新湘教版八年级上册初中数学 课时3 分式方程的应用 教案(教学设计)
八年级数学上册《分式方程及解法》教案、教学设计

-教师针对分式方程的解法进行详细讲解,特别是换元法、消元法等难点。
-设计具有针对性的练习题,让学生在练习中巩固所学知识,逐步突破难点。
4.实践应用,提高能力
-设计实际应用题,让学生将分式方程应用于解决实际问题,提高数学应用能力。
-教师及时给予反馈,指导学生调整解题策略,提高解题效果。
(四)课堂练习
1.设计具有代表性的练习题,涵盖分式方程的各种解法。
-练习一:求解分式方程,如:$\frac{2x+1}{3} = \frac{4}{x}$
-练习二:实际问题转化为分式方程,如:某商品原价为x元,打8折后的价格为0.8x元,求原价。
2.学生独立完成练习题,教师巡回指导,解答学生疑问。
(五)总结归纳
1.分式方程的定义:给出分式方程的一般形式,讲解分母、分子和未知数之间的关系。
-解释:分式方程就是含有分数的方程,其中分数的分母和分子可以是各种代数式。
2.分式方程的解法:
-换元法:通过设未知数,将分式方程转化为整式方程,然后求解。
-消元法:将方程两边的分母消去,转化为整式方程求解。
-通分法:将方程两边的分式通分,转化为整式方程求解。
7.创设良好的学习氛围,激发学生学习兴趣
-教师应以亲切、热情的态度对待学生,营造轻松、愉快的学习氛围。
-通过表扬、鼓励等方式,激发学生的学习积极性,提高他们的自信心。
四、教学内容与过程
(一)导入新课
1.生活实例引入:以学生熟悉的购物打折、银行利率等实际问题为例,引导学生思考如何用数学知识解决这些问题。
4.针对不同学生的需求,给予个性化的指导,帮助他们克服学习中的困难,提高学习效果。
三、教学重难点和教学设想
湘教版数学八年级上册1.5《分式方程的应用》说课稿1

湘教版数学八年级上册1.5《分式方程的应用》说课稿1一. 教材分析《分式方程的应用》是湘教版数学八年级上册第1.5节的内容。
本节课的主要内容是让学生掌握分式方程的应用,学会如何将实际问题转化为分式方程,并能够求解。
教材通过引入实际问题,让学生体会数学与生活的紧密联系,培养学生的数学应用意识。
二. 学情分析八年级的学生已经学习了分式的基本概念和性质,对分式有一定的认识。
但是,学生对分式方程的应用还比较陌生,需要通过实例来引导学生理解和掌握。
此外,学生可能对将实际问题转化为分式方程的过程感到困惑,需要教师进行引导和解释。
三. 说教学目标1.知识与技能目标:学生能够理解分式方程的概念,掌握分式方程的求解方法,能够将实际问题转化为分式方程并求解。
2.过程与方法目标:通过实际问题的引入和解决,培养学生将实际问题转化为数学问题的能力,培养学生的数学应用意识。
3.情感态度与价值观目标:学生能够感受到数学与生活的紧密联系,增强学习数学的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够理解分式方程的概念,掌握分式方程的求解方法。
2.教学难点:学生能够将实际问题转化为分式方程,并能够求解。
五. 说教学方法与手段本节课采用讲授法、实例教学法和小组合作学习法。
通过教师的讲解和实例的分析,引导学生理解和掌握分式方程的应用。
同时,通过小组合作学习,培养学生的合作意识和解决问题的能力。
六. 说教学过程1.导入:通过引入实际问题,激发学生的兴趣,引导学生思考如何将实际问题转化为数学问题。
2.新课导入:讲解分式方程的概念和性质,引导学生理解分式方程的定义和求解方法。
3.实例分析:通过具体的实例,引导学生将实际问题转化为分式方程,并求解。
4.小组合作:学生分组讨论,共同解决实际问题,培养学生的合作意识和解决问题的能力。
5.总结与拓展:总结本节课的主要内容,提出拓展问题,引导学生进一步思考和探索。
七. 说板书设计板书设计主要包括以下几个部分:1.分式方程的概念和性质2.分式方程的求解方法3.实际问题转化为分式方程的步骤4.小组合作学习的成果展示八. 说教学评价教学评价主要包括学生的课堂表现、作业完成情况和小组合作学习的效果。
最新湘教版八年级数学上册《分式方程的应用》教学设计(精品教案

最新湘教版八年级数学上册《分式方程的应用》教学设计(精品教案课题:1.5分式方程的应用(2)学习目标:1.能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用;2.通过用分式方程解决实际问题,发展分析和解决问题的能力。
重点:能将实际问题中的等量关系用分式方程表示。
难点:用分式方程解决实际问题。
教学过程:一、知识复习:(出示ppt课件)1、列分式方程解应用题的一般步骤:(1)审:分析题意,找出数量关系和相等关系.(2)设:选择恰当的未知数,注意单位和语言完整.(3)列:根据数量和相等关系,正确列出代数式和方程.(4)解:认真仔细.(5)验:有两个目的.(1)是否是所列方程的解;(2)是否满足实际意义.(6)答:注意单位和语言完整.且答案要生活化2、解分式方程:一个“必须”是:必须;二个“基本”是:解分式方程的基本思想是,基本方法是;三个“步骤”是:,,3、分组练习(只列方程,不解方程。
)1、小民和小林家住同一小区,离学校3千米。
某一天早晨7点20分、7点25分,小林和小民先后离家骑车上学,在校门口遇上。
已知小民骑车的速度是小林的1.2倍,试问:小林和小民骑车的速度各是多少2、某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时3、甲、乙两人每小时共能做35个零件。
甲、乙两人同时开始工作,当甲做了90个零件时,乙做了120个。
问甲、乙每小时各做多少个零件?4、某工作由甲、乙两人合做,原计划6天完成,他们共同合做了4天之后,乙被调走,因而甲又用了6天才全部完成。
问甲、乙独做各需几天完成?二、例题精析(出示ppt课件)(各个例题,只分析如何列方程,解答过程由学生互相交流完成。
)例1、国家实施高效节能电器的财政补贴政策,某款空调在政策实施后,客户每购买一台可获得补贴200元,若同样用11万元购买此款空调,补贴后可购买的台数比补贴前多10%,则该款空调补贴前的售价为多少元?分析:数量关系:补贴前后每台空调的价格;总购机款不变,购买的台数的变换。
八年级数学教案之分式方程

八年级数学教案之分式方程一、教学目标1. 让学生理解分式方程的定义及其特点。
2. 培养学生掌握解分式方程的基本方法。
3. 提高学生运用分式方程解决实际问题的能力。
二、教学内容1. 分式方程的定义及例题解析。
2. 分式方程的解法及步骤。
3. 分式方程在实际问题中的应用。
三、教学过程1. 引入:通过复习分数和代数方程的知识,引导学生过渡到分式方程的学习。
2. 讲解:讲解分式方程的定义,分析其特点,举例说明分式方程的解法及步骤。
3. 练习:让学生独立解决一些简单的分式方程,巩固所学知识。
4. 应用:选取一些实际问题,让学生运用分式方程进行解答。
四、教学方法1. 采用讲解法,讲解分式方程的定义、解法及应用。
2. 运用示例法,展示分式方程的解题过程。
3. 运用练习法,让学生通过独立练习巩固知识。
4. 运用情境教学法,选取实际问题,培养学生的应用能力。
五、教学评价1. 课堂练习:检查学生对分式方程知识的掌握程度。
2. 课后作业:布置一些分式方程题目,检验学生的学习效果。
3. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评估学生的学习积极性。
六、教学拓展1. 讲解分式方程的变形技巧,如去分母、去括号等。
2. 引导学生探索分式方程的解与系数的关系。
3. 介绍分式方程在数学竞赛中的应用。
七、课堂小结2. 强调分式方程在实际问题中的应用价值。
八、课后作业1. 完成教材上的相关练习题。
2. 选取一道实际问题,运用分式方程进行解答。
九、教学反思2. 根据学生的反馈,调整教学策略,提高教学效果。
十、教学延伸1. 讲解分式方程的进一步拓展知识,如高次方程、多变量方程等。
2. 引导学生研究分式方程与函数的关系。
3. 推荐一些分式方程相关的学习资源,鼓励学生自主学习。
重点和难点解析一、教学目标补充和说明:在教学过程中,要让学生充分理解分式方程的概念,掌握其与整式方程的区别。
要引导学生掌握解分式方程的基本方法,如去分母、移项、合并同类项等。
八年级数学上册《分式方程的解法》教案、教学设计

二、学情分析
八年级学生在数学学习上已具备了一定的基础,对整式方程的解法有较好的掌握。但在面对分式方程时,可能会因为分母不为零的条件、解法的多样性等问题感到困惑。此外,学生在解决实际问题时,可能难以将问题转化为分式方程,需要教师在教学过程中给予引导。
4.反馈与指导:针对学生的练习情况,给予及时反馈和指导,帮助学生纠正错误,提高解题能力。
(五)总结归纳
在总结归纳环节,我将引导学生进行以下思考:
1.分式方程解法的要点:总结分式方程解法的步骤和关键点,加深学生的记忆。
2.解题策略:讨论解题过程中遇到的问题及解决方法,提高学生的解题策略。
3.情感态度与价值观:强调数学学习的重要性,激发学生对数学的热爱,培养学生的自信心。
-能够将实际问题抽象成分式方程,并熟练运用所学的解法求解。
2.过程与方法方面的重难点:
-学生在解题过程中,对解题策略的选择和运用。
-学生在小组合作中,如何有效沟通、分享解题思路。
-学生对解题规律的总结,以及逻辑思维和抽象思维能力的培养。
3.情感态度与价值观方面的重难点:
-培养学生对分式方程解法的兴趣,克服对数学学习的恐惧心理。
3.提出问题:通过提问方式引导学生思考,如“整式方程与分式方程有什么区别和联系?”、“分式方程的解法有哪些?”等问题,激发学生的探究欲望。
(二)讲授新知
在讲授新知环节,我将按照以下步骤进行:
1.分式方程的定义:讲解分式方程的定义,强调分母不为零的条件。
2.解法讲解:详细讲解交叉相乘法、通分法等解分式方程的方法,并通过示例进行演示。
八年级数学上册《分式方程的应用》教案、教学设计

针对本章节的内容,教师将设计富有挑战性的拓展题,引导学生深入思考,培养数学思维能力。同时,注重将分式方程与实际应用相结合,提高学生的数学素养。
5.评价与反馈,关注个体差异
在教学过程中,教师将实施多元化评价,关注学生的个体差异。通过课堂提问、作业批改、小组讨论等方式,全面了解学生的学习状况,及时给予指导和鼓励,提高学生的学习自信心。
3.提高拓展题:针对学有余力的学生,设计具有一定难度的分式方程拓展题,培养学生的数学思维能力和问题解决能力;
4.小组合作探究题:分组讨论并完成1-2道分式方程综合应用题,要求学生在合作中相互学习、共同进步。
作业布置要求:
1.学生独立完成作业,家长监督,确保作业质量;
2.注重作业的书写规范,要求字迹清楚、步骤完整、简洁明了;
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握分式方程的概念及求解方法;
2.能够将实际问题抽象为分式方程,并运用所学的数学知识解决;
3.掌握分式方程的运算性质,提高运算速度和准确度;
4.培养学生的数学建模思维和问题解决能力。
(二)教学设想
1.创设情境,激发兴趣
在教学过程中,教师将设计贴近学生生活的实际问题,引导学生从中发现分式方程的影子,激发学生的学习兴趣。通过情境创设,让学生感受到数学与生活的紧密联系,提高学习积极性。
二、学情分析
八年级学生在数学学习上已具备一定的知识基础,掌握了基本的代数运算和方程求解方法。但在分式方程的学习中,学生可能会遇到以下困难:对分式方程的概念理解不够深入,求解过程中容易出现运算错误,将实际问题转化为分式方程时存在困难。针对这些情况,教师在教学过程中应关注以下几点:
1.关注学生基础知识掌握情况,适时进行巩固和复习,为学生学习分式方程打下坚实基础;
八年级上册数学教案《分式方程》

八年级上册数学教案《分式方程》学情分析本节内容主要有两个,一是分式方程的概念,二是解分式方程。
本节课在解分式方程时用到了七年级学的解一元一次方程的知识,学生已经学会找最简公分母。
本节课主要是利用“转化”的数学思想,将分式方程转化成熟悉的整式方程来计算,和列分式方程解应用题有很大关联,起着承前启后的作用。
教学目的1、理解分式方程的概念,掌握解分式方程的基本思路与解法。
2、在探究分式方程的解法的过程中,渗透类比和转化思想。
3、通过对分式方程概念和解法的学习,培养学生分析问题的能力,发展合情推理的能力和应用意识。
教学重难点掌握分式方程的基本思路与解法。
教学方法讲授法、启发式教学法、讨论法、练习法教学过程一、问题情境一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行90km 所用时间与以最大航速逆流航行60km所用时间相等。
江水的流速为多少?V顺 = V静 + V水流V逆 = V静 - V水流学生根据题意,列出等量关系式:90 / (30+V) = 60 / (30-V)二、学习新知1、分式方程分母中含有未知数的方程叫做分式方程。
2、下列关于x的方程中,哪些是分式方程?说明理由。
x/3 =1 不是分式方程,分母中不含有未知数。
2/x-3-3/x 不是分式方程,不是等式。
x/3 - 3/a = 1 不是分式方程,3/a的分母中a是常数。
x/3 + 3/x = 2 是分式方程,3/x的分母中x是未知数。
3、回忆一元一次整式方程的解法。
(1)去分母:在方程两边都乘以各分母的最小公倍数。
(2)去括号:先去小括号,再去中括号,最后去大括号。
(记住如果括号外有减号的话要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边,移项要变号。
(4)合并同类项:把方程化成ax = b(a≠0)的形式(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x = b/a。
4、解方程90 / (30+V) = 60 / (30-V)解:方程两边乘(30+V)(30-V),得90(30-V) = 60(30+V)解得:V=6检验:将V = 6代入方程中,左边 = 5/2 = 右边,因此V = 6 是分式方程的解。
最新湘教版八年级数学上册《分式》全章教学设计(精品教案)

分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.3.认知难点与突破方法难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别.三、例、习题的意图分析本章从实际问题引出分式方程v+20100=v-2060,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.1.本节进一步提出P4[思考]让学生自己依次填出:710,as ,33200,sv .为下面的[观察]提供具体的式子,就以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点?2. [思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B ≠0时,分式BA 才有意义.3. 例1填空是应用分式有意义的条件—分母不为零,解出字母x 的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.4. 第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零.这两个条件得到的解集的公共部分才是这一类题目的解.BA四、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0?(1)1m m - (2)23m m -+ (3) 211m m -+[分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式?9x+4, x7 , 209y +,54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义? (1)32x + (2)532x x +- (3)2254x x -- 3. 当x 为何值时,分式的值为0?(1)75x x + (2)7213x x- (3) 221x x x --七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 . 2. 当x取何值时,分式2132x x +-无意义?3. 当x 为何值时,分式21x x x--的值为0?一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形. 三、例、习题的意图分析1.例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:34与1520相等吗?924与38相等吗?为什么?2.说出34与1520之间变形的过程,924与38之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.例3.约分:例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--,yx 3-, nm --2, nm 67--, yx 43---。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章分式
1.5 可化为一元一次方程的分式方程
课时3 分式方程的应用
【知识与技能】
(1)进一步熟练地解可化为一元一次方程的分式方程.
(2)熟练地列可化为一元一次方程的分式方程解应用题.
【过程与方法】
建立分式方程模型的过程,体会建模思想.
【情感态度与价值观】
在探索分式方程解决实际问题的过程中,体会数学在实际生活中的广泛应用.
在不同的实际问题中审清题意设未知数,列分式方程,解决实际问题.
在不同的实际问题中,设未知数列分式方程.
多媒体课件.
教师出示问题:
1.列方程解应用题的一般步骤是什么?
(1)审;(2)设;(3)列;(4)解;(5)验;(6)答.(教师板书)
2.由学生讨论,我们现在所学过的应用题有哪些类型?
学生举手回答上面的两个问题,教师点评.
在学生讨论的基础上,教师归纳、总结,基本上有五种:
(出示投影)(1)行程问题:路程=速度×时间,而行程问题中又分相遇问题和追及问题.
(2)数字问题:在数字问题中,要掌握十进制数的表示法.
(3)工程问题:工作量=工作时间×工作效率.
(4)顺水、逆水问题:v顺水=v静水+v水,v逆水=v静水-v水.
(5)利润问题:售价-进价=利润率×进价.
教师引入:有一些实际问题,我们可以通过列分式方程解决.(板书课题)
教师:同学们,我们一起来看几个例子(教师依次出示教材P152例3、P153例4):
例3两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?
分析:甲队1个月完成总工程的,设乙队单独施工1个月能完成总工程
的,那么甲队半个月完成总工程的(),乙队半个月完成总工程的(),两队半个月完成总工程的().
教师引导学生在用式子表示上述的量之后,再根据“甲、乙两个工程队的工程总量=总工程量”这一相等关系建立方程.
教师示范解答过程,强调必须检验这一过程.
例4某次列车平均提速v km/h.用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50 km,提速前列车的平均速度为多少?
学生讨论,教师引导.先指导学生读题,理清速度、路程和时间所对应的式子,再抓住“相同的时间”这一关键词,得出相等的数量关系,即“提速前的路程÷提速前的速度=提速后的路程÷提速后的速度”,从而建立方程.
学生自己独立完成解答过程,教师再演示解答过程.
注意:教师帮助学生解决含有字母的计算问题,求出关于x的方程的解.教师提醒:表达问题时,用字母不仅可以表示未知数(量),也可以表示已知数(量).
最后教师总结:(1)在实际问题中,有时题目中包含多个相等数量关系,在列方程时一定要选择一个能够体现全部(或大部分)题意的相等关系.
(2)在检验过程中,不仅要检验所得的根是否为原分式方程的根,还要检验这个根在实际问题中是否具有实际意义,如时间非负、人数为正数等.
(3)在一些实际问题中,有时直接设问题所求的量为未知数可能比较麻烦,可以间接地设未知数.
接着教师让学生独立完成教材P154练习第1,2题,同桌之间互相检查.
列分式方程解应用题按下列步骤进行:
(1)审题,了解已知量与所求各量所表示的意义,弄清它们之间的数量关系;
(2)设未知数;
(3)找出能够表示题中全部(或大部分)含义的相等关系,列出分式方程;
(4)解这个分式方程;
(5)验根,检验所求得的根是不是增根,以及是否符合实际意义;
(6)写出答案.
【正式作业】教材P154习题15.3第3-6题
【家庭作业】《》P115-P116。