污水脱氮除磷的原理及其工艺
污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。
因此,城市污水处理厂一般不推荐采用.从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。
我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步实现工业化流程.目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。
➢生物脱氮原理生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。
随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。
整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。
在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。
反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行.由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件:硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。
反硝化阶段:硝酸盐的存在,缺氧条件DO值在0。
2mg/L左右,充足碳源(能源),合适的PH条件。
生物脱氮过程如图5—1所示。
反硝化细菌+有机物(氨化作用)(硝化作用) (反硝化作用)➢生物除磷原理磷常以磷酸盐(H2PO4-、HPO42-和H2PO43—)、聚磷酸盐和有机磷的形式存在于废水中,生物除磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。
生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。
生物脱氮除磷的原理与工艺设计

生物脱氮除磷的原理与工艺设计生物脱氮除磷是一种通过生物转化过程,将废水中的氮和磷去除掉的方法。
生物脱氮除磷工艺的基本原理是利用特定微生物(硝化细菌、反硝化细菌和磷积累菌)的活性,分别将废水中的氨氮和亚硝酸氮氧化为亚硝酸盐和硝酸盐,然后利用反硝化微生物将硝酸盐还原为氮气;同时,磷酸盐通过生物转化过程被吸附于生物体内,从而实现废水中氮、磷的去除。
1.污水处理系统的设计:包括进水口、沉淀池(或消化池)、氧化池、沉砂池(或沉淀池)、出水口等。
不同的生物脱氮除磷工艺,需要设计不同的系统结构,以确保废水能够顺利流动,并进行相应的生物转化过程。
2.微生物的引进和培养:选择适当的微生物菌种,引进到废水处理系统中。
常见的微生物菌种包括:硝化细菌(如亚硝化细菌、硝化细菌等)、反硝化细菌和磷积累菌。
培养好的微生物菌种,能够提高废水处理系统的处理效果。
3.溶解氧供应:废水中的生物脱氮除磷过程需要一定的溶解氧供应,以维持微生物的正常活性。
通过增加氧气供应、搅拌设备等方式,提高溶解氧浓度,促进微生物的生长和代谢。
4.碳源的添加:废水处理过程需要适量的有机碳源(如甲烷、乙酸等)供给微生物菌种进行生长和代谢。
通过添加碳源,可以提高微生物的活性,增强废水中氮、磷的去除效果。
5.控制系统的建立:根据不同的废水处理系统要求,建立相应的监测和控制系统。
通过监测废水中氨氮、亚硝酸氮、硝酸盐和磷酸盐等指标的含量,调整废水处理过程中的操作参数,实现最佳的脱氮除磷效果。
6.污泥的处理和回用:生物脱氮除磷过程中会产生大量的污泥。
合理处理和回用污泥,可以降低处理成本,并减少对环境的污染。
通过科学的生物脱氮除磷工艺设计,可以高效地去除废水中的氮、磷污染物,实现废水的净化和资源化利用。
然而,不同的废水特性和处理需求可能需要不同的工艺设计,因此,需要根据实际情况进行具体的工艺优化和改进。
利用好氧和厌氧组合来进行生物脱氮和除磷的原理

利用好氧和厌氧组合来进行生物脱氮和除磷的原理生物脱氮和除磷是现代污水处理过程中常用的处理方法,利用好氧和厌氧组合来进行生物脱氮和除磷可以有效去除废水中的氮和磷,使得废水达到排放标准。
生物脱氮的原理是通过好氧和厌氧综合作用,将废水中的氨氮和硝态氮转化为氮气释放到大气中,从而达到去除氮的目的。
该过程分为两个阶段:厌氧阶段和好氧阶段。
在厌氧阶段,通过加入硝化抑制剂来抑制硝化菌的生长,同时利用厌氧条件下的反硝化菌将废水中的硝态氮还原成氮气。
反硝化菌利用废水中的有机物作为电子供体,将硝态氮还原成氮气,并释放到大气中。
在好氧阶段,通过加入缺氧条件下的硝化菌来将废水中的氨氮氧化为硝态氮。
硝化菌利用废水中的氨氮作为电子供体,同时吸收氧气,将氨氮氧化成亚硝态氮,再经过氧化反应转化为硝态氮。
硝化过程产生的亚硝酸会进一步被反硝化菌氧化为N2,释放到大气中。
除磷的原理是通过好氧条件下的磷菌将废水中的磷转化为细菌形成的磷酸盐,从而实现磷的去除。
除磷过程可分为生物吸附和矿化两个阶段。
在生物吸附阶段,废水中的有机物作为磷菌的营养源,磷菌在好氧条件下吸附废水中的磷成为细菌形成的有机磷,从而将磷去除。
在矿化阶段,废水中的磷经过好氧条件下的生物氧化反应,被磷菌转化为无机磷酸盐,并与废水中的钙、铝等金属离子结合形成不溶于水的磷酸钙或磷酸铝沉淀物。
这些沉淀物可以通过沉淀或过滤的方式去除。
好氧和厌氧组合的生物脱氮和除磷方法相辅相成,通过两者的配合可以实现高效去除废水中的氮和磷。
好氧和厌氧条件下的细菌互相依赖,在厌氧阶段,反硝化菌利用废水中的硝态氮作为电子供体进行反硝化作用,产生氮气;在好氧阶段,硝化菌利用废水中的氨氮作为电子供体进行硝化作用,产生硝态氮。
同时,在除磷过程中,磷菌在好氧条件下吸附废水中的磷,然后通过好氧条件下的生物氧化反应转化为无机磷酸盐,形成沉淀物。
通过好氧和厌氧组合的生物脱氮和除磷方法可以实现高效的废水处理,不仅能够去除废水中的氮和磷,还能够减少能源消耗和化学药剂的使用。
简述生物脱氮除磷的原理

简述生物脱氮除磷的原理
生物脱氮除磷的原理是通过微生物在厌氧和好氧条件下的代谢作用,将废水中的氮和磷分别转化为气态和固态的形式,从而实现废水的净化。
具体来说,生物脱氮是通过硝化和反硝化过程实现的。
在硝化过程中,亚硝化单胞菌将废水中的NH3-N氧化为亚硝酸盐,然后再由硝化杆菌将其转化为更加稳定的硝酸盐。
在反硝化过程中,缺氧条件下污水中存在的硝酸盐被微生物还原为氮气,实现脱氮。
而生物除磷则是通过聚磷菌在厌氧条件下释放磷,有氧条件下摄取磷,通过排除富磷污泥达到除磷目的。
为了保证聚磷菌的繁殖以及有效的生物除磷作用,需要有充足的挥发性脂肪酸。
在污水处理厂的生物脱氮除磷系统中,一
般会采用A/A/O方法,即厌氧池-缺氧池-好氧池组成,以达到同时脱氮、除磷和降解有机物的目的。
污水生物脱氮除磷的基本原理

污水生物脱氮除磷的基本原理
污水生物脱氮除磷是一种利用生物的代谢能力来降低污水中氮和磷的浓度的技术。
其基本原理是利用污水中的生物分解形成的氨氮,通过氨氧化、反硝化及硫酸还原这三个生物代谢过程,将氨氮转变成无害物质,并利用磷细菌将磷结合在污泥中,最终将氮和磷从污水中去除。
1、氨氧化过程
氨氧化过程是污水生物处理中脱氮的主要过程,也是把氨氮转变成无害物质的主要过程。
氨氧化的具体过程是把氨氮转变成氮气的过程,真正的氨氧化过程是由被称作氨氧化菌的细菌来承担的。
这些特殊的细菌需要降低水温、提高pH值和添加活性碳等外源物质的供给,才能进行氨氧化反应。
2、反硝化过程
反硝化过程是把亚硝酸氮转变成氮气的过程,它是生物处理中氮的最后一步转变过程,反硝化的最后产物是氮气,也就是说它是将氮从污水中最终去除出去的转变过程。
反硝化过程受反硝化菌的影响较大,反硝化菌属于好氧细菌,反硝化条件包括高氧化性、低温度、较高的pH值等。
3、硫酸还原过程
硫酸还原过程是通过硫酸还原菌将污水中的亚硝酸氮还原成氨氮的过程,它是把水中的氮含量降低的重要手段。
硫酸还原过程还可以与氨氧化过程相结合,从而提高去除氮的效率。
污水生物脱氮除磷原理及工艺

一般用Al2(SO4)3,聚氯化铝(PAC)和铝酸钠(NaAlO2) 2)铁盐除磷:FePO4 、 Fe(OH)3
一般用FeCl2、FeSO4 或 FeCl3 、Fe2(SO4)3
3)石灰混凝除磷:
2 5Ca 2 4OH 3HPO4 Ca5 (OH )(PO4 ) 3 3H 2O
二、生物除磷过程的影响因素
①溶解氧: l厌氧池内:绝对的厌氧,即使是NO3-等也不允许存在; l好氧池内:充足的溶解氧。 ②污泥龄: l剩余污泥对脱磷效果有很大影响,泥龄短的系统产生的剩余
污泥多,可以取得较好的除磷效果;
l 有报道称:污泥龄为 30d ,除磷率为 40%;污泥龄为 17d,
除磷率为50%;而污泥龄为5d时,除磷率高达87%。
一、巴颠甫(Bardenpho)同步脱氮除磷工艺
工艺特点: 各项反应都反复进行两次以上,各反应单元都有其首要 功能,同时又兼有二、三项辅助功能; 脱氮除磷的效果良好。 工艺复杂,反应器单元多,运行繁琐,成本高
二、A—A—O(A2/O)同步脱氮除磷工艺
工艺特点: l工艺流程比较简单;总的水力停留时间短 l厌氧、缺氧、好氧交替运行,不利于丝状菌生长,污泥膨胀 较少发生; l无需投药,两个A段只需轻缓搅拌, 只有O段供氧, 运行费用低。
3
2
2 反硝化反应的影响因素
• 碳源:
①废水中有机物,若BOD5/TKN>3~5时,即可; ②外加碳源,多为甲醇; ③内源呼吸碳源—细菌体内的原生物质及其贮存 的有机物。 • 适宜pH:6.5~7.5; • 溶解氧应控制在0.5mg/l以下;
• 适宜温度:20~40C
生物脱氮的基本原理
二、Phostrip除磷工艺——生物除磷和化学除磷相结合
《2024年污水生物脱氮除磷工艺的现状与发展》范文

《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着城市化进程的加速和工业的迅猛发展,大量生活污水和工业废水被排放到水环境中,造成了严重的环境问题。
为了有效减少污水对环境的危害,人们研发了多种污水处理技术。
其中,污水生物脱氮除磷工艺因具有较好的处理效果和较低的运行成本,得到了广泛的应用。
本文将就污水生物脱氮除磷工艺的现状及其发展进行详细探讨。
二、污水生物脱氮除磷工艺的现状1. 工艺概述污水生物脱氮除磷工艺是一种基于微生物作用,利用活性污泥法等生物处理技术,将污水中的氮、磷等营养元素去除的工艺。
该工艺主要利用微生物的代谢作用,将污水中的氮、磷转化为无害物质,从而达到净化水质的目的。
2. 国内外应用现状目前,国内外广泛应用的污水生物脱氮除磷工艺主要包括A/O法、A2/O法、氧化沟法等。
这些工艺在我国污水处理领域得到了广泛应用,特别是在城市污水处理厂和工业废水处理中。
此外,一些新型的生物脱氮除磷技术,如MBR(膜生物反应器)技术、超声波强化生物脱氮除磷技术等也在逐步推广应用。
三、工艺运行机制与原理污水生物脱氮除磷工艺主要依靠活性污泥中的微生物完成。
在反应过程中,微生物通过吸附、吸收、代谢等作用,将污水中的氮、磷等营养元素转化为无害物质。
具体来说,脱氮过程主要通过氨化、硝化和反硝化等步骤实现;除磷过程则主要通过聚磷菌的过量摄磷和释磷实现。
四、工艺发展及挑战1. 技术发展随着科技的不断进步,污水生物脱氮除磷工艺也在不断发展和完善。
新型的生物反应器、高效的微生物菌剂、智能化的控制系统等技术手段的应用,使得污水处理效率得到了显著提高。
同时,一些新型的污水处理理念和技术,如低碳、低能耗、资源化等也得到了广泛关注。
2. 面临的挑战尽管污水生物脱氮除磷工艺取得了显著的成果,但仍面临一些挑战。
如:如何进一步提高处理效率、降低运行成本;如何解决污泥处理与处置问题;如何应对复杂多变的水质等。
此外,一些新兴污染物(如微塑料、新型有机污染物等)也对传统污水处理技术提出了新的挑战。
污水处理中的脱氮除磷工艺

污水处理中的脱氮除磷工艺
通常污水处理设备的外壳都是金属材质(碳钢、不锈钢)或者玻璃钢材质制作。
不同的污水处理设备对污染水的敏感度处理工艺和处理后的排放标准都不相同。
污水中95%以上的氨氮(HN3-N)以NH4的形式存在。
通过鼓风曝气,亚硝酸菌首先将氨氮转化为亚硝酸盐:
(亚硝酸菌)NH4+1.5O2NO2-+2H+H2O。
然后将亚硝酸盐转化为硝酸盐:硝酸菌No2总体反应为:NH4+2O2NO3+2H+H2O。
污水处理设备
以上反应在好氧部分进行。
在厌氧部分,硝酸盐和亚硝酸盐通过兼氧微生物或厌氧微生物(如碱生产菌、假单胞菌、无色杆菌等)进行反硝化和脱氮。
反消化菌利用NO3中的氧(又称化合态氧或硝化氧)继续分解代谢有机污染物,去除BOD5,同时将NO3中的氮转化为氮N2这个过程可以用以下方式表示:
反消化菌NO3-+有机物N2+N2O+OH。
除磷原理:
厌氧段优势的非丝状储磷菌分解储存的聚磷酸盐,提供能量,吸收水中大量的BOD5,释放正磷酸盐,降低厌氧段的BOD5,提高磷含量。
公厕污水进入好氧段后,好氧微生物利用氧化分解获得的能量,吸收原水中释放的大量正磷和磷,完成磷的过渡积累,达到去除BOD5和除磷的目的。
污水处理脱氮除磷工艺原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
污水脱氮除磷的原理及其工艺
一、污水脱氮原理:
污水中的氮主要以无机氮和有机氮两种形式存在,其中无机氮包括氨氮、亚硝酸盐氮和硝酸盐氮,有机氮主要包括蛋白质等有机物。
污水脱氮的主要原理是利用硝化反应和反硝化反应。
硝化反应是将氨氮转化为硝酸盐氮,该过程需利用到氨氧化细菌进行氧化作用,产生的硝酸盐氮可以被水中的反硝化细菌进一步还原为氮气释放到大气中。
这样就实现了对污水中氨氮的脱氮处理。
反硝化反应是将硝酸盐氮还原为氮气。
反硝化作用需要在无氧环境下进行,可通过添加外源电子供体(如甲烷、乙醇等)来提供反硝化细菌进行反硝化作用。
反硝化细菌利用硝酸盐氮作为电子受体进行还原,产生大量的氮气释放到大气中,实现了对污水中硝酸盐氮的脱氮处理。
二、污水除磷原理:
污水中的磷主要以无机磷和有机磷两种形式存在,其中无机磷主要包括磷酸盐磷和亚磷酸盐磷,有机磷主要包括有机物中的磷酸酯等。
污水除磷的主要原理是利用化学沉淀法和生物吸附法。
化学沉淀法是通过给污水中添加适量的化学沉淀剂(如氯化铝、聚合氯化铝等)来与磷酸盐磷和亚磷酸盐磷反应生成难溶的沉淀物(如磷酸铝等),从而使磷被固定在沉淀物中,从而实现了对污水中无机磷的除磷处理。
生物吸附法是利用在废水生物处理系统中存在的一些微生物对磷进行吸附作用,这些微生物能将磷从废水中吸附到其细胞表面或胞囊中,从而实现了废水中磷的除磷处理。
三、污水脱氮除磷工艺:
污水脱氮除磷工艺主要有一体化生物法、AO法和AB法等多种。
其中,一体化生物法比较常用,其工艺流程为:进水→除砂→调节池→好氧生物
反应器(硝化反应)→缺氧生物反应器(反硝化反应)→二沉池(沉淀处理)→出水。
一体化生物法通过将硝化反应和反硝化反应合为一体,利用生物脱氮
除磷技术处理污水。
系统中含有好氧区和缺氧区,其中好氧区负责氨氮的
硝化反应,缺氧区则利用添加碳源(如甲醇、乙醇等)提供的外源电子供
体来进行反硝化反应。
通过控制好氧区和缺氧区的进水比例,可实现对污
水中的氮和磷的高效去除。
另外,AB法是一种常用的生物脱氮除磷技术,其工艺流程为:进水
→除砂→调节池→好氧生物反应器(硝化反应)→好氧反硝化反应器(反
硝化反应)→二沉池(沉淀处理)→出水。
AB法将好氧反硝化单元与硝
化单元分开,利用不同的生物菌群分别进行硝化和反硝化反应,提高了氮
磷去除效果。
总之,污水脱氮除磷工艺是一种非常重要的污水处理技术,它可以有
效地去除污水中的氮和磷,减少对水体环境的污染。
通过合理的工艺设计
和运行控制,可实现高效、稳定的污水处理效果。