拉格朗日方程 非保守力
分析力学基础-拉格朗日方程

其他应用领域
要点一
机器人学
在机器人学中,拉格朗日方程被用于描述机器人的运动规 律。通过建立机器人运动的拉格朗日方程,可以求解出机 器人的关节角度和速度,为机器人的运动控制提供理论依 据。
要点二
生物力学
在生物力学中,拉格朗日方程也被应用于描述生物体的运 动规律。例如,在分析动物的运动行为或人体姿势控制时 ,可以使用拉格朗日方程来描述生物体的运动状态和变化 规律。
解析解法的优缺点分析
优点
解析解法可以得到系统的精确解,适用 于简单模型和特定条件下的复杂模型。
VS
缺点
对于复杂模型,解析解法可能非常困难甚 至无法求解,需要借助数值方法或其他近 似方法。
04
拉格朗日方程的数值解法
数值解法的概念和步骤
概念
数值解法是一种通过数学计算来求解数学问 题的方法,它通过将问题离散化,将连续的 问题转化为离散的问题,然后使用计算机进 行计算求解。
步骤
1.建立数学模型:根据实际问题建立数学模 型,将实际问题转化为数学问题。2.离散化 :将连续的问题离散化,将连续的时间和空 间划分为若干个小的单元,每个单元称为一 个网格点或节点。3.求解离散化后的方程: 使用数值方法求解离散化后的方程,得到每 个网格点的数值解。4.后处理:对计算结果 进行后处理,提取所需的信息,并进行分析
分析力学基础-拉格 朗日方程
目录
• 引言 • 拉格朗日方程的推导 • 拉格朗日方程的解析解法 • 拉格朗日方程的数值解法 • 拉格朗日方程的应用领域
01
引言
拉格朗日方程的背景和重要性
背景
拉格朗日方程是分析力学中的基 本方程,它描述了系统的运动规 律。
重要性
拉格朗日方程在理论物理、工程 技术和科学研究等领域有着广泛 的应用,是理解和研究复杂系统 运动行为的关键工具。
拉格朗日第二类方程

拉格朗日第二类方程
拉格朗日第二类方程是经典力学中的基础概念之一。
它描述的是质点
在一定约束下的运动,是建立在尺度不变性原理的基础上的。
下面我
将按照以下列表分别介绍拉格朗日第二类方程的定义、推导过程以及
其应用。
1. 定义:
拉格朗日第二类方程是描述系统动力学的数学模型,它是由勒让德在1797年建立的,具体形式为:
d/dt (∂L/∂qᵢ) − ∂L/∂qᵢ = Qᵢ
其中,L是系统的拉格朗日函数,q是系统的广义坐标,Q是系统的非
保守力。
2. 推导过程:
拉格朗日第二类方程的推导主要分为以下几个步骤:
第一步,构建系统的拉格朗日函数,即L=T-V,其中T是系统的动能,V是系统的势能。
第二步,求出系统的广义动量pᵢ=∂L/∂qᵢ。
第三步,对广义动量求导得到系统的加速度aᵢ= d/dt (∂L/∂qᵢ)。
第四步,根据牛顿第二定律F=ma以及广义动量的定义pᵢ=∂L/∂qᵢ,将非保守力Q用广义动量表示为Qᵢ=∂V/∂qᵢ。
第五步,代入广义动量和非保守力的表达式,得到拉格朗日第二类方程d/dt (∂L/∂qᵢ) − ∂L/∂qᵢ = Qᵢ。
3. 应用:
拉格朗日第二类方程是经典力学中最基础的方程之一,它在物理学的各个领域都有广泛的应用,如
(1)陀螺的运动学研究
(2)杆的运动学研究
(3)学习简谐振动的方程
(4)学习经典电动力学中的运动方程
(5)学习光学中的光路方程等
总之,拉格朗日第二类方程在物理学研究中有着重要的地位,熟练掌握它的概念和应用对于探究自然界的规律和解决实际问题都具有重要作用。
拉格朗日第二类方程

代入初始条件,t =0 时, 0 0 , 0 0 得 C1 C2 0
故:
3M
gt 2
(2P9Q)( Rr)2
20
[例]图示系统,物块C质量为m1 ,均质轮A、B质量均为m2, 半径均为R,A作纯滚动,求系统的运动微分方程。 解:系统具有一自由度,保守
系统。以物块C的平衡位置为
原点,取x为广义坐标:
AF q j
(4)不含约束力。
二、保守系统的拉格朗日方程
如果作用于质点系的力是有势力,则:
Qj
V q j
而拉氏方程为:
15
d dt
T q j
T q j
V q j
由于V=V(q1,q2,...,qk),不含广义速度,所以
V q j
0,
d dt
V q j
0
上式为:
d dt
T q j
T q j
d dt
V q j
V q j
或:d dt
(T V q j
)
(T V q j
)
0
令L=T-V——拉格朗日函数
d dt
(
L q j
)
L q j
0 ( j1,2,,k )
保守系统的拉格朗日第二类方程。
16
应用拉氏方程解题的步骤:
1. 判定质点系的自由度 f,选取适宜的广义坐标。必须注意: 不能遗漏独立的坐标,也不能有多余的(不独立)坐标。
Q
A
M
T
1 2P 6
9Q (R g
r ) 2
;
d T
dt
1 2P 9Q (R r)2
6
g
;
T 0
19
高等结构振动学-第2章-用拉格朗日方程建立系统数学模型

2muu
[Mg
L 2
0 mgu]sin
0
以上是对离散系统应用拉格朗日方程建立振动方程,如果利用拉格朗日方 程建立连续系统的方程,则它是一种同时将系统离散化、变量分离并达到系统 降阶的途径。 2. 连续参数模型中应用——与假设模态法联合使用
3
对一维连续系统,假设位移为:
N
u(x.t) i (x)qi (t) i 1
d dt
(
T qi
)
T qi
U qi
Qi
(i 1, 2, 3, N )
(2-5)
(推导:)
将系统总动能、总势能和非保守力的虚功的表达式代入哈密尔顿原理式中(变
分驻值原理),有
t2
t1
(
T q1
q1
T q2
q2
T q N
q N
T q1
q1
f j (q1, q2 ,qM ) 0 ( j 1,2,C)
(i 1,2,M )
(2-43)
联立上两个方程,就可确定 M+C 个未知数 qi , j (i 1,2,M ; j 1,2,C)
【应用实例】
求两端固定杆的轴向自由振动微分方程。
【解】令,
u(x,
t)
(
x L
D q
0
(2-15)
如果系统上还作用了除有势力和阻尼力以外的非保守力,如结构受到的外激励
力(对应的广义非保守力可通过非保守力的虚功求得,仍记为 Qi ),则系统的拉 格朗日方程为:
d dt
(
T qi
)
T qi
理论力学经典课件-第九章拉格朗日方程

理想弹性振子的振动分析
总结词
理想弹性振子是一个简化的模型,用于研究振动的规 律。通过拉格朗日方程,可以分析其振动行为。
详细描述
理想弹性振子是一个质量为m的质点,连接到一个无 质量的弹簧上。当振子受到一个外部力作用时,它会 开始振动。通过应用拉格朗日方程,可以计算出振子 的振动频率和振幅。
地球的运动分析
详细描述
分离变量法是一种求解偏微分方程的常用方法。它通过假设解可以表示为多个独立变量的乘积,将偏微分方程转 化为多个常微分方程,从而简化了求解过程。这种方法在求解波动方程、热传导方程等偏微分方程时非常有效。
哈密顿正则方程法
总结词
利用哈密顿原理和正则方程推导出系统 的运动方程,适用于完整约束系统。
VS
相对论力学中的拉格朗日方程
总结词
相对论力学中的拉格朗日方程是经典拉格朗 日方程的进一步发展,它考虑了相对论效应 ,适用于高速运动和高能量密度的物理系统 。
详细描述
在相对论力学中,由于物体的高速运动和相 对论效应的影响,经典拉格朗日方程需要进 行相应的修正。相对论力学中的拉格朗日方 程能够更好地描述高速运动和高能量密度下 的物理过程,如相对论性粒子的运动、高能
要点一
总结词
地球的运动是一个复杂的系统,涉及到多个力和力的矩。 通过拉格朗日方程,可以分析地球的运动轨迹和规律。
要点二
详细描述
地球的运动包括自转和公转,受到太阳和其他天体的引力 作用。通过应用拉格朗日方程,可以计算出地球的运动轨 迹和周期,以及地球上不同地区的重力加速度和潮汐现象 等。
非保守系统的拉格朗日方程
总结词
非保守系统中的拉格朗日方程需要考虑非保 守力的影响,这需要引入额外的变量和方程 来描述系统的运动。
力学系统的拉格朗日方程

力学系统的拉格朗日方程力学是物理学的一个重要分支,研究物体在力的作用下的运动规律。
而力学系统的拉格朗日方程是力学中的一种重要数学工具,用于描述力学系统的运动。
拉格朗日方程是由法国数学家和物理学家约瑟夫·路易·拉格朗日在18世纪末提出的,它是一种用于描述力学系统的运动方程的方法。
与牛顿力学中的牛顿第二定律不同,拉格朗日方程是一种更为简洁和优雅的描述力学系统运动的方法。
在了解拉格朗日方程之前,我们先来了解一下力学系统。
力学系统是由物体和作用于物体上的力所组成的。
物体可以是一个质点,也可以是一个刚体或弹性体。
而力则可以是重力、弹力、摩擦力等。
拉格朗日方程的核心思想是通过定义一个称为拉格朗日量的函数来描述力学系统的运动。
拉格朗日量是系统的动能减去势能的差。
动能是物体运动时所具有的能量,而势能则是物体在力场中所具有的能量。
拉格朗日方程的形式为:d/dt(∂L/∂(dq/dt)) - ∂L/∂q = 0,其中L是拉格朗日量,q 是广义坐标,t是时间。
这个方程可以用来描述力学系统在任意时刻的运动状态。
通过拉格朗日方程,我们可以得到力学系统的运动方程。
这些方程可以用来计算物体在给定力场中的运动轨迹和速度。
拉格朗日方程的优势在于它可以用一种统一的方式描述各种不同类型的力学系统,从而简化了计算和分析的过程。
拉格朗日方程在物理学的许多领域中都有广泛的应用。
例如,在天体力学中,拉格朗日方程可以用来描述行星和恒星的运动。
在机械工程中,拉格朗日方程可以用来分析机械系统的运动和稳定性。
在量子力学中,拉格朗日方程可以用来描述微观粒子的运动。
总之,拉格朗日方程是力学系统中一种重要的数学工具,它提供了一种简洁和优雅的描述力学系统运动的方法。
通过拉格朗日方程,我们可以更好地理解和分析力学系统的运动规律。
在物理学的研究中,拉格朗日方程有着广泛的应用,为我们揭示了自然界中的许多奥秘。
力学竞赛之拉格朗日方程

单摆运动是一个典型的简谐振动,其运动规律可以用拉格朗日方程来描述。在摆角较小 的情况下,单摆的运动可以简化为一个一维问题,只考虑角度θ作为变量。拉格朗日方 程可以表示为:θ''(t) + g/L * sin(θ(t)) = 0,其中g是重力加速度,L是摆长。这个方程
描述了单摆在受到重力和弹性力作用下的运动规律。
拉格朗日方程的应用领域
80%
经典力学
在经典力学中,拉格朗日方程被 广泛应用于分析质点系的动力学 行为,例如行星运动、弹性碰撞 等。
100%
相对论力学
在相对论力学中,拉格朗日方程 也被广泛应用,例如分析相对论 性粒子的运动规律。
80%
工程领域
在工程领域中,拉格朗日方程被 广泛应用于各种实际问题,例如 分析机械振动、控制系统、航空 航天等领域的动力学问题。
力学竞赛之拉格朗日方程
目
CONTENCT
录Hale Waihona Puke • 拉格朗日方程概述 • 拉格朗日方程的推导 • 拉格朗日方程的求解方法 • 拉格朗日方程的实例分析 • 拉格朗日方程的扩展与展望
01
拉格朗日方程概述
定义与性质
定义
拉格朗日方程是描述一个质点系的运动状态的微分方程组,它基于 拉格朗日函数L(也称为拉格朗日量)来描述系统的动能和势能。
通过数值计算方法求解拉格朗日方程。
详细描述
对于无法解析求解的拉格朗日方程,可以采用数值求解方法。这种方法将时间或空间离散化,将偏微分方程转化 为差分方程,然后利用计算机进行数值计算。常用的数值求解方法包括有限差分法、有限元法和谱方法等。
04
拉格朗日方程的实例分析
单摆运动
总结词
单摆运动是拉格朗日方程的一个简单实例,通过分析单摆运动,可以深入理解拉格朗日 方程的应用。
06-分析力学基础-第二类拉格朗日方程资料

保守体系的拉格朗日方程为:
d dt
(qLk)qLk
0
想一想:上式的成立、适用条件是什么?
M1-6
3. 对拉格朗日方程的评价
(1) 拉氏方程的特点(优点): 是一个二阶微分方程组,方程个数与体系的自由度相同。形式简 洁、结构紧凑。而且无论选取什么参数作广义坐标,方程形式不变。 方程中不出现约束反力,因而在建立体系的方程时,只需分析已 知的主动力,不必考虑未知的约束反力。体系越复杂,约束条件越 多,自由度越少,方程个数也越少,问题也就越简单。
M1-10
系统动能:
T1 2m 1x21 2JBB 21 2JI
2 A
1 2 m 1 x 2 1 2 1 2 m 2 R 2B 2 1 2 2 3 m 2 R 2A 2
m1
2m2 2
x2
系统的拉格朗日函数(动势)
LTV m 1 2 2 m 2x 2 1 2 k (0 x )2 m 1 g x
5. 求出上述一组微分方程的积分。
M1-9
[例] 物块C的质量为m1,A,B两轮 皆为均质圆轮,半径R,质量为m2, 求系统的运动微分方程。
解:图示机构只有一个自由度,所受
约束皆为完整、理想、定常的,以物 块平衡位置为原点,取x 为广义坐标。
系统势能: (以弹簧原长为弹性势能零点)
V1 2k(0x)2m1gx
2. 计算质点系的动能T,表示为广义速度和广义坐标的函数。
3. 计算广义力 Q j(j 1 ,2 , ,k),计算公式为:
Q j i n1(Xi q xijYi q yijZi q zij) 或
Qj
W ( j) qj
若主动力为有势力,也可将势能 V 表示为广义坐标的函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉格朗日方程非保守力
拉格朗日方程是经典力学中非常重要的一个工具,被广泛应用于各个
领域。
其中,非保守力更是一个重要的概念。
本文将介绍拉格朗日方
程和非保守力的概念及其在现实生活中的应用。
拉格朗日方程是经典力学中描述物体运动的一种数学方法。
该方程由
法国数学家约瑟夫·路易·拉格朗日于18世纪首次提出,并被广泛使用
于物理学、天文学、工程学、生物学等各个领域中。
该方程的主要作
用是以最简洁、统一的方式描绘出系统中的物理现象,并且能够推导
出物体的运动方程。
因此,拉格朗日方程成为了经典力学中非常重要
的一个工具。
拉格朗日方程可以分为两部分,分别是动能项和势能项。
其中,动能
项描述了物体的动能,而势能项则包括各种形式的势能,如重力势能、弹性势能等。
通过对拉格朗日方程的求解,我们可以得到物体在运动
过程中所遵循的运动方程。
与此同时,我们也需要了解一下非保守力的概念。
在经典力学中,保
守力和非保守力是物体受力的两种不同形式。
保守力是一种可以被表
示为势能的力,例如重力、弹性力等。
对于保守力而言,其做功只与
物体在两个位置之间的高度差有关,与具体路径无关。
而非保守力则
不满足这一性质,例如摩擦力、空气阻力等,它们的做功与物体具体
的运动路径有关。
因此,非保守力既不能被表示为势能,也不能使用
拉格朗日方程来描述物体的运动。
实际应用中,拉格朗日方程和非保守力的概念非常重要。
例如,对于
飞行器而言,由于存在空气阻力、推进力等非保守力,因此无法使用
拉格朗日方程来描述其运动过程。
但是可以使用牛顿第二定律或运动
学公式等其他方法来描述其运动状态。
此外,非保守力也在物理实验中得到了广泛应用。
例如,在重力实验中,我们可以通过对物体从不同位置抛出的数据进行分析,以求得受
物体所受的空气阻力的大小。
综上所述,拉格朗日方程和非保守力是经典力学中非常重要的两个概念。
通过深入了解这两个概念,我们可以更好地理解物体运动的规律,并且可以更加准确地描述物理实验的结果。