五年级奥数专题09:图形的计数

合集下载

小学五年级奥数专题之几何计数题一及答案

小学五年级奥数专题之几何计数题一及答案

A B C D 1、分别用枚举法、、分别用枚举法、组合组合法数下列图形:法数下列图形:有多少条有多少条线段线段?E F 有多少个角?有多少个角?有多少个有多少个三角形三角形?有多少个有多少个长方形长方形? 有多少个有多少个梯形梯形?有多少个正方形?有多少个正方形?取出一个由四个小方格组成的田形,一共有多少种不同的方法?的田形,一共有多少种不同的方法?2、如图6-27,这是一个4×8的矩形的矩形网格网格,每一个小格都是一个正方形。

请问:⑴包含有两个“★”的矩形共有多少个?⑴包含有两个“★”的矩形共有多少个?⑵至少包含一个“★”的矩形有多少个?⑵至少包含一个“★”的矩形有多少个?3、如图6-21,木板上钉着12枚钉子,排成三行四列的长枚钉子,排成三行四列的长方阵方阵。

用橡皮筋一共可以套出多少个不同的三角形?少个不同的三角形?4、如图,如图,在在半圆弧及其直径上共有9个点,个点,以这些点以这些点为顶点可以画出多少个为顶点可以画出多少个四边形四边形?多少个多少个三角形三角形?5、一个三角形的3条边上共有7个点,画出这7个点之间的全部连线(同一条边上的(同一条边上的两点两点不画)后,发现在这些连线的发现在这些连线的交点交点没有出现过重合;没有出现过重合;请问三角形内共有多少个交请问三角形内共有多少个交点?点?答案:答案: 1、C 2 6=15;C 2 5=10;C 2 5=10;30;C 2 5·C 25=100;60;25 2、30;162 3、C 3 12-20=200 4、C 4 9-1-C 3 4·C 1 5=105 5、C 4 7-4=27 。

图形的计数奥数拓展

图形的计数奥数拓展

千里之行,始于足下。

图形的计数【奥数拓展】
【例1】
下面的图形有多少个?你会数吗?
【例2】
你能按照这个侧面图算算砌好这面墙一共需要多少块砖吗?
【例3】
数一数,下面的方块各有多少?
如图所示为一堆转,中央最高一摞是10块,它的左右两边各是9块,再往两边是8块、7块、6块、5块、4块、3块、2块、1块。

问:这堆砖共有多少块?
第 1 页/共 3 页
朽木易折,金石可镂。

【例4】
下面这堆木方块共有多少块?(中间画阴影的部分从上到下是空心)
这堆木方块共有多少块?(中间画阴影的部分从上到下是空心)
【例5】
用10个小正方体摆成一个“工”字形(如下图),然后又将表面涂成粉色(下面也被涂色),最后又把小正方体分开,数一数;
⑴3面涂成粉色的小正方体有( )个。

⑵4面涂成粉色的小正方体有( )个。

⑶5面涂成粉色的小正方体有( )个。

千里之行,始于足下。

将8个小立方块组成“丁”字型,再将表面都涂成粉色,然后再把小立方块分开。

⑴3面被涂成粉色的小立方块有( )个。

⑵4面被涂成粉色的小立方块有( )个。

⑶5面被涂成粉色的小立方块有( )个。

第 3 页/共 3 页。

五年级上册数学试题-奥数:图形定稿全国通用

五年级上册数学试题-奥数:图形定稿全国通用

(2)
3
例 6.如图,从甲地到乙地有 2 条路可走,从乙地到丙地有 3 条路可走;从甲地到丁地有 4 条路可走, 从丁地到丙地有 2 条路可去。从甲地到丙地共有多少种不同的走法?
【试一试】 1、如果线段 AB 上共有 8 个点(包括 A、B 两点),那么,共有多少条线段?
2、联结 A、B、C、D 四个城市的道路如图所示: (1)从 A 城经 B 城到 C 城的不同走共有多少种? (2)从 A 城到 C 城的不同走法共有多少种?
厘米?
AE
FB
D H
【试一试】
GC
1、求出阴影部分的周长。
2、如右图,阴影部分是正方形,求出最大的长方形的周长。
5 厘米
A
B
E
H
7 厘米
C
D
E
G
当堂测试
1、下图是一个锯齿状的零件,每一个锯齿的两条线段都长 2 厘米,求这个零件的周长.
2、求图 12、图 13 的周长。
3、图 14 是一座楼房的平面图,这座楼房平面图的周长是多少米?
例 1.一个等腰三角形中,有一个内角的度数是另一个内角的 4 倍,则这个等腰三角形的顶角是 _________度。
【试一试】
1、17 点整,钟面上的分针和时针所组成的角是( )。
A、锐角
B、直角
C、钝角
D、平角
2、在直角、锐角、平角、钝角中,度数最小的角是( )。
A、 直角
B、锐角
C、平角
D、钝角
3、在一个直角三角形中,已知一个锐角是 68°,则另一个锐角是( )。
能力测试(一)…………………………………………………………………25
第六讲
割补 …………………………………………………………28

五年级奥数-数图形.

五年级奥数-数图形.

练习2.数一数,下图中有多少个三角形?
12 3 4
1 234 5
(4+3+2+1)×2=20 个
(5+4+3+2+1)×3=45 个
例4.数一数,下图中有多少个角?
1
11
2
3
4
2
4+3+2+1=10 个
拓展1. 数一数,下图中有几个三角形?
拆除2条红线和蓝绿线后有三角 形 14个 2条红线返回后增加6个三角形
绿线返回后增加10个三角形
蓝线返回后增加14个三角形
还可以这样数: 单个三角形 16个 2个三角形组合16个 4个三角形组合8个
8个三角形组合4个
总共16+16+8+4=44 个
总共14+6+10+14= 44个
拓展2、数出下面图形中分别有多少个三 角形?
红线退出后有3个三角形。 红线返回后有增2个三角形。
20 16 8
20+16+8+4= 48 个
数一数,图中有多少个正方形?
51
5+4+1= 10 个
数一数,图中有多少个长方形?
3 13 3
20 3+3+3+1=

设想大 长方形消失 则有15+10-1=24个
还原大长方形则增4

总共24+4总= 共282个8个
数一数,下图中有多少个三角形?
还可以这样数:
线段总数=端点数×基本线段数÷2
数线段:方法二
31542
共5+4+3+2+1= 15条线段

小学奥数 图形计数 知识点+例题+练习 (分类全面)

小学奥数 图形计数 知识点+例题+练习 (分类全面)

一、图形计数
要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。

要正确数出图形的个数,关键是要从基本图形入手。

首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。

例1、数出下图中有多少条线段?
巩固、数出下图中有几个长方形?
例2、数出图中有几个角?
D A B
C O
D C
B
A
巩固、数出图中有几个角?
例3、数出下图中共有多少个三角形?
巩固、数出图中共有多少个三角形?
例4、数出下图中有多少个长方形?
O C B A
P
C B A K G I H G F E A
D C B A
巩固、数出下图中有多少个正方形?
课后练习:
1、数出下图中有多少条线段?
2、数出图中有几个角?
E
A B C D E D
O
C B A
3、数出图中共有多少个三角形?
4、数出下图中有多少个长方形?
A
B A D
C B A。

(完整word版)五年级奥数专题09:图形的计数

(完整word版)五年级奥数专题09:图形的计数

A 3A 1OA 2A 4A 5A 7A 6A 8A 9A 10A 11 A 12九 图形的计数(A)年级 班 姓名 得分一、填空题1.下图中一共有( )条线段.2. 如右上图,O 为三角形A 1A 6A 12的边A 1A 12上的一点,分别连结OA 2,OA 3,…OA 11,这样图中共有_____个三角形。

3。

下图中有_____4。

右上图中共有_____个梯形。

5. 数一数(1)一共有( )个长方形。

2)一共有( ) (1) (2)6. 在下图中,所有正方形的个数是______.AC D E7. 在一块画有4⨯4方格网木板上钉上了25颗铁钉(如下图),如果用线绳围正方形,最多可以围出_____个.8. 一块相邻的横竖两排距离都相等的钉板,上面有4⨯4个钉(如右图).以每个钉为顶点,你能用皮筋套出正方形和长方形共_____个.9. 如下图,方格纸上放了20枚棋子,以棋子为顶点的正方形共有_____个.10. 数一数,下图是由_____个小立方体堆成的.要注意那些看不见的。

二、解答题11. 右图中共有7层小三角形,求白色小三角形的个数与黑色小三角形的个数之比.12. 下图中,AB、CD、EF、MN互相平行,则图中梯形个数与三角形个数的差是多少?13.现在都是由边长为1厘米的红色、白色两种正方形分别组成边长为2厘米、4厘米、8厘米、9厘米的大小不同的正方形、它们的特点都是正方形的四边的小正方形都是涂有红颜色的小正方形,除此以外,都是涂有白色的小正方形,要组成这样4个大小不同的正方形,总共需要红色正方形多少个?白色正方形多少个?14.将ABC的每一边4等分,过各分点作边的平行线,在所得下图中有多少个平行四边形?九图形的计数(B)年级班姓名得分一、填空题1。

下图中长方形(包括正方形)总个数是_____。

2。

右上图中有正方形_____个,三角形_____个,平行四边形_____个,梯形_____个。

数图形有绝招小学奥数

数图形有绝招小学奥数

3 13
3
3+3+3+1=
20个
设想大 长方形消失则 有15+10-1=24个
还原大长方形则增4个
28 总共24+4= 总共2个8个
谢谢使用
2023
拓展21. 数一数,图中有多少个正方形?
15+6+1=

22
9+2=

11
拓展22. 数一数,图中 有多少个正方形?
5+11=

5
11
16
拓展23. 数一数,图中有多 少三角方形?
20+16+8+4=

48
20
16
8
4
4
1
拓展24. 数一数,图中有多 少个正方形?
5+4+1=

5
10
拓展25. 数一数,图中有多少个长方形?
总共(4+3+2+1)×3=

30
拓展15. 数一数,图中有多少个长方形?
(4+3+2+1)×(4+3+2+1)=

6+5+4+3+2+1=

100
21
拓展16. 数一数,图中有
多少个正方形?
4

32
55
A
B
25 10
16
6×3+5×2+4×1=

9
1
5×5+4×4+3×3+2×2+
1=

C

小学五年级奥数题大全及答案(更新版)

小学五年级奥数题大全及答案(更新版)

小学五年级奥数题大全及答案五年级奥数1、小数的巧算2、数的整除性3、质数与合数4、约数与倍数5、带余数除法6、中国剩余定理7、奇数与偶数8、周期性问题9、图形的计数10、图形的切拼11、图形与面积12、观察与归纳13、数列的求和14、数列的分组15、相遇问题16、追及问题17、变换和操作18、逻辑推理19、逆推法20、分数问题1.1小数的巧算(一)年级班姓名得分一、填空题1、计算 1.135+3.346+5.557+7.768+9.979=_____.2、计算 1.996+19.97+199.8=_____.3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.5、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.6、计算 2.89⨯4.68+4.68⨯6.11+4.68=_____.7、计算 17.48⨯37-17.48⨯19+17.48⨯82=_____.8、计算 1.25⨯0.32⨯2.5=_____.9、计算 75⨯4.7+15.9⨯25=_____.10、计算 28.67⨯67+32⨯286.7+573.4⨯0.05=_____.二、解答题11、计算 172.4⨯6.2+2724⨯0.3812、计算 0.00...0181⨯0.00 (011)963个0 1028个013、计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.2314、下面有两个小数:a=0.00...0105 b=0.00 (019)1994个0 1996个0求a+b,a-b,a⨯b,a÷b.1.2小数的巧算(二)年级班姓名得分一、真空题1、计算 4.75-9.64+8.25-1.36=_____.2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.3、计算 (5.25+0.125+5.75)⨯8=_____.4、计算 34.5⨯8.23-34.5+2.77⨯34.5=_____.5、计算 6.25⨯0.16+264⨯0.0625+5.2⨯6.25+0.625⨯20=_____.6、计算 0.035⨯935+0.035+3⨯0.035+0.07⨯61⨯0.5=_____.7、计算 19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.8、计算 13.5⨯9.9+6.5⨯10.1=_____.9、计算 0.125⨯0.25⨯0.5⨯64=_____.10、计算 11.8⨯43-860⨯0.09=_____.二、解答题11、计算32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.537812、计算 0.888⨯125⨯73+999⨯313、计算 1998+199.8+19.98+1.99814、下面有两个小数:a=0.00...0125 b=0.00 (08)1996个0 2000个0试求a+b, a-b, a⨯b, a÷b.2.1数的整除性(一)年级班姓名得分一、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3、能同时被2、3、5整除的最大三位数是_____.4、能同时被2、5、7整除的最大五位数是_____.5、1至100以内所有不能被3整除的数的和是_____.6、所有能被3整除的两位数的和是______.7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.9、42□28□是99的倍数,这个数除以99所得的商是_____.10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题1、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.2.2数的整除性(二)年级班姓名得分一、填空题1、一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2、123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3、下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这991个 991个个多位数被7整除,那么中间方框内的数字是_____.4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.7、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10、所有数字都是2且能被66……6整除的最小自然数是_____位数.100个二、解答题11、找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13、500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.3.1质数与合数(一)年级班姓名得分一、填空题1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2、最小的质数与最接近100的质数的乘积是_____.3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.4、在下式样□中分别填入三个质数,使等式成立.□+□+□=505、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?3.2质数与合数(二)年级班姓名得分一、填空题1、在1~100里最小的质数与最大的质数的和是_____.2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 3A 1OA 2A 4A 5A 7A 6A 8A 9A 10A 11 A 12九 图形的计数(A)年级 班 姓名 得分一、填空题1.下图中一共有( )条线段.2. 如右上图,O 为三角形A 1A 6A 12的边A 1A 12上的一点,分别连结OA 2,OA 3,…OA 11,这样图中共有_____个三角形.3. 下图中有_____4. 右上图中共有_____个梯形.5.数一数(1)一共有( )个长方形. (2)6. 在下图中,所有正方形的个数是______.AC E7. 在一块画有4⨯4方格网木板上钉上了25颗铁钉(如下图),如果用线绳围正方形,最多可以围出_____个.8. 一块相邻的横竖两排距离都相等的钉板,上面有4⨯4个钉(如右图).以每个钉为顶点,你能用皮筋套出正方形和长方形共_____个.9. 如下图,方格纸上放了20枚棋子,以棋子为顶点的正方形共有_____个.10. 数一数,下图是由_____个小立方体堆成的.要注意那些看不见的.二、解答题11. 右图中共有7层小三角形,求白色小三角形的个数与黑色小三角形的个数之比.12. 下图中,AB 、CD 、EF 、MN 互相平行,则图中梯形个数与三角形个数的差是多少?14ABC的每一边4等分,过各分点作边的平行线,在所得下图中有多少个平行四边形?九图形的计数(B)年级班姓名得分一、填空题1. 下图中长方形(包括正方形)总个数是_____.2. 右上图中有正方形_____个,三角形_____个,平行四边形_____个,梯形_____个.3. 下图中共出现了_____个长方形.4. 先把正方形平均分成8个三角形.再数一数,它一共有_____个大小不同的三角形.5. 图形中有_____个三角形.6.如右上图,一个三角形分成36个小三角形.把每个小三角形涂上红色或蓝色,两个有公共边的小三角形要涂上不同的颜色,已知涂成红色的三角形比涂成蓝色的三角形多,那么多_____个.7. 下图是由小立方体码放起来的,其中有一些小方体看不见.图中共有_____个小立方体.8. 右上图中共有_____个正方形.9. 有九张同样大小的圆形纸片,其中标有数码“1”的有1张;标有数码“2”的有2张;标有数码“3”的有3张,标有数码“4”的也有3张。

把这九张圆形纸片如下图所示放置在一起,但标有相同数码的纸片不许靠在一起,问:如果M 位上放置标有数码“3”的纸片,一共有_____种不同的放置方法.10. 如下图,在2×2方格中,画一条直线最多可穿过3个方格,在3×3方格中,画一条直线最多可穿过5个方格.那么10×10方格中,画一条直线最多可穿过_____个方格.二、解答题11. 把一条长15cm 的线段截为三段,使每条线段的长度是整数,用这三条线段可以组成多少个不同的三角形?(当且仅当两三角形的三条边可以对应相等时,我们称这两个三角形是相同的.)12. 有一批长度分别为1,2,3,4,5,6,7,8,9,10和11厘米的细木条,它们的数量都足够多,从中适当选取3根木条作为三条边.可围成一个三角形,如果规定底边是11厘米长,你能围成多少个不同的三角形?13. 下图中的正方形被分成9个相同的小正方形,它们一共有16个顶点(共同的顶点算一个),以其中不在一条直线上的3个点为顶点,可以构成三角形.在这些三角形中,与阴影三角形有同样大小面积的有多少个?14. 有同样大小的立方体27个,把它们竖3个,横3个,高3个,紧密地没有缝隙地搭成一个大的立方体(见图).如果用1根很直的细铁丝扎进这个大立方体的话,最多可以穿透几个小立方体?———————————————答 案——————————————————————1. 30由例1注可知图形中每边有3+2+1=6(条)线段,因此整个图形中共有6⨯5=30条线段. 2. 371A 6A 12分解成以OA 6OA 1A 6中共有5+4+3+2+1=15(个)三角形, OA 6A12中共有+1=21(个)三角形,这样,图中共有15+21+1=37(个)三角形. 3. 15这样的问题应该通过分类计数求解.此题中的三角形可先分成含顶点C 的和不含顶点C 的两大类.含顶点C 的又可分成另外两顶点在线段AB 上的和在线段BD 上的两小类.分类图解如下:所以原图有(3+2+1)+(3+2+1)+3 =15(个)三角形. 4. 18梯形一共有三行,每行都有3+2+1=6(个),所以一共有6⨯3=18(个)梯形. 5. 108,36(1)因为长方形是由长和宽组成的,因此可分别考虑所有长方形的长和宽的可能种数.按照前面所介绍的线段的计数方法可分别求出长和宽的线段条数,将它们相乘就是所有长方形的个数.因为AB 边上有8+7+6+…+2+1=289⨯=36条线段,AD 边上有2+1=3条线段,所以图中一共有36⨯3=108个长方形.(2)三角形一共有6行,每行都有3+2+1=6(个),所以一共有6⨯6=36(个)三角形. 6. 30由例5注可知整个图形中共有12+22+32+42=30个正方形. 7. 50此类问题一般用分类方法计数.对正方形的边长分八类计数如下: 边长为AB 的正方形有16个;边长为AC 的正方形有9个; 边长为AD 的正方形有4个; 边长为AE 的正方形有1个; 边长为DF 的正方形有9个; 边长为CF 的正方形有8个; 边长为BF 的正方形有2个; 边长为CG 的正方形有1个. 所以,最多可围出50个正方形. 8. 44因为正方形是特殊的长方形,所以可以把正方形看成长方形,这样就不必分别求正方形和长方形的个数,仍用分类计数的方法求解.先考虑有一组对边平行于BC 的长方形有多少个.这一类按其水平边的位置可分为6小类,即位置在BF 、FE 、EC 、FC 、BE 、BC .同样,其竖直边也分为6类.所以这一类有6 6=36个长方形.另一类是没有边平行于BC 的.这一类又分类两小类,分解图如下页图所示,其中分别有6个和2个长方形.所以,一共可套出正方形和长方形36+6+2=44个. 9. 21以正方形的面积大小分类计数.设相邻两点的距离为1,则正方形面积为1的有9个; 面积为2的有4个; 面积为5的有2个; 面积为8的有4个; 面积为13的有2个;所以,共有9+4+2+4+2=21个正方形. 10. 30将原立体图形从左至右分类计算,共有11+7+5+7=30个.11. 白色小三角形个数=1+2+3+…+6=26)61(⨯+=21,黑色小三角形个数=1+2+3+…+7=27)71(⨯+=28,所以它们的比=2821=43.12. 解法一本图中三角形的个数为(1+2+3+4)⨯4=40(个).下面求梯形的个数.梯形由两底唯一确定.首先在AB ,CD ,EF ,MN 中,考虑两底所在的线段,共有(4⨯3)÷2=6(种)选法;对上述四条线段中确定的两条线段,共有10(10=4+3+2+1)个梯形.共60个梯形.故所求差为20.解法二4个三角形,6个梯形,梯形比三角图形图形多2个.而在题图中,这种恰有10个.故题图中,梯形个数与三角形的个数之差为2⨯10=20(个).13. 边长2厘米的正方形:2⨯2=4(个) ……红色 边长4厘米的正方形(4-1)⨯4=12(个) ……红色 (4-2)⨯(4-2)=4(个) ……白色 边长8厘米的正方形(8-1)⨯4=28(个) ……红色 (8-2)⨯(8-2)=36(个) ……白色 边长9厘米的正方形(9-1)⨯4=32(个) ……红色 (9-2)⨯(9-2)=49(个) ……白色 所以,红色小正方形共有 4+12+28+32=76(个) 白色小正方形共有 4+36+49=89(个)[注]本题的要求是由边长为1厘米的红色和白色两种正方形,分别组成边长是2厘米,4厘米,8厘米,9厘米的大小不同的正方形,可以看作方阵问题来解.四周的小正方形是涂红色的,可看成是空心方阵,因此,涂红色正方形的个数等于4⨯(n -1).其他小正方形是涂白色的,可当作实心方阵,所以,涂白色的正方形的个数等于(n -2)⨯(n -2).比如,由边长为1厘米的正方形组成边长为9厘米的正方形,涂红色的小正方形的个数是:4⨯(9-1)=32(个),涂白色的小正方形的个数是:(9-2)⨯(9-2)=49(个).14. 将平行四边形分为三类:①尖角在上、下方;②尖角在左下、右上方;③尖角在左上、右下方.就第①类而言: 型6个; 型3个,与其对称的3个;型1个,与其对称的1个; 型1个;共15个.同理,第②、③类也分别含15个,故上述三类平行四边形共45个.[注]这样数平行四边行,很麻烦,又易出错.我们试图找到一种对应关系:先考虑任一边不与BC 平行的平行四边形,延长各边必与BC 有4个交点,特殊情况下,第二个交点与第三个交点重合;反过来,BC 上的任意四点或三点决定一个平行四边形,也就是说,边不与BC 平行的平行四边形的个数与BC 上的四交点组和三交点组的数目一样多。

由于BC上有5个交点,其中可构成5个4点组;10个3点组,即边不平行于BC的平行四边形有15个。

同理分别考虑边不平行AB、CD的平行四边行。

由此可知,共有45个平行四边形。

———————————————答案——————————————————————1. 90利用例1和例4公式可直接计算:(5+4+3+2+1)×(3+2+1)=15×6=90(个)[注]注意,由长方形、正方形的意义可知,正方形一定是长方形,但反之不然.故求长方形个数时,不必把正方形分开考虑.2. 3个正方形; 18个三角形; 6个平行四边形; 8个梯形.3. 18根据这个图形的特点,我们先数出下图(1)中长方形的个数为(2+1)×(2+1)=9个;然后在图(1)的内部添上一个长方形得到图(2).这时新产生的长方形有(2+1)×(2+1)=9个.至此已将图(1)还原为题图,同时题图中的长方形已全部数完.因此,原图中共有长方形.(2+1)×(2+1)+ (2+1)×(2+1)=18(个).(1) (2)4. 16具体分法如下图所示.基中小三角形有8个,由两个小三角形组成的三角形有4个,由四个小三角形组成的三角形有4个,所以共有三角形8+4+4=16(个).5. 72把图中最小三角形作为基数,然后按含有几个基数的三角形分类进行解答.含一个基数的三角形,共有16个;含两个基数的三角形,共有24个;含四个基数的三角形,共有20个;含八个基数的三角形,共有8个;含十六个基数的三角形,共有4个.因此,整个图形中共有16+24+20+8+4=72(个)三角形.6. 6图中的三角形可分成两种,一种是尖头向上的,一种是尖头向下的.从图上可以看出,每种三角形必须涂成同一颜色.为了使涂红色的三角形比涂蓝色的三角形多,尖头向上的三角形要涂红色.每一横排,尖头向上的三角形要比尖头向下的三角形多一个,共有6排,因此,涂红色的比涂蓝色的三角形多6个.7. 38将原立体图形从左至右分类计算,共有16+9+5+7+1=38个.8. 115单独的一个4×4的方格中有12+22+32+42=30个正方形,两个4×4的方格如原图重叠后,重叠部分有5个正方形.所以原图中一共有30×4-5×3=115个正方形.9. 6根据标有相同数码的纸片不许靠在一起的条件,当M位置上放标有数码“3”的纸片时,其余两个标有数码“3”的纸片,只能放置在下面左右两边两个圆圈内.如下图所示.这样圆圈绕M圆紧接着M的六个圈旋转一周,回到初始状态,可知共有六种不同的放置方法.10. 19如果直线与大正方形的两横边都有交点,则与所有的横边产生11个交点,与竖边至多9个交点,共20个交点.如果直线与大正方形的一横边和一竖边有交点,则与横边至多产生10个交点,与竖边至多产生10个交点,共20个交点.20个交点,将直线分成21部分,其中在大正方形有内有19部分,故至多穿过19个方格.[注]穿过一个方格,在直线上截出一条线段,线段由直线上的交点决定,关键是求交点个数.对小学生来说,通常总是从简单情况入手,即由1×1方格,2×2方格,3×3方格等的情况,归纳出一般的规律,从而得出10×10方格的结果.请同学们用归纳法试一试!11. 最大边为7时,另两边之和为8,可构成4个(1+7,2+6,3+5,4+4)不同的三角形;最大边为6时,另两边之和为9,可构成2个(3+6,4+5)不同的三角形;最大边为5时,可构成1个(5+5)不同的三角形.所以一共可组成7个不同的三角形.12. 由三角形的一边为11厘米,及其他边长必为1,2,.…,11厘米,根据三角形两边之和大于第三边的性质,可知两边之和应介于12厘米和22厘米之间(包含12厘米和22厘米).这样,共可围成36个不同的三角形.12:(1,11),(2,10),(3,9),(4,8),(5,7),(6,6);13:(2,11),(3,10),(4,9),(5,8),(6,7);14:(3,11),(4,10),(5,9),(6,8),(7,7);15:(4,11),(5,10),(6,9),(7,8);16:(5,11),(6,10),(7,9),(8,8);17:(6,11),(7,10),(8,9);18:(7,11),(8,10),(9,9);19:(8,11),(9,10);20:(9,11),(10,10);21:(10,11);22:(11,11)所以,一共可以围成36个不同的三角形.13. 为方便起见,不妨设原正方形的边长为3,则小正方形的边长是1,阴影三角形的面积是21×2×3=3.所求的三角形可分两种情形: (1)三角形的一边长为2,这边上的高是3.这时,长为2的边只能在原正方形的边上,这样的三角形有2×4×4=32(个);(2)三角形的一边长为3,这边上的高是2.这时长为3的边是原正方形的一边或平行于一边的分割线.其中与(1)重复的三角形不再算入,这样的三角形有8×2=16(个).因此,所求的三角形共32+16=48(个)(包括图中开始给的三角形.)14. 最多可以穿透7个小立方体.提示:仿题10.。

相关文档
最新文档