高一数学平面向量知识点复习课件.ppt
合集下载
平面向量单元复习2高一数学必修4PPT课件

角为120°,且|a|=1,|b|=2,|c|=3,
求向量a+b+c与a的夹角. 150°
例4 设向量a、b不共线,已知 AB 2a+kb,BC a+b,CD a-2b, 且A、B、D三点共线,求实数k的值.
k=-1
例5 设e为单位向量,且向量a≠e, 若对任意实数t,不等式|a-te|≥|a- e|恒成立,求证:(a-e)⊥e.
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
演讲人:XXXXXX 时 间:XX年XX月XX日
(7) cos
ab |a ||b
|;
(8) |a|cos a|bb|.
范例分析
例1 已知向量a、b满足:|a|=4,且 a·(a-b)=12,求向量b在a方向上的投影.
1
例2 已知非零向量a、b满足: (a-b)⊥b,且(a+2b)⊥(a-2b),求向量 a与b的夹角.
60°
例3 已知向量a、b、c两两之间的夹
第二章 平面向量 单元复习 第二课时
知识结构
t
p
1 2
5730
线性运算
基本定理
向 量
实际背景 向量
的 实
际
坐标表法的运算性质
(1)a+b=b+a; (2)(a+b)+c=a+(b+c); (3)若a与b为相反向量,则a+b=0; (4)若b+c=a,则c=a-b; (5)|a±b|≤|a|+|b|,|a±b|≥||a|-|b||; (6)O A 1A 1 A 2A 2 A 3 A n 1 A n O A n
例6 已知向量a、b满足:|a|=4, |b|=3,(2a-3b)·(2a+b)=61,当 t∈[0,1]时,求|a+tb|的取值范围.
求向量a+b+c与a的夹角. 150°
例4 设向量a、b不共线,已知 AB 2a+kb,BC a+b,CD a-2b, 且A、B、D三点共线,求实数k的值.
k=-1
例5 设e为单位向量,且向量a≠e, 若对任意实数t,不等式|a-te|≥|a- e|恒成立,求证:(a-e)⊥e.
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
演讲人:XXXXXX 时 间:XX年XX月XX日
(7) cos
ab |a ||b
|;
(8) |a|cos a|bb|.
范例分析
例1 已知向量a、b满足:|a|=4,且 a·(a-b)=12,求向量b在a方向上的投影.
1
例2 已知非零向量a、b满足: (a-b)⊥b,且(a+2b)⊥(a-2b),求向量 a与b的夹角.
60°
例3 已知向量a、b、c两两之间的夹
第二章 平面向量 单元复习 第二课时
知识结构
t
p
1 2
5730
线性运算
基本定理
向 量
实际背景 向量
的 实
际
坐标表法的运算性质
(1)a+b=b+a; (2)(a+b)+c=a+(b+c); (3)若a与b为相反向量,则a+b=0; (4)若b+c=a,则c=a-b; (5)|a±b|≤|a|+|b|,|a±b|≥||a|-|b||; (6)O A 1A 1 A 2A 2 A 3 A n 1 A n O A n
例6 已知向量a、b满足:|a|=4, |b|=3,(2a-3b)·(2a+b)=61,当 t∈[0,1]时,求|a+tb|的取值范围.
高一数学《平面向量基本定理》(课件)

A
C
a
e1
e1
OB
A' e 2
(3)继续旋a的 转位置,如下图 又该如何构成平形行 ?四边
C
B' a
e
2
A
e1
e1
OB
A' e 2
(3)继续旋a的 转位置,如下图 又该如何构成平形行 ?四边
C
B' a
e
2
A
e1
e1
O A'
M
e
2
B
(3)继续旋a的 转位置,如下图 又该如何构成平形行 ?四边
(3)继续旋a的 转位置,如下图 又该如何构成平形行 ?四边
N
M
C
B' a
e
2
A
e1
e1
O A'
M
e
2
B
C
a
A
e1
a
O
C'
e2B
(3)继续旋a的 转位置,如下图 又该如何构成平形行 ?四边
N
M
C
B' a
e
2
A
e1
e1
O A'
M
e
2
B
Cห้องสมุดไป่ตู้
a
A
e1
a
O
C'
e2B
N
平面向量基本定理:
平面向量基本定理:
N
C
B' a
e
2
A
e1
e1
O A'
M
e
2
B
(3)继续旋a的 转位置,如下图 又该如何构成平形行 ?四边
高一数学平面向量知识点复习课件.ppt

P1P PP2,则
x
x1 x2 1
y
y1 y2 1
1
x
x1
x2 2
中点公式
y
y1 y2 2
2、平移公式
如果点P(x1,y2)按向量 a (h, k)
平移至 P(x, y),则
x x h
y
y
k
例5 设P1(2,-1),P2(0,5),且P在直线
P1P2上使
,求点P 的坐标。
例3 设 a (3,2),b (,7),c (2, ),若
a 2b c,求,的值。
解:由已知条件,得:
a 2b =(3,2)-2(λ,7)
=(3-2λ,-12) =(-2,μ) ∴ 3-2λ=-2 μ=-12
∴ λ= 5 ,μ=-12 2
三、两个重要定理
1、向量共线充要条件
一个向实量数λb,与使非得零向量 a 共线的充要条件是有且只有
(2)当 k a b 与 a 3b平行时,存在唯一实数λ, 使 k a b=λ (a 3b,) 由(k-3,2k+2)= λ(10,-4)
k 3 10 2k 2 4
解得 k 1 , 1
3
3
反向
五、两个重要公式
1、定比分点坐标公式
设P(x,y),P1(x1,y1),P2(x2,y2),且
一、向量及其有关概念
有向线段
向量的几何表示 向量的模 零向量 单位向量 平行向量 向 共线向量 量 相等向量 相反向量
二、向量的运算
几 加法 何 减法 方 实数与向量的积
向法
量
的
运 算
坐 标
加法 减法 实数与向量的积
方 平面向量数量积
法
几何方法:
x
x1 x2 1
y
y1 y2 1
1
x
x1
x2 2
中点公式
y
y1 y2 2
2、平移公式
如果点P(x1,y2)按向量 a (h, k)
平移至 P(x, y),则
x x h
y
y
k
例5 设P1(2,-1),P2(0,5),且P在直线
P1P2上使
,求点P 的坐标。
例3 设 a (3,2),b (,7),c (2, ),若
a 2b c,求,的值。
解:由已知条件,得:
a 2b =(3,2)-2(λ,7)
=(3-2λ,-12) =(-2,μ) ∴ 3-2λ=-2 μ=-12
∴ λ= 5 ,μ=-12 2
三、两个重要定理
1、向量共线充要条件
一个向实量数λb,与使非得零向量 a 共线的充要条件是有且只有
(2)当 k a b 与 a 3b平行时,存在唯一实数λ, 使 k a b=λ (a 3b,) 由(k-3,2k+2)= λ(10,-4)
k 3 10 2k 2 4
解得 k 1 , 1
3
3
反向
五、两个重要公式
1、定比分点坐标公式
设P(x,y),P1(x1,y1),P2(x2,y2),且
一、向量及其有关概念
有向线段
向量的几何表示 向量的模 零向量 单位向量 平行向量 向 共线向量 量 相等向量 相反向量
二、向量的运算
几 加法 何 减法 方 实数与向量的积
向法
量
的
运 算
坐 标
加法 减法 实数与向量的积
方 平面向量数量积
法
几何方法:
高一数学《平面向量基本定理》(课件)

e1 e1O
A'
A
e2B
a
C
(2) 改变a的位置如下图两种情况时,
怎样构造平行四边形 ?
C
M
a e1 A
e1 e1O
A'
A
e2B
a
N B' e2 O e2 B M
C
(2) 改变a的位置如下图两种情况时,
怎样构造平行四边形 ?
C
M
a e1 A
e1 e1O
A'
A
e2B
a
N
N B' e2 O e2 B M
它们之间会有
e1 a
怎样的关系呢? e2
2. 动手操作,探测命题:
2. 动手操作,探测命题:
将三个向量的起点移到同一点:
e1
O
a C
e2
2. 动手操作,探测命题:
将三个向量的起点移到同一点:
e1
e1 A a
O
C
e2
2. 动手操作,探测命题:
将三个向量的起点移到同一点:
e1
e1 A a
O
C
e2
M
e2
B
C
M
a
A
e1
a
O
C'
e2B
N
平面向量基本定理:
平面向量基本定理:
如果 e1, e2是同一平面内两个不共线的 向量,那么对这一平面内任意一个向量 a,
有且只有一对实数1, 2 , 使 a 1e1 2 e2 .
平面向量基本定理:
如果 e1, e2是同一平面内两个不共线的 向量,那么对这一平面内任意一个向量 a,
其逆命题是否成立?
高一数学 平面向量 ppt

与直线MN相交于P, 7,2若直线l:kx - y 1 0 与线段MN相交,求k 的取值范围
线段MN 的延长线
5、平面向量的数量积—知识回忆(一) 非零向量OA=a, OB=b, (1) a,b夹角∠AOB=θ (0≤θ≤π) ① θ=0同向②θ=π反向③两向量首尾相接 形成的角为夹角的补角④两向量终点 相同形成的角与夹角相等 (2)a与b夹角90。,a⊥b。 (3)a·b=|a|·|b|cosθ (0·a=0) (4) a⊥b a· b=0 (5)a· b几何意义,θ为a与b夹角则 |a|cosθ叫a在b上投影。
方向相同或相反的非零向量叫做平行向量,零 向量与任何向量平行.
(3)相等向量
长度相等且方向相同的向量叫做相等向量
(4)加法、减法
三角形法则(首尾相接),平行四边形法则(共起点)
(5)运算性质:
a+b=b+a, (a+b)+c=a+(b+c)
一、知识回顾:
a b a b a b
B B C
平行交差
例1 :a 3,2,b 1,2,c 4,1
1求满足a m b nc的实数m,n 2若a kc//2b a,求实数k 3设d x,y 满足d c//b a,
且 d c 1,求d
4、线段的定比分点—知识回忆
例2:设e1、e2是两个不共线的向量,已知向量 =2e1+ke2,
AB
CB =e1+3e2, CD
=2e1-e2,
若A、B、D三点共线,求k的值。
例4、若G为 ABC的重心, 则GA GB GC
例4、已知平行四边形OAD B的对角线OD, AB相交于点C, 线段BC上有一点M,满足BC 3BM,线段CD上有点N,满足
线段MN 的延长线
5、平面向量的数量积—知识回忆(一) 非零向量OA=a, OB=b, (1) a,b夹角∠AOB=θ (0≤θ≤π) ① θ=0同向②θ=π反向③两向量首尾相接 形成的角为夹角的补角④两向量终点 相同形成的角与夹角相等 (2)a与b夹角90。,a⊥b。 (3)a·b=|a|·|b|cosθ (0·a=0) (4) a⊥b a· b=0 (5)a· b几何意义,θ为a与b夹角则 |a|cosθ叫a在b上投影。
方向相同或相反的非零向量叫做平行向量,零 向量与任何向量平行.
(3)相等向量
长度相等且方向相同的向量叫做相等向量
(4)加法、减法
三角形法则(首尾相接),平行四边形法则(共起点)
(5)运算性质:
a+b=b+a, (a+b)+c=a+(b+c)
一、知识回顾:
a b a b a b
B B C
平行交差
例1 :a 3,2,b 1,2,c 4,1
1求满足a m b nc的实数m,n 2若a kc//2b a,求实数k 3设d x,y 满足d c//b a,
且 d c 1,求d
4、线段的定比分点—知识回忆
例2:设e1、e2是两个不共线的向量,已知向量 =2e1+ke2,
AB
CB =e1+3e2, CD
=2e1-e2,
若A、B、D三点共线,求k的值。
例4、若G为 ABC的重心, 则GA GB GC
例4、已知平行四边形OAD B的对角线OD, AB相交于点C, 线段BC上有一点M,满足BC 3BM,线段CD上有点N,满足
平面向量的基本定理PPT优秀课件

91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]
一向量 a 1e 1 + 2e 2
我们把不共线的向量 e 1 、e 2 叫做表示
这一平面内所有向量的一组基底。
特别的,若 a = 0 ,则有且只有 :
1= 2 = 0
?若 1与 2中只
有一个为零,情
可使 0 = 1e 1 + 2e 2 . 况会是怎样?
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
线的向量,a 是这一平面内的任一向量,
我们研究 a 与 e 1、e 2之间的关系。
e1
a
研究
e2
OC = OM + ON= 1OA + 2OB
即 a = 1e 1 + 2e 2 .
e1 a e2
M
C
Aa
e1
O
N e2 B
一向量 a 1e 1 + 2e 2
我们把不共线的向量 e 1 、e 2 叫做表示
这一平面内所有向量的一组基底。
特别的,若 a = 0 ,则有且只有 :
1= 2 = 0
?若 1与 2中只
有一个为零,情
可使 0 = 1e 1 + 2e 2 . 况会是怎样?
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
线的向量,a 是这一平面内的任一向量,
我们研究 a 与 e 1、e 2之间的关系。
e1
a
研究
e2
OC = OM + ON= 1OA + 2OB
即 a = 1e 1 + 2e 2 .
e1 a e2
M
C
Aa
e1
O
N e2 B
高一数学平面向量精品PPT课件

答案: AD=2 b BE=2 c BF= c-a FC=2 a
思考: a、b、c 有何关系?
A a B
b C
b =a + c
cF
0
E
D
知识结构
平面向量小 复习
知识要点 例题解析 巩固练习
课外作业
练习3 已知点A(2,-1)、B(-1,3)、C(-2,-5) 求 (1)AB、AC的坐标;(2)AB+AC的坐标; (3) AB-AC的坐标.
知识结构
平面向量复习
知识要点 例题解析 巩固练习
课外作业
向量的模(长度)
1. 设 a = ( x , y ), 则 a x2 y2
2. 若表示向量 a 的起点和终点的坐标分别 为A(x1,y1)、B (x2,y2) ,则
a AB x1x22y1y22
知识结构
平面向量复习
抵达民宿时,太阳已落下了帷幕,温馨点点的灯光在落寞的黑夜中显得无比温暖。
热情周到的女主人迎接我的到来,放下随身物品后,我在小镇上随意寻觅了些小食,就来到了后院安静坐下。
头顶上是浩瀚的星空 眼前是闪烁的灯火
心中却是平和幽静的情感
远离了呼啸而过的地铁呼啸声;远离了川流不息的车流声; 等到了一个此时此刻,用我的五官感受到了一个真正美好寂静的夜晚,属于自己的夜晚。
进行变形.
解:(1)原式= AB +(BO + OM + MB)
= AB + 0 = AB (2)原式= AB + BD + DA -(BC + CA)
例1
= 0-BA = AB
平面向量复习
知识结构 知识要点 例题解析 巩固练习 课外作业
高一数学平面向量复习课件

详细描述
向量数量积的几何意义在于它表示了两个向量的长度和它们之间的夹角之间的关系。具体来说,当两个非零向量 的夹角为锐角时,它们的数量积为正;当夹角为直角时,数量积为零;当夹角为钝角时,数量积为负。
向量数量积的运算律
总结词
掌握向量数量积的运算律,包括 交换律、结合律和分配律。
详细描述
向量数量积满足交换律,即 a·b=b·a;结合律,即 (a+b)·c=a·c+b·c;分配律,即 (λa)·b=λ(a·b),其中λ是标量。
向量积的性质
向量积的性质
1. 向量积的方向与两个向量的夹角和大小有 关,其方向垂直于两个给定向量所确定的平 面;2. 向量积的模长为|a×b|=|a||b|sinθ; 3. 向量积满足结合律但不满足交换律;4. 向量积可以用来表示向量的旋转关系。
性质的应用
在解析几何中,向量积可以用来解决与旋转 、速度和加速度有关的问题;在物理中,向 量积可以用来描述力矩、角速度等物理量。 通过理解这些性质和应用,学生可以更好地
向量积的运算律
向量积的运算律
交换律a×b=-b×a,分配律 (a+b)×c=a×c+b×c。这些运算律与标量积 的运算律类似,但要注意向量积不满足结合 律。
运算律的理解
交换律表明向量积的方向与夹角有关,而分 配律表明向量积与向量的线性组合是可分配 的。这些运算律对于理解向量积的性质和计 算非常重要。
混合积的性质
非负性
向量a、b、c的混合积为非负数,当且仅当a、b、c三个 向量共面时取值为0。
线性性质
混合积满足线性性质,即对于任意标量m和n,有 $(mvec{a} + nvec{b}) cdot vec{c} = mvec{a} cdot vec{c} + nvec{b} cdot vec{c}$。
向量数量积的几何意义在于它表示了两个向量的长度和它们之间的夹角之间的关系。具体来说,当两个非零向量 的夹角为锐角时,它们的数量积为正;当夹角为直角时,数量积为零;当夹角为钝角时,数量积为负。
向量数量积的运算律
总结词
掌握向量数量积的运算律,包括 交换律、结合律和分配律。
详细描述
向量数量积满足交换律,即 a·b=b·a;结合律,即 (a+b)·c=a·c+b·c;分配律,即 (λa)·b=λ(a·b),其中λ是标量。
向量积的性质
向量积的性质
1. 向量积的方向与两个向量的夹角和大小有 关,其方向垂直于两个给定向量所确定的平 面;2. 向量积的模长为|a×b|=|a||b|sinθ; 3. 向量积满足结合律但不满足交换律;4. 向量积可以用来表示向量的旋转关系。
性质的应用
在解析几何中,向量积可以用来解决与旋转 、速度和加速度有关的问题;在物理中,向 量积可以用来描述力矩、角速度等物理量。 通过理解这些性质和应用,学生可以更好地
向量积的运算律
向量积的运算律
交换律a×b=-b×a,分配律 (a+b)×c=a×c+b×c。这些运算律与标量积 的运算律类似,但要注意向量积不满足结合 律。
运算律的理解
交换律表明向量积的方向与夹角有关,而分 配律表明向量积与向量的线性组合是可分配 的。这些运算律对于理解向量积的性质和计 算非常重要。
混合积的性质
非负性
向量a、b、c的混合积为非负数,当且仅当a、b、c三个 向量共面时取值为0。
线性性质
混合积满足线性性质,即对于任意标量m和n,有 $(mvec{a} + nvec{b}) cdot vec{c} = mvec{a} cdot vec{c} + nvec{b} cdot vec{c}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a b ( x1 x2 , y1 y2 ) a b ( x1 x2 , y1 y2 )
a (x1 ,
说明:实数与向量的积的坐标 y1) 等于用这个实数乘原来向量的 相应坐标。 于它们对应坐标的乘积的和。
a b ( x1x2 , y1 y2 ) 说明:两个向量的数量积等
(h, k ) x x h y y k
例5
设P1(2,-1),P2(0,5),且P在直线
P1P2上使
P 1 P 2 PP 2
,求点P 的坐标。
y log 2 ( x 2) 3 的图象经过 怎样的平移,可以得到函数 y log 2 x的图象?
例6 (1)函数
a 2b =(3,2)-2(λ
=(3-2λ ,-12) =(-2,μ )
,7)
∴
3-2λ =-2
μ =-12
5 ∴λ = ,μ =-12 2
三、两个重要定理 1、向量共线充要条件 向量 b 与非零向量 a 共线的充要条件是有且只有 一个实数λ,使得
b a
注意:这是判断两个向量共线(平行)的重要方法。 2、平面向量基本定理 那么对于这一平面的任一个向量 a ,有且只有一对实 如果 e1 , e2 是同一个平面内的两个不共线向量,
数 1 , 2 ,使
a 1 e1 2 e2
四、数量积的主要应用
1、计算向量的模
x2 y2
2、两点间距离公式:
AB ( x1 x2 ) ( y1 y2 )
2
2
3、计算两个向量的夹角:
cos
a b ab
a 2R sin A, b 2R sin B, c 2R sin C
a b c sin A , sin B , sin C 2R 2R 2R
sin A : sin B : sin C a : b : c
六、余弦定理及其变形公式
a 2 b 2 c 2 2bc sin A b 2 c 2 a 2 2ca sin B c 2 a 2 b 2 2absin C
a 3b垂直; (2) k a b与 a 3b平行?平行时它们是同向
解:由已知 k a b=(k-3,2k+2), a 3b =(10,-4)
(1)当 (k a b) (a 3b) 0 时,这两个向量垂直。
由(k-3)×10+(2k+2)×(-4)=0,得:k=19
y cos( x ) 2的图象经过怎样的 3 平移,可以得到函数 y cos x的图象?
(2)函数
六、正弦定理及其变形公式
a b c 2R sin A sin B sin C
S ABC 1 1 1 bc sin A ca sin B ab sin C 2 2 2
OB OA AB
O
A
BA OA OB
B
a
b
a( 0)
a( 0)
O
a
实数与向量的积的实质是:向量的伸缩变换。
a b | a | | b | cos | OM | | OA |
M A
坐标方法
设向量 则 a (x1,y1), b (x2,y2) 说明:两个向量和 与差的坐标分别等 于这两个向量相应 坐标的和与差。
变形
b2 c2 a 2 cos A 2bc c2 a 2 b2 cos B 2ca a2 b2 c2 cosC 2ab
1、完成试卷(九)、(十),星期三上交 2、看试卷(七),明天讲解
向量运算律 1、实数与向量的积运算律
( 1 )( a ) ( )a (2)( ) a a a (3)(a b ) a b
2、平面向量数量积的运算律
思考:你能将此 运算律用坐标表 示出来吗?
( 1 ) a b b a (2)( a) b (a b) a ( b) (3)(a b) c a c b c
4、向量垂直充要条件:a b 0
坐标表示:x1x2+y1y2=0
5、向量共线(平行)充要条件: b 坐标表示:x1y2-x2y1=0
a
注意:这两个充要条件分别是判断两个向量(直线) 垂直或平行的重要方法之一。
例4 已知 值时,
a =(1,2), b =(-3,2),当k为何
(1) k a b与 还是反向?
一、向量及其有关概念
向量的几何表示
向量的模 零向量 有向线段
向 量
单位向量
平行向量 共线向量 相等向量 相反向量
二、向量的运算
几 何 方 法
加法 减法 实数与向量的积
向 量 的 运 算
坐 标 方 法
加法 减法 实数与向量的积 平面向量数量积
几何方法: B
OC OA OB
B
A
C
O B
O
A
k a b 与 a 3b 平行时,存在唯一实数λ, ) 使 k a b=λ (a 3b,由( k-3,2k+2)= λ(10,-4)
(2)当
k 3 10 2k 2 4
解得 k ,
1 3
1 3
反向
五、两个重要公式
1、定比分点坐标公式 设P(x,y),P1(x1,y1),P2(x2,y2),且
P 1P PP 2 ,则
x y
x1 x2 1 y1 y2 1
1
中点公式
x1 x2 x 2 y y1 y2 2
2、平移公式 如果点P(x1,y2)按向量 a
平移至 P( x, y),则
1、 a 0, a b 0 b 0 2、 a b b c, b 0 a c 3、 (a b) c a (b c)
例3
设 a (3,2),b (,7), c (2, ),若
a 2b c,求 ,的值。
解:由已知条件,得:
例1
判断下列命题及其逆命题的真假:
1、若| a |= | b | ,则 a 与 2、若
b 是共线向量;
a∥ b ,则 a在 b 方向上的投影是 a ; 3、若 | a || b | 1 ,则 a b 1 ; 4、若 a 0,则 0且 a 0
例2 判断下列运算律的正误