平面向量复习_1-课件
平面向量复习课课件

平面向量的数量积和向量积
数量积(点积)和向量积(叉积)是平面向量的两种重要运算。数量积用来计算向量的夹角和向量之间 的投影,而向量积则得到两个向量构成的新向量。让我们研究它们的性质和应用。
平面向量复习课ppt课件
欢迎来到平面向量复习课ppt课件!本课程将介绍平面向量的定义、表示、运 算和应用,以及与向量相关的数学概念。让我们开始学习吧!
什么是平面向量
平面向量是具有大小和方向的量,可以用箭头或有向线段表示。它们在物理、工程和几何中具有广泛的 应用。让我们深入了解平面向量的定义和基本概念。
平面向量的线性相关和线性无关性质
向量的线性相关性描述了向量之间的依赖关系,线性无关性表示没有一组向量可以由其他向量线性表示。 了解这些性质将帮助我们分析向量的维度和空间关系。
平面向量的基底和坐标
基底是向量空间中的一组线性无关的向量,坐标表示一个向量在基底上的投 影。通过基底和坐标,我们可以更好地描述向量和进行向量运算。
平面向量的向量方程
向量方程将一组向量相加得到等于零的表达式,这可以用来解决线性方程组和求解几何问题。学习向量 方程将提供更灵活的分析和数学工具。
向量的模、单位向量和方向角
向量的模指向量的长度或大小,单位向量是模等于1的向量。方向角描述了向 量相对于某一方向的偏离程度。学习这些概念将帮助我们准确表示和操作向 量。
平面向量的投影和正交分解
向量的投影是指一个向量在另一个向量上的映射,正交分解将一个向量拆分为在另一个向量上的投影和 与之正交的部分。这些概念有助于我们理解向量的复杂性质。
高考数学总复习 第八章 第1讲 平面向量及其线性运算配套课件 文

长;
解:(1)由题设知A→B=(3,5),A→C=(-1,1), 则A→B+A→C=(2,6),A→B-A→C=(4,4). 所以|A→B+A→C|=2 10,|A→B-A→C|=4 2. 故所求的两条对角线长分别为 4 2,2 10.
第十九页,共27页。
A.0
B.B→E
图 8-1-1
C.A→D
D.C→F
第九页,共27页。
4.设O→A=e1,O→B=e2,若 e1 与 e2 不共线,且点 P 在线段 AB 上,|AP|∶|PB|=2,如图 8-1-2,则O→P=( C )
A.13e1-23e2 C.13e1+23e2
图 8-1-2
B.23e1+13e2 D.23e1-13e2
非零向量 a 共线的充要条件是有且仅有一个(yī ɡè)实数λ,使得b=λa,
即 b∥a(⇔3b)=若λaO(→a≠P0=). xO→A+yO→B ,三点 P,A,B 共线⇔x+y=1. 若P→A=λP→B,则 P,A,B 三点共线.
第十六页,共27页。
【互动探究(tànjiū)】
3.(2013 年陕西)已知向量 a=(1,m),b=(m,2),若 a∥b, 则实数(shìshù) mC =)(
第六页,共27页。
5.共线向量及其坐标表示
使得((s1hb)ǐ=向deλ量)a__a_(_a_≠_0_)与_.b 共线的充要条件是存在唯一一个(yī ɡè)实数λ,
(2)设 a=(x1,y1),b=(x2,y2),其中 b≠0,当且仅当 x1y2 -x2y1=0 时,向量(xiàngliàng) a,b 共线.
第八章 平面(píngmiàn)向量
高一数学平面向量知识点复习ppt公开课获奖课件

∴ λ= 5 ,μ=-12 2
第8页
三、两个重要定理
1、向量共线充要条件
向量b 与非零向量 a 共线充要条件是有且只有
一个实数λ,使得 b a
注意:这是判断两个向量共线(平行)重要措施。
2、平面向量基本定理
假如 e1, e2 是同一个平面内两个不共线向量,
(2)函数 y cos(x ) 2图象通过怎样
平移,可以得到函数 y 3cos x图象?
第14页
六、正弦定理及其变形公式
a b c 2R sin A sin B sin C
S ABC
1 bc sin 2
A
1 ca sin 2
B
1 2
ab sin C
a 2R sin A,b 2R sin B, c 2R sin C
使 k a b=λ (a 3b,) 由(k-3,2k+2)= λ(10,-4)
k 3 10 2k 2 4
解得 k 1 , 1
3
3
反向
第12页
五、两个重要公式
1、定比分点坐标公式
设P(x,y),P1(x1,y1),P2(x2,y2),且
P1P PP2,则
x
x1 x2 1
(3)(a b) a b
2、平面向量数量积运算律
思索:你能将此 运算律用坐标表 达出来吗?
(1)a b b a
(2)(a) b (a b) a ( b)
(3)(a b) c a c b c
第6页
例1 判断如下命题及其逆命题真假:
1、若| a|= | b| ,则 a 与 b是共线向量; 2、若 a∥b ,则 a在 b方向上投影是 ;a 3、若 | a || b | 1 ,则 a b 1 ; 4、若a 0,则 0且a 0
2025届高中数学一轮复习课件《平面向量基本定理及坐标表示》ppt

)
高考一轮总复习•数学
第10页
2.已知平面向量 a=(1,1),b=(1,-1),则向量12a-32b=( )
A.(-2,-1) B.(-2,1)
C.(-1,0)
D.(-1,2)
解析:因为 a=(1,1),b=(1,-1),所以12a-32b=12(1,1)-32(1,-1)=12,12-32,-32 =(-1,2).
∴54<k<32.即 k 的取值范围为54,32.
高考一轮总复习•数学
第23页
题型
平面向量的坐标运算
典例 2(1)已知 A(-2,5),B(10,-3),点 P 在直线 AB 上,且 P→A =-13P→B ,则点 P 的
由线性关系,转化到坐标运算.
坐标是( )
A.(-8,9)
B.(1,3)
C.(-1,-3) D.(8,-9)
高考一轮总复习•数学
第3页
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
一 平面向量基本定理 如果 e1,e2 是同一平面内的两个不共线向量,那么对这一平面内的任一向量 a,有且只 有一对实数 λ1,λ2,使 a=λ1e1+λ2e2,若 e1,e2 不共线,我们把{e1,e2}叫做表示这一平面内 所有向量的一个基底.若 e1,e2 互相垂直,则称这个基底为正交基底;若 e1,e2 分别为与 x 轴、y 轴方向相同的两个单位向量,则称这个基底为单位正交基底.
高考一轮总复习•数学
第22页
解析:如图,分别取 BD,AE 的中点 G,N,连接 GN 交 EF 于 H,
平面向量复习课件

平面向量复习基本知识点与经典结论总结1、向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
(2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线;(6)相反向量:长度相等方向相反的向量叫做相反向量。
a 的相反向量是-a 。
2、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
3.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。
4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:()()1,2a a λλ=当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ=0时,0a λ=,注意:λa ≠0。
高一数学平面向量复习课件

向量数量积的几何意义在于它表示了两个向量的长度和它们之间的夹角之间的关系。具体来说,当两个非零向量 的夹角为锐角时,它们的数量积为正;当夹角为直角时,数量积为零;当夹角为钝角时,数量积为负。
向量数量积的运算律
总结词
掌握向量数量积的运算律,包括 交换律、结合律和分配律。
详细描述
向量数量积满足交换律,即 a·b=b·a;结合律,即 (a+b)·c=a·c+b·c;分配律,即 (λa)·b=λ(a·b),其中λ是标量。
向量积的性质
向量积的性质
1. 向量积的方向与两个向量的夹角和大小有 关,其方向垂直于两个给定向量所确定的平 面;2. 向量积的模长为|a×b|=|a||b|sinθ; 3. 向量积满足结合律但不满足交换律;4. 向量积可以用来表示向量的旋转关系。
性质的应用
在解析几何中,向量积可以用来解决与旋转 、速度和加速度有关的问题;在物理中,向 量积可以用来描述力矩、角速度等物理量。 通过理解这些性质和应用,学生可以更好地
向量积的运算律
向量积的运算律
交换律a×b=-b×a,分配律 (a+b)×c=a×c+b×c。这些运算律与标量积 的运算律类似,但要注意向量积不满足结合 律。
运算律的理解
交换律表明向量积的方向与夹角有关,而分 配律表明向量积与向量的线性组合是可分配 的。这些运算律对于理解向量积的性质和计 算非常重要。
混合积的性质
非负性
向量a、b、c的混合积为非负数,当且仅当a、b、c三个 向量共面时取值为0。
线性性质
混合积满足线性性质,即对于任意标量m和n,有 $(mvec{a} + nvec{b}) cdot vec{c} = mvec{a} cdot vec{c} + nvec{b} cdot vec{c}$。
平面向量复习课PPT课件

二、基 本 知 识
1. 向量的概念
为平行向量,记作 a // b. 因为向量可以进行任意平移,平行向量总可以平移到 同一直线上,故又称共线向量.
2. 向量的运算
(1)向量的加法: 平行四边形法则;三角形法则(首尾相接). 坐标表示: a + b = (x1+ x2,y1+ y2). 运算律:交换律;结合律。 → → → 重要结论: AB + BC = AC. (2)向量的减法: 三角形法则(指向被减数). 坐标表示: a - b = (x1- x2, y1- y2). → → → → → 重要结论: a – b = a +(– b), AB =– BA,PB – PC = CB. (3)实数与向量的积: λ a. 规定: 1) |λ a| =|λ ||a| ; 2) λ >0时与a同向; λ <0时与a反向; λ =0时, λ a = 0. 坐标表示: λ a = (λ x,λ y). 运算律:λ (μ a ) = (λ μ )a ; (λ +μ )a = λ a +μ a ; λ (a + b ) = λ a +λ b. (4)两个向量的数量积: a • b = |a | | b| cosθ= x1 x2 + y1 y2. 重要性质及运算律:见课本 P119.
→ →
{
x’ = x + h, y’ = y + k.
(6)正弦定理、余弦定理: (略)
例1. 已知a = (1, 2), b = ( 3, 2), 当 k 为何值时, (1) ka + b与 a 3 b垂直; (2) ka + b与 a 3 b平行, 平行时它们是同向还是反向? 分析: ka + b = ( k 3, 2k + 2 ), a 3 b = (10, 4 ). (1) 当(ka + b )•(a 3 b ) = 0时, 两向量互相垂直; (2) 存在唯一的实数λ, 使 ( ka + b ) = λ( a 3 b )
平面向量复习高中数学会考复习课件及教案

平面向量的向量混合积
了解向量混合积的定义,掌握其基本性质。
向量混合积是平面向量的一种重要运算,定义为三个向量的点乘和叉乘的组合。它具有分配律、结合律和数乘性质等基本性质,这些性质在解决实际问题中具有广泛的应用。
总结词
详细描述
总结词
掌握向量混合积的坐标运算方法。
详细描述
通过坐标运算,可以将向量混合积的计算过程转化为代数运算,从而简化计算过程。具体方法包括利用向量的坐标表示、点乘和叉乘的定义以及向量的基本运算性质进行计算。同时,需要注意坐标的正负号和顺序对结果的影响。
运算律
坐标运算
在平面直角坐标系中,两个向量的坐标形式为(x1,y1)和(x2,y2),它们的数量积为x1x2+y1y2。
坐标运算的应用
通过坐标运算可以方便地计算向量的数量积,并且可以将其应用于解决实际问题,如物理中的力矩、速度和加速度等。
平面向握向量积的性质。
THANKS
感谢您的观看
平面向量的应用
平面向量可以表示几何中的平行和垂直关系,如向量共线、向量垂直等。
平行与垂直
角度与距离
面积与体积
平面向量可以用来计算几何图形中的角度和距离,如向量的夹角、向量的模等。
平面向量可以用来计算几何图形的面积和体积,如向量的外积、向量的混合积等。
03
02
01
平面向量可以用来表示物理中的力,通过力的合成与分解解决物理问题。
详细描述
向量积是平面向量的一种基本运算,定义为向量A和向量B的模的乘积乘以两向量夹角的正弦值。向量积具有一些重要的性质,如反交换律、分配律等。了解这些性质对于理解和应用向量积非常重要。
VS
理解向量积的几何意义,掌握向量积的运算律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)向量的坐标运算
(三)向量与函数的交汇 (四)平面向量与三角的交汇
(五)平面向量的判断题
[作业精选,巩固提高]
• 复习参考题:A组2,3,5
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/2/282021/2/28Sunday, February 28, 2021
•
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/2/282021/2/282021/2/282/28/2021 5:43:48 PM
第四章 平面向量复习
(二) 要点概述 1.平面向量的有关概念:相等向量 相反向量 平行向量 共线向量 2.平面向量的运算:加法 减法 数乘 数量积 3.平面向量基本定理与共线向量定理 4.平面向量的坐标运算 5.平面向量的应用:平行 垂直 模 夹角 6.平面向量与三角、物理等知识的融合
四、典型题归纳: (一)向量的基本概念和运算律
•
17、一个人即使已登上顶峰,也仍要 自强不 息。2021/2/282021/2/282021/2/282021/2/28
谢谢观赏
You made my day!
我们,还在路上……
•
11、越是没有本领的就越加自命不凡 。2021/2/282021/2/282021/2/28Feb-2128-Feb-21
•
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/2/282021/2/282021/2/28Sunday, February 28, 2021
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/2/282021/2/282021/2/282021/2/282/28/2021
•
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年2月28日星期 日2021/2/282021/2/282021/2/28
•
15、最具挑战1/2/282021/2/282/28/2021
•
16、业余生活要有意义,不要越轨。2021/2/282021/2/28Februar y 28, 2021