)关于 x 的一元二次方程 x2﹣3x+m=0 有两个不相等的实数根, 则实数 m 的取值范
围是(
)
A .m<
B .m≤
C. m>
D. m≥
10.(3 分)如图,点 P 是菱形 ABCD 边上的一动点,它从点 A 出发沿在 A→ B→ C→ D 路径 匀速运动到点 D,设△ PAD 的面积为 y, P 点的运动时间为 x,东省清远市中考数学试卷
一、选择题(本大题 10 小题,每小题 3 分,共 30 分)在每小题列出的四个选项中,只有
一个是正确的,请把答题卡上对应题目所选的选项涂黑.
8
C. 1.442× 10
8
D. 0.1442× 10
3.( 3 分)如图,由 5 个相同正方体组合而成的几何体,它的主视图是(
)
A.
B.
C.
D.
4.( 3 分)数据 1、 5、 7、 4、8 的中位数是(
)
A .4
B.5
C. 6
D.7
5.( 3 分)下列所述图形中,是轴对称图形但不是中心对称图形的是(
三、解答题 17.【解答】 解:原式= 2﹣ 1+2
= 3.
18.【解答】 解:原式=
?
= 2a,
当 a= 时,
原式= 2× = . 19.【解答】 解:( 1)如图所示,直线 EF 即为所求;
( 2)∵四边形 ABCD 是菱形, ∴∠ ABD=∠ DBC= ∠ABC= 75°, DC ∥ AB,∠ A=∠ C.
20.( 7 分)某公司购买了一批 A、 B 型芯片,其中 A 型芯片的单价比 B 型芯片的单价少 9 元,已知该公司用 3120 元购买 A 型芯片的条数与用 4200 元购买 B 型芯片的条数相等.
数学九年级中考广东试卷【含答案】

数学九年级中考广东试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. -1B. 0C. 1D. 32. 下列函数中,奇函数是:A. y = x³B. y = x²C. y = |x|D. y = x⁴3. 已知一组数据2, 3, 5, 7, 11, x,其平均数为6,则x的值为:A. 4B. 6C. 8D. 104. 若直线y = 2x + 1与y轴的交点为(0, b),则b的值为:A. 0B. 1C. 2D. 35. 二项式展开式(1 + x)⁵的系数和为:A. 1B. 2C. 32D. 64二、判断题(每题1分,共5分)6. 若a > b,则a² > b²。
()7. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ = b² 4ac。
()8. 对角线互相垂直平分的四边形一定是菱形。
()9. 函数y = 2x + 3的图像是一条直线。
()10. 两个相互垂直的向量一定是零向量。
()三、填空题(每题1分,共5分)11. 已知三角形ABC中,∠A = 60°,AB = AC,则三角形ABC是____三角形。
12. 若函数f(x) = 3x 2,则f(-1) = ______。
13. 平方差公式:a² b² = _______。
14. 若一组数据2, 3, 5, 7, 11的平均数为6,则这组数据的方差是______。
15. 二项式定理中,(a + b)⁵展开后的项数为______。
四、简答题(每题2分,共10分)16. 解释什么是函数的单调性,并举一个例子。
17. 简述平行线的性质。
18. 什么是二次函数的顶点式?如何用顶点式求二次函数的最值?19. 简述等差数列和等比数列的定义。
20. 什么是坐标轴?如何用坐标轴表示一个点的位置?五、应用题(每题2分,共10分)21. 已知一元二次方程x² 5x + 6 = 0,求方程的解。
2022年广东清远中考数学真题及答案

2022年广东清远中考数学真题及答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.|2|-=()A.﹣2 B.2 C.12-D.122.计算22()A.1 B.2C.2 D.4 3.下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形4.如题4图,直线a//b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°5.如题5图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.14B.12C.1 D.26.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)7.书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.14B.13C.12D.238.如题8图,在▱ABCD中,一定正确的是()A .AD=CDB .AC=BDC .AB=CD D .CD=BC9.点(1,1y ),(2,2y ),(3,3y ),(4,4y )在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( )A .1yB .2yC .3yD .4y10.水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为C =2πr .下列判断正确的是( )A .2是变量B .π是变量C .r 是变量D .C 是常量参考答案: 题号 1 2 3 4 5 6 7 8 9 10 答案 BDABDABCDC二、填空题:本大题共5小题,每小题3分,共15分. 11.sin 30°=____________.12.单项式3xy 的系数为____________.13.菱形的边长为5,则它的周长为____________. 14.若x =1是方程220x x a -+=的根,则a =____________.15.扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为____________. 参考答案: 题号 11 12 13 14 15答案 123201π三、解答题(二):本大题共3小题,每小题8分,共24分 16.解不等式组:32113x x ->⎧⎨+<⎩参考答案:32113x x ->⎧⎨+<⎩①② 由①得:1x > 由②得:2x <∴不等式组的解集:12x <<17.先化简,再求值:211a a a -+-,其中a =5.参考答案:原式=(1)(1)1211a a a a a a a -++=++=+-将a =5代入得,2111a +=18.如题18图,已知∠AOC =∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E . 求证:△OPD ≌△OPE . 参考答案:证明:∵PD ⊥OA ,PE ⊥OB ∴∠PDO =∠PEO=90° ∵在△OPD 和△OPE 中 PDO PEO AOC BOC OP OP ∠⎪∠⎧∠=⎩∠⎪⎨== ∴△OPD ≌△OPE (AAS )四、解答题(二):本大题共3小题,每小题9分,共27分.19.《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少? 参考答案:设学生人数为x 人8374x x -=+7x =则该书单价是8353x -=(元)答:学生人数是7人,该书单价是53元.20.物理实验证实:在弹性限度内,某弹簧长度y (cm )与所挂物体质量x (kg )满足看数关系y =kx +15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x 0 2 5 y151925(1)求y 与x 的函数关系式;(2)当弹簧长度为20cm 时,求所挂物体的质量. 参考答案:(1)将2x =和19y =代入y =kx +15得19=2k +15解得:2k =∴y 与x 的函数关系式:y =2x +15 (2)将20y =代入y =2x +15得20=2x +15解得: 2.5x =∴当弹簧长度为20cm 时,求所挂物体的质量是2.5kg .21.为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?参考答案:(1)月销售额数据的条形统计图如图所示:(2)3445378210318715x +⨯+⨯++⨯+⨯+==(万元)∴月销售额的众数是4万元;中间的月销售额是5万元;平均月销售额是7万元. (3)月销售额定为7万元合适.五、解答题(三):本大题共2小题,每小题12分,共24分.22.如题22图,四边形ABCD 内接于⊙O ,AC 为⊙O 的直径,∠ADB =∠CDB . (1)试判断△ABC 的形状,并给出证明; (2)若2AB =,AD =1,求CD 的长度.参考答案:(1)△ABC 是等腰直角三角形,理由如下:∵∠ADB =∠CDB ∴AB BC = ∴AB BC = ∵AC 是直径 ∴∠ABC 是90°∴△ABC 是等腰直角三角形 (2)在Rt △ABC 中222AC AB BC =+可得:2AC = ∵AC 是直径 ∴∠ADC 是90° ∴在Rt △ADC 中 222AC AD DC =+可得:3DC = ∴CD 的长度是323.如题23图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,A (1,0),AB =4,点P 为线段AB 上的动点,过P 作PQ //BC 交AC 于点Q . (1)求该抛物线的解析式;(2)求△CPQ 面积的最大值,并求此时P 点坐标. 参考答案:(1)∵A (1,0),AB =4∴结合图象点B 坐标是(﹣3,0)将(1,0),(﹣3,0)代入2y x bx c =++得 01093b c b c =++⎧⎨=-+⎩解得:23b c =⎧⎨=-⎩ ∴该抛物线的解析式:223y x x =+- (2)设点P 为(,0)m∵点C 是顶点坐标∴将1x =-代入223y x x =+-得4y =- ∴点C 的坐标是(1,4)--将点(1,4)--,(1,0)代入y kx b =+得 04k b k b =+⎧⎨-=-+⎩解得:22k b =⎧⎨=-⎩ ∴AC 解析式:22y x =-将点(1,4)--,(﹣3,0)代入y kx b =+得034k b k b =-+⎧⎨-=-+⎩解得:26k b =-⎧⎨=-⎩ ∴BC 解析式:26y x =-- ∵PQ //BC∴PQ 解析式:22y x m =-+ 2222y x m y x =-+⎧⎨=-⎩解得:121m x y m +⎧=⎪⎨⎪=-⎩ ∴点Q 坐标:1(,1)2mm +-(注意:点Q 纵坐标是负的) CPQ ABC APQ CPB S S S S =--△△△△11144(3)4(1)(1)222CPQ S m m m =⨯⨯-⨯+⨯-⨯-⨯-△21322CPQ S m m =--+△21(1)22CPQ S m =-++△当1m =-时,CPQ S △取得最大值2,此时点P 坐标是(﹣1,0) ∴△CPQ 面积最大值2,此时点P 坐标是(﹣1,0)。
广东省清远市中考数学试卷及答案

2009年清远市初中毕业生学业考试数学科试题说明:1.全卷共4页,考试时间为100分钟,满分120分.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,再用黑色字迹的钢笔或签字笔描黑.答案必须写在答题卡各题指字区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域. 不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的清洁,考试结束后,将本试卷和答题卡一半交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上.1. —5等于()A . 5 B. -5 C. -1 D.-5 52 .不等式X-2 < 0的解集在数轴上表示正确的是()-3 -2 -1 0 1 2 3C.3.今年我国参加高考人数约为10200000,将10200000用科学记数法表示为2, 2 A. a b2 3B. a b2」6C. a bA. 10.2勺07 B • 1.02W07 C. 0.102X107 D. 102X1074 .某物体的三视图如图1所示,那么该物体形状可能是(A.圆柱B.球C.正方体D.长方体5.小明记录某社区七次参加“防甲型33, 32, 32, 31, 32, 28, A .26.6.28 C. 32H1N1流感活动”的人数分别如下:这组数据的众数是()D. 33方程X2 =16的解是(A .7 .已知OO的半径r ,圆心是(A.相交C. X = -4D. X=16O到直线l的距离为d ,当d = r时,直线l与OO的位置关系8.计算:B.相切3 2(ab3)=(C.相离D.以上都不对-3 ^2 -1 0 1 2 3A. _3 -2-10 1 2 3B.I J I I u u I-3 -2-10 1 2 3D.9.如图 2, AB // CD , A . 20° B. 60° EF_LAB 于 E, EF 交 CD 于 F ,已知 4 = 60°,则』2=()C. 30°D.45图2 图310.如图3, AB 是CDO 的直径,弦 则 tan£COE=( A . 3 B. 4 5 5 、填空题(本大题共 应题号的答题卡上. CD_LAB 于点 E,连结 OC ,若 OC=5, CD =8, 八 3C,— 4 6小题,每小题 D. 4 3 3分,共18分)请把下列各题的正确答案填写在相 11 .计算:3乂(-2)= 12.当 X = 时,分式 x —2 1 …、——无意义. k 13.已知反比例函数 y=-的图象经过点(2,3),则此函数的关系式是 14 .如果a 与5互为相反数,那么 a=. 15.如图4所示,转盘平面被等分成四个扇形,并分别填上红、黄两种颜色,自由转动这个 转盘,当它停止转动时,指针停在黄色区域的概率为 05NB4)。
清远中考数学试题及答案

清远中考数学试题及答案一、选择题:1. 若函数f(x)在区间[0,5]上连续,则f(x)=|x-3|的最小值是()A. 0B. 1C. 2D. 32. 三个有理数x,y,z满足x<y<z,若x、y、z能被7整除,则x、y、z的最小值是()A. -5B. 0C. 1D. 23. 已知函数f(x)=3x^2+2x+1,则f(-1)+f(1)=()A. 2B. 4C. 6D. 84. 二次函数y=(-x+4)(x+a)的图象与x轴交于点(-3,0)和(1,0),则a的值为()A. 6B. -6C. -2D. 25. 已知等差数列{an}的前n项和为Sn=n(2n+1),则a1的值为()A. 1B. 3C. 5D. 7二、填空题:1. 设函数f(x)=ax^2+bx+c的图像经过点(1,1),则a+b+c=()。
2. 若正方形ABCD的边长为2a,则对角线AC的长为()。
3. 将20元纸币兑换成1元、5元和10元三种零钱,其中1元纸币4张,10元纸币2张,剩下的都是5元纸币,那么共有()张5元纸币。
4. 解方程|x-3|=7的解集为()。
5. 若a:b=3:5,b:c=4:7,c:d=9:7,则a:b:c:d=()。
三、解答题:1. 用有理数表示根号12的最简形式。
2. 某商品原价800元,现在打折6折出售。
小明购买该商品需要支付的金额是多少?3. 解方程组:{2x-y=3{3x+y=44. 某数乘以它的倒数等于1,这个数是多少?5. 在△ABC中,∠B=60°,AB=8,AC=4,则BC的长度为多少?答案:一、选择题:1. B 2. D 3. C 4. B 5. A二、填空题:1. -1 2. 2a√2 3. 3 4. {-4, 10} 5. 27:45:28:35三、解答题:1. 2√32. 480元3. {x=2, y=1}4. 15. 4以上为清远中考数学试题及答案,供参考。
清远市2020版中考数学试卷(I)卷
清远市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各式中结果为负数的是()A . ﹣(﹣3)B . |﹣3|C . (﹣3)2D . ﹣322. (2分)(2020·黄石) 如图所示,该几何体的俯视图是()A .B .C .D .3. (2分)下列计算正确的是()A . x5﹣x4=xB . 23=6C . ﹣(2x+3)=2x﹣3D . ﹣x3+3x3=2x34. (2分)使有意义的x的取值范围是()A . x>2B . x<-2C . x≤2D . x≥25. (2分)五名同学在“爱心捐助”活动中,捐款数额为8,10,10,4,6(单位:元),这组数据的中位数是()A . 10B . 9C . 8D . 66. (2分) (2019八上·绍兴期末) 一次函数的图象经过坐标系的()A . 第一、二、三象限B . 第二、三、四象限C . 第一、二、四象限D . 第一、三、四象限7. (2分)将点A(﹣1,2)沿x轴向右平移3个单位长度,再沿y轴向下平移4个单位长度后,得到的点A′的坐标为()A . (﹣4,﹣2)B . (2,﹣2)C . (﹣4,6)D . (2,6)8. (2分)如图,线段,分别以A,B为圆心,以AB的长为半径作弧,两弧交于C,D两点,则阴影部分的面积为()A .B .C .D .9. (2分)(2011·嘉兴) 如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2 ,四边形ABCD面积是11cm2 ,则①②③④四个平行四边形周长的总和为()A . 48cmB . 36cmC . 24cmD . 18cm10. (2分) (2018九上·彝良期末) 在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A .B .C .D .二、填空题 (共8题;共9分)11. (1分)(2018·普宁模拟) 全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是________.12. (1分) (2019七下·鼓楼期中) 已知a+b=2,a-b=-1,则a2-b2=________.13. (1分)(2019·平谷模拟) 甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为s甲2=0.2,S乙2=0.08,成绩比较稳定的是________(填“甲”或“乙”)14. (2分)有一个质地均匀的正二十面体形状的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”,将这个骰子掷出后,朝正上方的数字为“6”的概率是________,数字________朝正上方的可能性最大.15. (1分) (2019八上·南通月考) 如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.16. (1分) (2019八上·江津期末) 如图,△ABC中,AB=AC,∠A=40°,DE是腰AB的垂直平分线,求∠DBC=________.17. (1分) (2019九上·长春月考) 如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m , BD=14m ,则旗杆AB的高为________m .18. (1分)(2018·伊春) 如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1 ,△B2C1B3的面积为S2 ,△B3C2B4的面积为S3 ,如此下去,则Sn=________.三、解答题 (共7题;共61分)19. (10分) (2020八上·阳泉期末)(1)解方程:(2)先化简,再从0≤x≤4中选一个适合的整数代入求值。
清远市中考数学试卷
清远市中考数学试卷姓名:________ 班级:________ 成绩:________一、一.选择题 (共12题;共24分)1. (2分) (2019八上·永定月考) 下列算式结果为-3的是()A .B .C .D .2. (2分)(2020·硚口模拟) 下列事件是随机事件的是()A . 从装有2个红球、2个黄球的袋中摸出3个球,它们的颜色不全相同B . 通常温度降到0℃以下,纯净的水结冰C . 任意画一个三角形,其内角和是360°D . 随意翻到一本书的某页,这页的页码是奇数3. (2分)(2019·大同模拟) “山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为()A . 56×108B . 5.6×108C . 5.6×109D . 0.56×10104. (2分)(2020·枣阳模拟) 不等式组的解集是()A . -1≤ <2B . -1<≤2C . -1≤ ≤2D . -1<<25. (2分)如图,直线AB、CD相交于点E,DF AB. 若∠D=70°,则∠CEB等于()A . 70°B . 80°C . 90°D . 110°6. (2分) (2020九下·射阳月考) 下列标志是中心对称图形,但不是轴对称图形的是()A .B .C .D .7. (2分)人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:,,,则成绩较为稳定的班级是()A . 甲班B . 乙班C . 两班成绩一样稳定D . 无法确定8. (2分)(2018·新乡模拟) 用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是()A .B .C .D .9. (2分) (2019七下·鼓楼期中) 下列命题是真命题的是()A . 相等的角是对顶角B . 若,则C . 同角的余角相等D . 两直线平行,同旁内角相等10. (2分)如图,在中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ长度的最小值是()A . 4.75B . 4.8C . 5D .11. (2分)如图,都是由同样大小的⊙按一定规律所组成的,其中第一个图形有5个⊙,第二个图形一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第2019个图形中基本图形的个数为()A . 6056B . 6057C . 6058D . 605912. (2分) (2019九上·鄂州期末) 已知直线y=kx(k>0)与双曲线y=交于点A(x1 , y1),B(x2 ,y2)两点,则x1y2+x2y1的值为()A . ﹣4B . 0C . 2D . 4二、填空题 (共6题;共15分)13. (1分) (2020九下·舞钢月考) 计算:﹣2cos60°=________.14. (1分) (2017九上·灯塔期中) 某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为________米.15. (1分)(2019·宿迁) 下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为________.16. (1分)一个圆锥的底面半径为1厘米,母线长为2厘米,则该圆锥的侧面积是________厘米2(结果保留π).17. (1分)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2﹣2x﹣3,求这个“果圆”被y轴截得的线段CD的长________.18. (10分) (2019九下·佛山模拟) 如图,已知钝角△ABC(1)过点A作BC边的垂线,交CB的延长线于点D;(尺规作图,保留作图痕迹,不要求写作法)(2)当BC=AB,∠ABC=120°时,求证:AB平分∠DAC。
【真题汇总卷】2022年广东省清远市中考数学历年真题汇总 卷(Ⅲ)(含答案及解析)
2022年广东省清远市中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、如图,ABC ∆中,DE 是ABC ∆的中位线,连接DC ,BE 相交于点F ,若1DEF S ∆=,则ADE S ∆为( )A .3B .4C .9D .12 2、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( )A .548510⨯B .648.510⨯C .74.8510⨯D .0.48510⨯ 3、下列问题中,两个变量成正比例的是( ) A .圆的面积S 与它的半径r B .三角形面积一定时,某一边a 和该边上的高h ·线○封○密○外C .正方形的周长C 与它的边长aD .周长不变的长方形的长a 与宽b4、已知二次函数y =x 2﹣2x +m ,点A (x 1,y 1)、点B (x 2,y 2)(x 1<x 2)是图象上两点,下列结论正确的是( )A .若x 1+x 2<2,则y 1>y 2B .若x 1+x 2>2,则y 1>y 2C .若x 1+x 2<﹣2,则y 1<y 2D .若x 1+x 2>﹣2,则y 1>y 2 5、下列各数中,是无理数的是( )A .0BC .227D .3.14159266、如图,在△ABC 和△DEF 中,AC ∥DF ,AC =DF ,点A 、D 、B 、E 在一条直线上,下列条件不能判定△ABC ≌△DEF 的是( ).A .C F ∠=∠B .ABC DEF ∠=∠ C .AB DE =D .BC EF =7、一圆锥高为4cm ,底面半径为3cm ,则该圆锥的侧面积为( )A .29cm πB .212cm πC .215cm πD .216cm π8、如图,要在二次函数()y x 2x =-的图象上找一点(),M a b ,针对b 的不同取值,所找点M 的个数,有下列三种说法:①如果3b =-,那么点M 的个数为0;②如果1b =.那么点M 的个数为1;③如果3b =,那么点M 的个数为2.上述说法中正确的序号是( )A .①B .②C .③D .②③9、下列图形中,既是轴对称图形又是中心对称图形是( ) A .B .C .D . 10、一把直尺与一块直角三角板按下图方式摆放,若237∠=︒,则1∠=( ) A .52°B .53°C .54°D .63°第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、如图,已知点B 在线段CF 上,AB ∥CD ,AD ∥BC ,DF 交AB 于点E ,联结AF 、CE ,S △BCE :S △AEF 的比值为___. ·线○封○密·○外2、若关于x 的二次三项式x 2−2(x +1)x +4是完全平方式,则k =____.3、如图,在△xxx 中,AB =AC =6,BC =4,点D 在边AC 上,BD =BC ,那么AD 的长是______4、如图,在△xxx 中,∠xxx =90°,xx =5,4BC =,xx 为△xxx的角平分线.M 为xx 边上一动点,N 为线段xx 上一动点,连接xx 、xx 、xx ,当xx +xx取得最小值时,△xxx 的面积为______.5、底面圆的半径为3,高为4的圆锥的全面积是______.三、解答题(5小题,每小题10分,共计50分)1、如图,ABC EDF △≌△,20AF =,8EC =,求AE 的值.2、下面是小颖同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:248320x y x y -=⎧⎨-=⎩①②.解:①4⨯,得8416x y -=③,⋯⋯⋯⋯⋯⋯第一步, ②-③,得4y -=,⋯⋯⋯⋯⋯⋯⋯第二步, 4y =-.⋯⋯⋯⋯⋯第三步, 将4y =-代入①,得0x =.⋯⋯⋯⋯第四步, 所以,原方程组的解为04x y =⎧⎨=-⎩.⋯⋯⋯⋯⋯第五步. 填空: (1)这种求解二元一次方程组的方法叫做______. A 、代入消元法 B 、加减消元法 (2)第______步开始出现错误,具体错误是______; (3)直接写出该方程组的正确解:______. 3、已知二次函数23y ax bx =+-的图象经过()()1,4,1,0A B --两点. (1)求a 和b 的值;(2)在坐标系xOy 中画出该二次函数的图象.4、如图,数轴上A 和B .·线○封○密○外(1)点A 表示 ,点B 表示 .(2)点C 表示最小的正整数,点D 表示38的倒数,点E 表示235,在数轴上描出点C 、D 、E .(3)将该数轴上点A 、B 、C 、D 、E 表示的数用“<”连起来: .5、在实数范围内分解因式:2x 2﹣3xy ﹣y 2.-参考答案-一、单选题1、A【分析】根据DE ∥BC ,得△DEF ∽△CBF ,得到4CBF DEF S S ∆∆=,利用BE 是中线,得到ADE S ∆+DEF S ∆=CBF S ∆,计算即可.【详解】∵DE 是ABC ∆的中位线,∴DE ∥BC ,BC =2DE ,∴△DEF ∽△CBF , ∴22()2CBF DEF S BC S DE ∆∆==, ∴4CBF DEF S S ∆∆=,∵1DEF S ∆=,∴4CBF S ∆=,∵BE 是中线,∴ABE S ∆=CBE S ∆, ∵DE 是ABC ∆的中位线, ∴DE ∥BC , ∴BDE S ∆=CDE S ∆,∴BDF S ∆=CFE S ∆, ∴BDF S ∆+ADE S ∆+DEF S ∆=CFE S ∆+CBF S ∆,∴ADE S ∆+DEF S ∆=CBF S ∆, ∴ADE S ∆=3, 故选A . 【点睛】 本题考查了三角形中位线定理,中线的性质,相似三角形的性质,熟练掌握中位线定理,灵活选择相似三角形的性质是解题的关键. 2、C 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数. 【详解】 解:48500000科学记数法表示为:48500000=74.8510⨯. 故答案为:74.8510⨯. ·线○封○密○外【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3、C【分析】分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.【详解】解:2,S r 所以圆的面积S 与它的半径r 不成正比例,故A 不符合题意; 1,2S ah 2,S a h所以三角形面积一定时,某一边a 和该边上的高h 不成正比例,故B 不符合题意;=4,C a 所以正方形的周长C 与它的边长a 成正比例,故C 符合题意;22,C a b 长方形 2,2C b a 长方形 所以周长不变的长方形的长a 与宽b 不成正比例,故D 不符合题意;故选C【点睛】本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.4、A【分析】由二次函数y =x 2﹣2x +m 可知对称轴为x =1,当x 1+x 2<2时,点A 与点B 在对称轴的左边,或点A 在左侧,点B 在对称轴的右侧,且点A 离对称轴的距离比点B 离对称轴的距离小,再结合抛物线开口方向,即可判断.【详解】解:∵二次函数y =x 2﹣2x +m ,∴抛物线开口向上,对称轴为x =1,∵x 1<x 2,∴当x 1+x 2<2时,点A 与点B 在对称轴的左边,或点A 在左侧,点B 在对称轴的右侧,且点A 离对称轴的距离比点B 离对称轴的距离大, ∴y 1>y 2,故选:A .【点睛】本题考查了二次函数的性质,灵活应用x 1+x 2与2的关系确定点A 、点B 与对称轴的关系是解决本题的关键. 5、B 【分析】 无限不循环小数叫做无理数,有限小数或无限循环小数叫做有理数,根据无理数的定义即可作出判断. 【详解】 A .0是整数,属于有理数,故本选项不合题意; BC.227是分数,属于有理数,故本选项不合题意; D .3.1415926是有限小数,属于有理数,故本选项不合题意; 故选:B .【点睛】本题考查了无理数,掌握无理数的含义是解题的关键.6、D【分析】·线○封○密○外根据各个选项中的条件和全等三角形的判定可以解答本题.【详解】解:∵AC∥DF,∴∠A=∠EDF,∵AC=DF,∠A=∠EDF,添加∠C=∠F,根据ASA可以证明△ABC≌△DEF,故选项A不符合题意;∵AC=DF,∠A=∠EDF,添加∠ABC=∠DEF,根据AAS可以证明△ABC≌△DEF,故选项B不符合题意;∵AC=DF,∠A=∠EDF,添加AB=DE,根据SAS可以证明△ABC≌△DEF,故选项C不符合题意;∵AC=DF,∠A=∠EDF,添加BC=EF,不可以证明△ABC≌△DEF,故选项D符合题意;故选:D.【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.7、C【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,扇形的面积公式求解.【详解】解: ∵一圆锥高为4cm,底面半径为3cm,∴圆锥母线5,∴圆锥的侧面积=1523152ππ⨯⨯⨯=(cm2).故选C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 8、B【分析】把点M 的坐标代入抛物线解析式,即可得到关于a 的一元二次方程,根据根的判别式即可判断. 【详解】解:∵点M (a ,b )在抛物线y =x (2-x )上,()2b a a ∴=- 当b =-3时,-3=a (2-a ),整理得a 2-2a -3=0, ∵△=4-4×(-3)>0, ∴有两个不相等的值, ∴点M 的个数为2,故①错误; 当b =1时,1=a (2-a ),整理得a 2-2a +1=0, ∵△=4-4×1=0, ∴a 有两个相同的值, ∴点M 的个数为1,故②正确; 当b =3时,3=a (2-a ),整理得a 2-2a +3=0, ∵△=4-4×3<0, ∴点M 的个数为0,故③错误; 故选:B . 【点睛】 本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.·线○封○密○外9、B【分析】根据轴对称图形和中心对称图形的定义求解即可.【详解】解:A、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意;B、既是轴对称图形又是中心对称图形,故选项正确,符合题意;C、不是轴对称图形,是中心对称图形,故选项错误,不符合题意;D、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意.故选:B.【点睛】此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.10、B【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线, ∵直尺的两边互相平行, ∴3237∠=∠=︒,14∠=∠, ∴490353∠=︒-∠=︒, ∴1453∠=∠=︒, 故选B . 【点睛】 本题主要考查了平行线的性质,掌握平行线的性质是解题的关键. 二、填空题 1、1 【分析】 连接BD ,利用平行线间距离相等得到同底等高的三角形面积相等即可解答. 【详解】 解:连接BD ,如下图所示: ·线○封○密○外∵BC∥AD ,∴S △AFD = S △ABD ,∴S △AFD - S △AED = S △ABD - S △AED ,即S △AEF = S △BED ,∵AB∥CD ,∴S △BED =S △BEC ,∴S △AEF =S △BEC ,∴S △BCE :S △AEF =1.故答案为:1.【点睛】本题以平行为背景考查了同底等高的三角形面积相等,找到要求的三角形有关的同(等)底或同(等)高是解题的关键.2、﹣3或1【分析】根据x 2+22这个基础,结合安全平方公式有和、差两种形式,配齐交叉项,根据恒等变形的性质,建立等式求解即可.【详解】解:∵二次三项式x 2−2(x +1)x +4是完全平方式,∴x 2−2(x +1)x +4=22(2)44x x x -=-+或x 2−2(x +1)x +4=(x +2)2=x 2+4x +4, ∴−2(x +1)=4或−2(x +1)=−4,解得k =﹣3或k =1,故答案为:﹣3或1.【点睛】本题考查了完全平方公式的应用,正确理解完全平方公式有和与差两种形式是解题的关键.3、103 【分析】 根据等腰三角形的等边对等角可得∠ABC =∠C =∠BDC ,根据相似三角形的判定证明△ABC ∽△BDC ,根据相似三角形的性质求解即可. 【详解】 解:∵AB =AC ,BD =BC , ∴∠ABC =∠C ,∠C =∠BDC , ∴△ABC ∽△BDC ,∴xx xx =xx xx , ∵AB =AC =6,BC =4,BD =BC ,∴64=4xx , ∴xx =83, ∴AD =AC -CD =6-83=103, 故答案为:103. 【点睛】 本题考查等腰三角形的性质、相似三角形的判定与性质,熟练掌握等腰三角形的性质和相似三角形的判定与性质是解答的关键. 4、185 【分析】 ·线○封○密·○外利用点M关于AC的对称点确定N点,当x、x、x′三点共线且xx′⊥xx时,xx+xx′的长取得最小值,再利用三角形的面积公式求出xx′,在利用勾股定理求xx′后即可求出△xxx 的面积.【详解】∵xx为△xxx的角平分线,将xx沿xx翻折,∴x的对应点x′一定在xx边上.∴xx+xx=xx+xx′∴当x、x、x′三点共线且xx′⊥xx时,xx+xx′的长取得最小值∵在xx△xxx中,xx=5,4BC ,∴xx=3∵x△xxx=12xx⋅xx′=12xx⋅xx∴xx′=125∴在xx△xx′x中,xx′=√xx2−x′x2=95=xx∴x△xxx=12xx⋅xx=12×95×4=185.【点睛】本题考查了最短路径问题以及勾股定理,灵活运用勾股定理是解题的关键.5、24x【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的底面积和侧面积公式代入求出即可. 【详解】 ∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的底面积为:xx 2=9x ,圆锥的侧面积为:xxx =x ×3×5=15x , ∴圆锥的全面积为:9x +15x =24x 故答案为:24x . 【点睛】 本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键. 三、解答题1、6【分析】由ABC EDF △≌△全等的性质可知AC =EF ,进而推得AE =CF ,故()12AE AF CE =-. 【详解】 ∵ABC EDF △≌△ ∴AC =EF ∵AC AE CE EF CF CE =+=+,∴AE =CF ∴()()111208126222AE AF CE =-=-=⨯= 【点睛】 ·线○封○密○外本题考查了全等三角形的性质,全等三角形的对应边相等,对应角相等,可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等.2、(1)B(2)二;3(4)y y ---应该等于y(3)44x y =⎧⎨=⎩【分析】(1)②−③消去了x ,得到了关于y 的一元一次方程,所以这是加减消元法;(2)第二步开始出现错误,具体错误是−3y −(−4y )应该等于y ;(3)解方程组即可.(1)解:②-③消去了x ,得到了关于y 的一元一次方程,故答案为:B ;(2)解:第二步开始出现错误,具体错误是()34y y ---应该等于y ,故答案为:二;()34y y ---应该等于y ;(3)解:②-③得4y =, 将4y =代入①,得:4x =, ∴原方程组的解为44x y =⎧⎨=⎩. ·线故答案为:44x y =⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解法,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.3、(1)12a b =⎧⎨=-⎩ (2)见解析【分析】(1)利用待定系数法将()()1,4,1,0A B --两点代入抛物线求解即可得;(2)根据(1)中结论确定函数解析式,求出与x ,y 轴的交点坐标及对称轴,然后用光滑的曲线连接即可得函数图象.(1)解:∵二次函数23y ax bx =+-的图象经过()()1,4,1,0A B --两点,∴3430a b a b +-=-⎧⎨--=⎩, 解得:12a b =⎧⎨=-⎩ . (2)解:由(1)可得:函数解析式为:223y x x =--,当0y =时,2230x x --=,解得:11x =-,23x =,∴抛物线与x 轴的交点坐标为:()1,0-,()3,0,抛物线与y 轴的交点坐标为:()0,3-, 对称轴为:21221b x a -=-=-=⨯, 根据这些点及对称轴在直角坐标系中作图如下.【点睛】题目主要考查待定系数法确定函数解析式及作函数图象,熟练掌握待定系数法确定函数解析式是解题关键.4、(1)114,112(2)见解析(3)1<114<112<223<235 【分析】 (1)根据数轴直接写出A 、B 所表示的数即可;·线(2)根据最小的正整数是1,38的倒数是223,然后据此在数轴上找到C 、D 、E 即可; (3)将A 、B 、C 、D 、E 表示的数从小到大排列,再用 “<”连接即可.(1)解:由数轴可知A 、B 表示的数分别是:114,112. 故答案为:114,112. (2)解:∵最小的正整数是1,38的倒数是223∴C 表示的数是1,D 表示的数是223, ∴如图:数轴上的点C 、D 、E 即为所求.(3)解:根据(2)的数轴可知,将点A 、B 、C 、D 、E 表示的数用“<”连接如下:1<114<112<223<235. 【点睛】本题主要考查了在数轴上表示数、倒数、最小的正整数、倒数以及利用数轴比较有理数的大小,在数轴上正确表示有理数成为解答本题的关键.5、3173172.44x y x y【分析】 先令22230,x xy y 把y 看作是常数,再解一元二次方程可得12317317,,44x y x y 从而可得因式分解的答案.【详解】解:令22230,x xy y222=342170,yy y 317,4y y x 12317317,,44x y x y 22317317232.44x xy y x y x y【点睛】本题考查的是在实数范围内进行因式分解,一元二次方程的解法,掌握“利用公式法解一元二次方程”是解本题的关键.。
(精品中考卷)广东省中考数学真题(解析版)
2022年广东省初中学业水平考试数学本试卷共4页,23小题,满分120分.考试用时90分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号.将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2-的值等于()A. 2B.12- C. 12D. ﹣2【答案】A【解析】【详解】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A.2. 计算22的结果是()A. 1B.C. 2D. 4【答案】D【解析】【分析】利用乘方的意义计算即可.【详解】解:22224=⨯=故选:D .【点睛】本题考查有理数的乘方,熟练掌握乘方的意义是解答本题的关键.3. 下列图形中具有稳定性的是( )A. 平行四边形B. 三角形C. 长方形D. 正方形【答案】B【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性可得结论. 详解】解:三角形具有稳定性;故选:B .【点睛】本题考查了三角形的稳定性和四边形的不稳定性,比较简单.4. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=40°,则∠2等于( )A. 30°B. 40°C. 50°D. 60°【答案】B【解析】 【分析】两条平行线被第三条直线所截,同位角相等.即:两直线平行,同位角相等.【详解】 //a b ,140∠=︒,∴240∠=︒.故选B .【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 5. 如图,在ABC 中,4BC =,点D ,E 分别为AB ,AC 的中点,则DE =( )A. 14B. 12 C. 1 D. 2【答案】D【解析】【【分析】利用中位线的性质即可求解.【详解】∵D 、E 分比为AB 、AC 的中点,∴DE 为△ABC 的中位线, ∴12DE BC =, ∵BC =4,∴DE =2,故选:D .【点睛】本题考查了中位线的判定与性质,掌握中位线的判定与性质是解答本题的关键. 6. 在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( )A. ()3,1B. ()1,1-C. ()1,3D. ()1,1- 【答案】A【解析】【分析】把点()1,1的横坐标加2,纵坐标不变,得到()3,1,就是平移后的对应点的坐标.【详解】解:点()1,1向右平移2个单位长度后得到的点的坐标为()3,1.故选A .【点睛】本题考查了坐标与图形变化﹣平移.掌握平移的规律是解答本题的关键. 7. 书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为( ) A. 14 B. 13 C. 12 D. 23【答案】B【解析】【分析】根据概率公式直接求概率即可;【详解】解:一共有3本书,从中任取1本书共有3种结果,选中的书是物理书的结果有1种,∴从中任取1本书是物理书的概率=13, 故选: B .【点睛】本题考查了概率的计算,掌握概率=所求事件的结果数÷总的结果数是解题关键. 8. 如图,在ABCD 中,一定正确的是( )A. AD CD =B. AC BD =C. AB CD =D. CD BC =【答案】C【解析】【分析】根据平行四边形的性质:平行四边形的对边相等,然后对各选项进行判断即可.【详解】解:∵四边形ABCD 是平行四边形∴AB =CD ,AD =BC故选C .【点睛】本题考查了平行四边形的性质.解题的关键在于熟练掌握平行四边形的性质. 9. 点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( )A. 1yB. 2yC. 3yD. 4y 【答案】D【解析】【分析】根据反比例函数的性质可直接进行求解. 【详解】解:由反比例函数解析式4y x=可知:40>, ∴在每个象限内,y 随x 的增大而减小, ∵点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x =图象上, ∴1234y y y y >>>,故选D .【点睛】本题主要考查反比例函数的性质,熟练掌握反比例函数的性质是解题的关键. 10. 水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为2πC r =.下列判断正确的是( )A. 2是变量B. π是变量C. r 是变量D. C 是常量【答案】C【解析】【分析】根据变量与常量的定义分别判断,并选择正确的选项即可.【详解】解:2与π为常量,C 与r 为变量,故选C .【点睛】本题考查变量与常量概念,能够熟练掌握变量与常量的概念为解决本题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11. sin30°的值为_____. 【答案】12【解析】【详解】试题分析:根据特殊角的三角函数值计算即可:sin30°=12.12. 单项式3xy 的系数为___________.【答案】3【解析】【分析】单项式中数字因数叫做单项式的系数,从而可得出答案.【详解】3xy 的系数是3,故答案为:3.【点睛】此题考查了单项式的知识,解答本题的关键是掌握单项式系数的定义. 13. 菱形的边长为5,则它的周长为____________.【答案】20【解析】【分析】根据菱形的四条边相等,即可求出.【详解】∵菱形的四条边相等.∴周长:5420⨯=,故答案为:20.【点睛】本题考查菱形的性质;熟练掌握菱形的性质是本题解题关键.14. 若1x =是方程220x x a -+=的根,则=a ____________.【答案】1【解析】【分析】本题根据一元二次方程的根的定义,把x =1代入方程得到a 的值.【详解】把x =1代入方程220x x a -+=,得1−2+a =0,解得a =1,故答案:1. 的为【点睛】本题考查的是一元二次方程的根即方程的解的定义,一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.15. 扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为____________.【答案】π【解析】【分析】根据扇形面积公式可直接进行求解. 【详解】解:由题意得:该扇形的面积为2902360ππ⨯⨯=; 故答案为π.【点睛】本题主要考查扇形面积公式,熟练掌握扇形的面积公式是解题的关键.三、解答题(一):本大题共3小题,每小题8分,共24分.16. 解不等式组:32113x x ->⎧⎨+<⎩. 【答案】12x <<【解析】【分析】分别解出两个不等式,根据求不等式组解集的口诀得到解集.【详解】解:32113x x ->⎧⎨+<⎩①②解①得:1x >,解②得:2x <,∴不等式组的解集是12x <<.【点睛】本题考查求不等式组的解集,掌握求不等式组解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解题关键.17. 先化简,再求值:211a a a -+-,其中5a =. 【答案】21a +,11【解析】【分析】利用平方差公式约分,再合并同类项可;【详解】解:原式=()()111211a a a a a a a +-+=++=+-, a =5代入得:原式=2×5+1=11;【点睛】本题考查了分式化简求值,掌握平方差公式是解题关键.18. 如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为的D ,E .求证:OPD OPE ≌V V .【答案】见解析【解析】【分析】根据角平分线的性质得PD PE =,再用HL 证明OPD OPE ≌V V .【详解】证明:∵AOC BOC ∠=∠,∴OC 为AOB ∠的角平分线,又∵点P 在OC 上,PD OA ⊥,PE OB ⊥,∴PD PE =,90PDO PEO ∠=∠=︒,又∵PO PO =(公共边),∴()HL OPD OPE ≌.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【答案】学生人数为7人,该书的单价为53元.【解析】【分析】设学生人数为x 人,然后根据题意可得8374x x -=+,进而问题可求解.【详解】解:设学生人数为x 人,由题意得:8374x x -=+,解得:7x =,∴该书的单价为77453⨯+=(元),答:学生人数为7人,该书的单价为53元.【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.20. 物理实验证实:在弹性限度内,某弹簧长度y (cm )与所挂物体质量x (kg )满足函数关系15y kx =+.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x 0 2 5y 15 19 25(1)求y 与x 的函数关系式;(2)当弹簧长度为20cm 时,求所挂物体的质量.【答案】(1)215y x =+(2)所挂物体的质量为2.5kg【解析】【分析】(1)由表格可代入x =2,y =19进行求解函数解析式;(2)由(1)可把y =20代入函数解析式进行求解即可.【小问1详解】解:由表格可把x =2,y =19代入解析式得: 21519k +=,解得:2k =,∴y 与x 的函数关系式为215y x =+;【小问2详解】解:把y =20代入(1)中函数解析式得:21520x +=,解得: 2.5x =,即所挂物体的质量为2.5kg .【点睛】本题主要考查一次函数的应用,解题的关键是得出一次函数解析式. 21. 为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10,4,7,5,4,10,5,4,4,18,8,3,5,10,8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?【答案】(1)作图见解析;(2)月销售额在4万元的人数最多;中间的月销售额为5万元;平均数为7万元;(3)月销售额定为7万元合适,【解析】【分析】(1)根据所给数据确定销售额为4万元的人数为4人;销售额为8万元的人数为2人,然后补全条形统计图即可;(2)根据众数、中位数及平均数的计算方法求解即可;(3)根据题意,将月销售额定为7万元合适.【小问1详解】解:根据数据可得:销售额为4万元的人数为4人;销售额为8万元的人数为2人;补全统计图如图所示:【小问2详解】由条形统计图可得:月销售额在4万元的人数最多;将数据按照从小到大排序后,中间的月销售额为第8名销售员的销售额为5万元; 平均数为:3144537182103181715⨯+⨯+⨯+⨯+⨯+⨯+⨯=万元; 小问3详解】月销售额定为7万元合适,给予奖励,可以激发销售员的积极性,振兴乡村经济.【点睛】题目主要考查条形统计图及相关统计数据的计算方法,包括,众数、中位数、平均数,以及利用平均数做决策等,理解题意,综合运用这些知识点是解题关键.五、解答题(三):本大题共2小题,每小题12分,共24分.22. 如图,四边形ABCD 内接于O ,AC 为O 的直径,ADB CDB ∠=∠.(1)试判断ABC 的形状,并给出证明;(2)若AB =,1AD =,求CD 的长度.【答案】(1)△ABC 是等腰直角三角形;证明见解析;(2【解析】【分析】(1)根据圆周角定理可得∠ABC =90°,由∠ADB =∠CDB 根据等弧对等角可得∠ACB =∠CAB ,即可证明;(2)Rt △ABC 中由勾股定理可得AC ,Rt △ADC 中由勾股定理求得CD 即可;【【小问1详解】证明:∵AC 是圆的直径,则∠ABC =∠ADC =90°,∵∠ADB =∠CDB ,∠ADB =∠ACB ,∠CDB =∠CAB ,∴∠ACB =∠CAB ,∴△ABC 是等腰直角三角形;【小问2详解】解:∵△ABC 是等腰直角三角形,∴BC =AB ,∴AC 2=,Rt △ADC 中,∠ADC =90°,AD =1,则CD =∴CD ; 【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理等知识;掌握等弧对等角是解题关键.23. 如图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,()1,0A ,4AB =,点P 为线段AB 上的动点,过P 作PQ BC ∥交AC 于点Q .(1)求该抛物线的解析式;(2)求CPQ 面积的最大值,并求此时P 点坐标.【答案】(1)223y x x =+-(2)2;P (-1,0)【解析】【分析】(1)用待定系数法将A ,B 的坐标代入函数一般式中,即可求出函数的解析式;(2)分别求出C 点坐标,直线AC ,BC 的解析式,PQ 的解析式为:y =-2x +n ,进而求出P ,Q 的坐标以及n 的取值范围,由CPQ CPA APQ S S S =-△△△列出函数式求解即可.【小问1详解】解:∵点A (1,0),AB =4,∴点B 的坐标为(-3,0),将点A (1,0),B (-3,0)代入函数解析式中得:01093b c b c =++⎧⎨=-+⎩, 解得:b =2,c =-3,∴抛物线的解析式为223y x x =+-;【小问2详解】解:由(1)得抛物线的解析式为223y x x =+-,顶点式为:2y (x 1)4=+-,则C 点坐标为:(-1,-4),由B (-3,0),C (-1,-4)可求直线BC 的解析式为:y =-2x -6,由A (1,0),C (-1,-4)可求直线AC 的解析式为:y =2x -2,∵PQ ∥BC ,设直线PQ 的解析式为:y =-2x +n ,与x 轴交点P ,02n ⎛⎫ ⎪⎝⎭, 由222y x n y x =-+⎧⎨=-⎩解得:22,42n n Q +-⎛⎫ ⎪⎝⎭, ∵P 在线段AB 上, ∴312n -<<, ∴n 的取值范围为-6<n <2,则CPQ CPA APQ S S S =-△△△11214122222n n n -⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()21228n =-++ ∴当n =-2时,即P (-1,0)时,CPQ S △最大,最大值为2.【点睛】本题考查二次函数的面积最值问题,二次函数的图象与解析式间的关系,一次函数的解析式与图象,熟练掌握数形结合思想是解决本题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省清远市中考数学试题及答案Prepared on 24 November 2020★机密·启用前2011年清远市初中毕业生学业考试数学科试题说明:1.全卷共4页,考试时间为100分钟,满分120分.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题的标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,再用黑色字迹的钢笔或签字笔描黑.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生务必保持答题卡的整洁.考试结束时,将本试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母涂在相应题号的答题卡上.1.(11·清远)—3的倒数是A.3 B.—3 C.13D.—13【答案】D2.(11·清远)数据2、2、3、4、3、1、3的众数是A.1 B.2 C.3 D.4 【答案】C3.(11·清远)图1中几何体的主视图是【答案】C4.(11·清远)据媒体报道,我国因环境问题造成的经济损失每年高达680 000 000元,这个数用科学记数法可表示为A.×109B.×108C.×107D.68×107【答案】BB.A.C.D.C B OA图25.(11·清远)下列选项中,与xy 2是同类项的是 A .—2xy 2 B .2x 2yC .xyD .x 2y 2【答案】A6.(11·清远)已知∠α=35°,则∠α的余角是 A .35° B .55°C .65°D .145°【答案】B7.(11·清远)不等式x —1>2的解集是 A .x >1 B .x >2C .x >3D .x <3【答案】C8.(11·清远)如图2,点A 、B 、C 在⊙O 上,若∠BAC =20º,则∠BOC 的度数为 A .20º B .30ºC .40ºD .70º【答案】C9.(11·清远)一次函数y =x +2的图象大致是【答案】A10.(11·清远)如图3,若要使平行四边形 ABCD 成为菱形,则需要添加的条件是 A .AB =CDB .AD =BC C .AB =BCD .AC =BD【答案】C二、填空题(本大题共6小题,每小题3分,共18分)请把下列各题的正确答案填写在相应师号的答题卡.11.(11·清远)计算:2x 2·5x 3= _ ▲ .【答案】10x 712.(11·清远)分解因式:2x 2-6x =_ ▲ .【答案】2x (x -3)ABCD图3 xy Oxy O x y O x y O B .A .C .D .13.(11·清远)反比例函数y =kx 的图象经过点P(-2,3),则k 的值为 _ ▲ .【答案】y =- 6x14.(11·清远)已知扇形的圆心角为60°,半径为6,则扇形的弧长为_ ▲ .(结果保留π)【答案】2π15.(11·清远)为了甲、乙、丙三位同学中选派一位同学参加环保知识竞赛,老师对他们的五次环保知识测验成绩进行了统计,他们的平均分均为85分,方差分别为S 2甲=18,S 2乙=12,S 2丙=23.根据统计结果,应派去参加竞赛的同学是 _ ▲ .(填“甲”、乙、“丙”中的一个) 【答案】(填)16.(11·清远)如图4,在□ABCD 中,点E 是CD 的中点,AE 、BC 的延长线交于点F .若△ECF的面积为1,则四边形ABCE 的面积为 _ ▲ .【答案】三、解答题(本大题共5小题,每小题6分,共30分) 17.(11·清远)计算:9+2cos60º+(12)-1-20110.【答案】原式=3+1+2-1=5 18.(11·清远)解方程:x 2-4x -1=o .【答案】【答案】方法一:由原方程,得(x -2)2=5 x +2=± 5 ∴x =-2± 5方法一:△=20, x =-4±202∴x =-2± 519.(11·清远)△ABC 在方格纸中的位置如图5所示,方格纸中的每个小正方形的边长为1个单位.(1)△A 1B 1C 1与△ABC 关于纵轴 (y 轴) 对称,请你在图5中画出△A 1B 1C 1;ABD 图4EF(2)将△ABC 向下平移8个单位后得到△A 2B 2C 2,请你在图5中画出△A 2B 2C 2.【答案】20.(11·清远)先化简、再求值:(1-1x +1)÷x x 2-1,其中x =2+1. 【答案】原式=(x +1x +1-1x +1)÷x x 2-1=x x +1×x 2-1x =x x +1×(x -1)( x +1)x =x -121.(11·清远)如图6,小明以3米/秒的速度从山脚A 点爬到山顶B 点,已知点B 到山脚的垂直距离BC 为24米,且山坡坡角∠A 的度数为28º,问小明从山脚爬上山顶需要多少时间(结果精确到).(参考数据:sin28º=,cos28º=,tan28º=)xy OACB图B 1B 2C 2C 1xy OACB图【答案】在Rt△ABC中,BC=24,∠A=28º,AB=BC÷sin∠A=24÷≈∴小明从山脚爬上山顶需要时间=÷3≈ (秒)答:小明从山脚爬上山顶需要秒四、解答题(本大题共3小题,每小题8分,共24分)22.(11·清远)如图2,AB是⊙O的直径,AC与⊙O相切,切点为A,D为⊙O上一点,AD与OC 相交于点E,且∠DAB=∠C.(1)求证:OC∥BD;(2)若AO=5,AD=8,求线段CE的长.【答案】(1)∵AB是⊙O的直径,∴∠ADB=90º,∵AC与⊙O相切,∴∠CAB=90º,∵∠DAB=∠C∴∠AOC=∠B∴OC∥BD(2)∵AO=5,∴AB=10,又∵AD=8,∴BD=6∵O为AB的中点,OC∥BD,∴OE=3,∵∠DAB=∠C,∠AOC=∠B∴△AOC∽△DBA∴COAB=AODB∴CO10=56∴CO=253∴CE=CO-OE=253-3=163OA图7CDEA图623.(11·清远)在一个不透明的口袋中装有白、黄两种颜色的乒乓球(除颜色外其余相同),其中黄球有1个,从袋中任意摸出一个球是黄球的概率为1 3.(1)求袋中白球的个数;(2)第一次摸出一个球,做好记录后放回袋中,第二次再摸出一个球,请用列表或画状图的方法求两次都摸到黄球的概率.【答案】(1)1÷13=3(个)∴白球的个数=3-1=2(2)列表如下:黄白1白2黄(黄,黄)(黄,白1)(黄,白2)白1(白1,黄)(白1,白1)白1,白2)白2(白2,黄)(白2,白1)(白2,白2)∴共有16种不同的情况,两次都摸出黄球只有一种情况,故两次都摸到黄于的概率是1 924.(11·清远)如图8,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.(1)求证:AB=DF;(2)若AD=10,AB=6,求tan∠EDF的值.【答案】(1)在矩形ABCD中,AD∥BC,AD=BC,∠ABE=90º∴∠DAE=∠AEB,又∵AE=BC ∴AE=AD∵DF⊥AE ∠AFD=90º∴∠AFD=∠ABE∴△ABE≌△DFA∴AB=DF(2)∵△ABE≌△DFA ∴AB=DF=6 AE=AD=10在Rt△ADF中,AD=10 DF=6 ∴AF=8 ∴EF=2在Rt△DFE中,tan∠EDF=EFDF=1 3B图8CD EF五、解答题(本大题共2小题,每小题9分,共18分)25.(11·清远)某电器城经销A 型号彩电,今年四月份每台彩电售价为2000元,与去年同期相比,结果卖出彩电的数量相同,但去年销售额为5万元,今年销售额只有4万元. (1)问去年四月份每台A 型号彩电售价是多少元(2)为了改善经营,电器城决定再经销B 型号彩电.已知A 型号彩电每台进货价为1800元,B 型号彩电每台进货价为1500元,电器城预计用不多于万元且不少于万元的资金购进这两种彩电共20台,问有哪几种进货方案(3)电器城准备把A 型号彩电继续以原价每台2000元的价格出售,B 型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获得最大最大利润是多少 【答案】(1)设去年四月份每台A 型号彩电售价是x 元50000x =400002000 ∴x =2500经检验x =2500 满足题意答:去年四月份每台A 型号彩电售价是2500元≤≥ (2)设购进A 型号彩电y 台,则购进B 型号彩电(20-y )台 根据题意可得:⎩⎨⎧1800y +1500(20-y )≥320001800y +1500(20-y )≤33000解得203≤y ≤10 ∵y 是整数∴y 可取的值为7,8,9,10共有以下四种方案:购进A 型号彩电7台,则购进B 型号彩电13台 购进A 型号彩电8台,则购进B 型号彩电12台 购进A 型号彩电9台,则购进B 型号彩电11台 购进A 型号彩电10台,则购进B 型号彩电10台(3)设利润为W 元,则W =(2000-1800) y +(1800-1500) (20-y )=6000-100 y ∵W 随y 的增大而减小 ∴y 取最小值7时利润最大 W =6000-100 y =6000-100×7=5300(元)购进A 型号彩电7台,则购进B 型号彩电13台时,利润最大,最大利润是5300元26.(11·清远)如图9,抛物线y =(x +1)2+k 与x 轴交于A 、B 两点,与y 轴交于点C (0,-3). (1)求抛物线的对称轴及k 的值;(2)抛物线的对称轴上存在一点P ,使得PA +PC 的值最小,求此时点P 的坐标; (3)点M 是抛物线上一动点,且在第三象限.x yO CAB Px yO CA B M① 当M 点运动到何处时,△AMB 的面积最大求出△AMB 的最大面积及此时点M 的坐标; ② 当M 点运动到何处时,四边形AMCB 的面积最大求出四边形AMCB 的最大面积及此时点M 的坐标.【答案】(1)抛物线的对称轴为直线x =-1,把C (0,-3)代入y =(x +1)2+k 得 -3=1+k ∴k =-4 (2)连结AC ,交对称轴于点P∵y =(x +1)2-4 令y =0 可得(x +1)2-4=0∴x 1=1 x 2=-3 ∴A (-3,0) B (1,0)设直线AC 的关系式为:y =m x +b把A (-3,0),C (0,-3)代入y =m x +b 得, -3m +b =0 b =-3 ∴m =-1 ∴线AC 的关系式为y =-x -3 当x =-1时,y =1-3=-2 ∴P (-1,-2)② 当M 点运动到何处时,四边形AMCB 的面积最大求出四边形AMCB 的最大面积及此时点M 的坐标.(3)① 设M 的坐标为(x , (x +1)2-4) ∴S △AMB =12×AB ×|y m |=12×4×[4-(x +1)2]=8-2(x +1)2当x =-1时,S 最大,最大值为S =8 M 的坐标为(-1,-4)② 过M 作x 轴的垂线交于点E ,连接OM ,S 四边形AMCB =S △AMO +S △CMO +S △CBO =12×AB ×|y m |+12×CO ×|x m |+12×OC ×BOx yO CAB=6-32 (x+1)2+12×3×(-x)+12×3×1=-32x2-92x+6=-32(x2+3x-9)=-32(x+32)2-818当x=-32时,S最大,最大值为818。