高中数学平面向量完整_ppt课件
合集下载
第六章第二节平面向量的基本定理及坐标表示课件共49张PPT

设正方形的边长为
1
,
则
→ AM
= 1,12
,
→ BN
=
-12,1 ,A→C =(1,1),
∵A→C =λA→M +μB→N
=λ-12μ,λ2 +μ ,
λ-12μ=1, ∴λ2 +μ=1,
解得λμ= =6525, .
∴λ+μ=85 .
法二:由A→M
=A→B
+12
→ AD
,B→N
=-12
→ AB
+A→D
栏目一 知识·分步落实 栏目二 考点·分类突破 栏目三 微专题系列
栏目导引
课程标准
考向预测
1.理解平面向量的基本定理及其意义. 考情分析: 平面向量基本定理及
2.借助平面直角坐标系掌握平面向量 其应用,平面向量的坐标运算,向
的正交分解及其坐标表示.
量共线的坐标表示及其应用仍是
3.会用坐标表示平面向量的加法、减 高考考查的热点,题型仍将是选择
A.(-2,3)
B.(2,-3)
C.(-2,1)
D.(2,-1)
D [设 D(x,y),则C→D =(x,y-1),2A→B =(2,-2),根据C→D =2A→B , 得(x,y-1)=(2,-2),
即xy= -21, =-2, 解得xy= =2-,1, 故选 D.]
2.(2020·福建三明第一中学月考)已知 a=(5,-2),b=(-4,-3),若
解析: ∵ma+nb=(2m+n,m-2n)=(9,-8), ∴2mm-+2nn==9-,8, ∴mn==52., ∴m-n=2-5=-3. 答案: -3
考点·分类突破
⊲学生用书 P93
平面向量基本定理及其应用
(1)(多选)(2020·文登区期中)四边形 ABCD 中,AB∥CD,∠A=90°,
数学人教A版必修第二册6.1平面向量的概念课件(共18张ppt)

第六章 平面向量及其应用
章节导视
几何大陆
代
数
向量
大
陆
统计、概率群岛
章节导视
11课时 5课时
6.1 平面向量的概念
本节目标
1.结合实际背景,学习向量的概念,会辨别 向量和数量. 2.认识有向线段,会用有向线段来表示向量. 3.认识零向量、单位向量. 4.了解相等向量、共线向量,并掌握.
背景分析
A(B)
大小为0,方向任意
大小为1,方向待定
向量也可以用字母
表示.
例题分析
例1.在图6.1-4中,分别用向量表示A地至B,C两地 的位移,并根据图中的比例尺,求出A地至B,C两地 的实际距离(精确到1km).
练习2、3 2.画两条有向线段,分别表示一个竖直向下,大小为 18N的力和一个水平向左,大小为28N的力.(用1cm 长表示10N)
时,求向量 的长度,并判断 的方向与 的 方向之间的关系.
总结归纳
平面向量 的概念
有向线 几何段表示
单位 向量
共线向量
相等向 量
3.指出图中各向量的长度. (规定小方格的边长为0.5)
知识探究
平行向量
≠有向线段 相等向量
方向相同或相反的向量 长度相等且方向相同
共线向量
l
例题分析
例2 如图6.1-8,设O是正六边形ABCDEF的中心.
(1)写出图中的共线向量;
(2)分别写出图中与
相等的向量.
B
A
O
C
F
D
E
Hale Waihona Puke 练习4 将向量用具有同一起点O的有向线段表示. (1)当 与 是相等向量时,判断终点M与N的 位置关系; (2)当 与 是平行向量,且
章节导视
几何大陆
代
数
向量
大
陆
统计、概率群岛
章节导视
11课时 5课时
6.1 平面向量的概念
本节目标
1.结合实际背景,学习向量的概念,会辨别 向量和数量. 2.认识有向线段,会用有向线段来表示向量. 3.认识零向量、单位向量. 4.了解相等向量、共线向量,并掌握.
背景分析
A(B)
大小为0,方向任意
大小为1,方向待定
向量也可以用字母
表示.
例题分析
例1.在图6.1-4中,分别用向量表示A地至B,C两地 的位移,并根据图中的比例尺,求出A地至B,C两地 的实际距离(精确到1km).
练习2、3 2.画两条有向线段,分别表示一个竖直向下,大小为 18N的力和一个水平向左,大小为28N的力.(用1cm 长表示10N)
时,求向量 的长度,并判断 的方向与 的 方向之间的关系.
总结归纳
平面向量 的概念
有向线 几何段表示
单位 向量
共线向量
相等向 量
3.指出图中各向量的长度. (规定小方格的边长为0.5)
知识探究
平行向量
≠有向线段 相等向量
方向相同或相反的向量 长度相等且方向相同
共线向量
l
例题分析
例2 如图6.1-8,设O是正六边形ABCDEF的中心.
(1)写出图中的共线向量;
(2)分别写出图中与
相等的向量.
B
A
O
C
F
D
E
Hale Waihona Puke 练习4 将向量用具有同一起点O的有向线段表示. (1)当 与 是相等向量时,判断终点M与N的 位置关系; (2)当 与 是平行向量,且
高中数学必修四《平面向量》PPT

B、e1和3e2 D、e1和e1 e2
2、指出下列两个向量的夹角。
120
0
1200
600
思维拓展
1、如图所示,在平行四边形ABCD中,
AD =a,AB=b,E、M分别是AD、DC的中
点,点F在BC上,且BC=3BF,以a,b为
基底分别表示向量 AM
B
和
F
EF
.
C
M
A ED
思维拓展 2、如图在平行四边形ABCD中, AC =a,BD =b,以a,b为基底分别表示 向量 AB 和 BC 。
AB 1 a- 1 b 22
BC 1 a+ 1 b 22
DF
C
M
AEB
思维拓展
3、设 e1, e2 是平面 的一组基底,如果 AB 3e1 2e2, BC 4e1 e2,CD=8e1 9e2 求证:A、B、D 三点共线.
2.3.1 平面向量基本定理
复习回顾
1.两向量的加法和减法有哪些几何法 则?
2.怎样理解向量的数乘运算 a?
(1)|λa|=|λ||a|;
(2)λ>0时,λa与 a方向相同;
λ<0时,λa与 a方向相反; λ=0时,λa=0.
3.平面向量共线定理是什么?
b与非零a共线
存在唯一实数λ,使b=λa.
思维引领
问题1:给定平面内任意两个向量e1,e2, 如何求作向量3e1+2e2和e1-2e2?
e1-2e2
B
e2
2e2
C
e1
O e1 D
3e1 A
3e1+2e2
思维引领
问题2:已知 e1 :
e2 :
分别用 e1,e2 表示下列向量:
数学人教A(2019)必修第二册6.1平面向量的概念(共45张ppt)

点,到达点后又改变方向向西走了10米到达点.
(1)作出向量,,;
探索新知
例 某人从点出发向东走了5米到达点,然后改变方向按东北方向走了10米到达
点,到达点后又改变方向向西走了10米到达点.
(2)求AD的模;
长度
探索新知
3.两个特殊向量
(1)零向量——
1个
长度:长度为0的向量;
(4)由于0方向不确定,故0不与任意向量平行;
×
依据规定:0与任意向量平行.
×
(5)向量a与向量b平行,则向量a与b方向相同或相反.
因为向量a与向量b若有一个是零向量,则其方向不定.
题型突破
反思感悟
1.理解零向量和单位向量应注意的问题
(1)零向量的方向是任意的,所有的零向量都相等.
(2)单位向量不一定相等,不要忽略其方向.
(1)如图,B,C是线段AD的三等分点,分别以图中各
12
点为起点和终点,可以写出________个向量.
AC
AD
BC
BD
CD
BA
CA
向量由两个因素来确定,即大小和方向,所以两个向量不能比较大小.
(2)若向量|a|=|b|,则a与b的长度相等且方向相同或相反;×
由|a|=|b|只能判断两向量长度相等,不能确定它们的方向关系.
(3)对于任意向量|a|=|b|,若a与b的方向相同,则a=b;√
因为|a|=|b|,且a与b同向,由两向量相等的条件,可得a=b.
1.向量与数量
向量
数量
大小
大小
方向
方向
只有______没有______的量.
既有______又有______的量.
思考
海平面以上的高度(海拔)用正数表示,海平面以下的高度用负数
(1)作出向量,,;
探索新知
例 某人从点出发向东走了5米到达点,然后改变方向按东北方向走了10米到达
点,到达点后又改变方向向西走了10米到达点.
(2)求AD的模;
长度
探索新知
3.两个特殊向量
(1)零向量——
1个
长度:长度为0的向量;
(4)由于0方向不确定,故0不与任意向量平行;
×
依据规定:0与任意向量平行.
×
(5)向量a与向量b平行,则向量a与b方向相同或相反.
因为向量a与向量b若有一个是零向量,则其方向不定.
题型突破
反思感悟
1.理解零向量和单位向量应注意的问题
(1)零向量的方向是任意的,所有的零向量都相等.
(2)单位向量不一定相等,不要忽略其方向.
(1)如图,B,C是线段AD的三等分点,分别以图中各
12
点为起点和终点,可以写出________个向量.
AC
AD
BC
BD
CD
BA
CA
向量由两个因素来确定,即大小和方向,所以两个向量不能比较大小.
(2)若向量|a|=|b|,则a与b的长度相等且方向相同或相反;×
由|a|=|b|只能判断两向量长度相等,不能确定它们的方向关系.
(3)对于任意向量|a|=|b|,若a与b的方向相同,则a=b;√
因为|a|=|b|,且a与b同向,由两向量相等的条件,可得a=b.
1.向量与数量
向量
数量
大小
大小
方向
方向
只有______没有______的量.
既有______又有______的量.
思考
海平面以上的高度(海拔)用正数表示,海平面以下的高度用负数
6.2平面向量的运算课件共40张PPT

故选 B.
→
→
→
→
即时训练 3-2:在四边形 ABCD 中,=,若||=||,则四边形 ABCD 的
形状为
.
→
→
解析:由=,可得四边形 ABCD 为平行四边形,
→
→
由||=||,可得邻边相等,此平行四边形是菱形,
所以四边形 ABCD 为菱形.
答案:菱形
→
→
→
→
[备用例 3] 若 O 是△ABC 所在平面内一点,且满足|-|=|-+
探究点二
向量加法运算律的应用
[例 2] 化简:
→
→
(1)+;
→
→
→
→
→
解:(1)+=+=.
[例 2] 化简:
→
→
→
(2)++;
→
→
→
→
→
→
解:(2)++=++
→
→
→
=(+)+
→→Biblioteka =+=0.
[例 2] 化简:
→
→
→
→
→
→
→
→
→
→
→
→
解:(2)原式=--+=(-)+(-)=+=0.
→
→
→
[备用例 2] 化简:--.
→
→
→
→
→
→
解:法一 --=-=.
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
即时训练 3-2:在四边形 ABCD 中,=,若||=||,则四边形 ABCD 的
形状为
.
→
→
解析:由=,可得四边形 ABCD 为平行四边形,
→
→
由||=||,可得邻边相等,此平行四边形是菱形,
所以四边形 ABCD 为菱形.
答案:菱形
→
→
→
→
[备用例 3] 若 O 是△ABC 所在平面内一点,且满足|-|=|-+
探究点二
向量加法运算律的应用
[例 2] 化简:
→
→
(1)+;
→
→
→
→
→
解:(1)+=+=.
[例 2] 化简:
→
→
→
(2)++;
→
→
→
→
→
→
解:(2)++=++
→
→
→
=(+)+
→→Biblioteka =+=0.
[例 2] 化简:
→
→
→
→
→
→
→
→
→
→
→
→
解:(2)原式=--+=(-)+(-)=+=0.
→
→
→
[备用例 2] 化简:--.
→
→
→
→
→
→
解:法一 --=-=.
→
→
→
→
→
→
→
→
→
→
→
→
→
→
6.1平面向量的概念课件共34张PPT

探究点二 相等向量与共线向量
如图,O是正六边形DEF的中心,分别写出图中与向量
→ OA
,
O→B,O→C相等的向量,与向量A→D共线的向量.
解析: 与O→A相等的向量有C→B,D→O,E→F; 与O→B相等的向量有F→A,E→O,D→C; 与O→C相等的向量有A→B,F→O,E→D. 与向量A→D共线的向量有9个:D→A,E→F,F→E,A→O,O→A,O→D,D→O,B→C, → CB.
探究点三 向量的表示及应用 在蔚蓝的大海上,有一艘巡逻艇在执行巡逻任务.它首先从A点出
发向西航行了200 km到达B点,然后改变航行方向,向西偏北50°航行了 400 km到达C点,最后又改变航行方向,向东航行了200 km到达D点.此时, 它完成了此片海域的巡逻任务.
(1)作出A→B,B→C,C→D; (2)求|A→D|.
[对点训练] 在等腰梯形ABCD中,AB∥CD,对角线AC与BD相交于点O,EF是过点O 且平行于AB的线段,在所标的方向向量中: (1)写出与A→B共线的向量; (2)写出与E→F方向相同的向量; (3)写出与O→B,O→D的模相等的向量; (4)写出与E→O相等的向量.
解析: 在等腰梯形ABCD中,AB∥CD∥EF,AD=BC. (1)题干图中与A→B共线的向量有D→C,E→O,O→F,E→F. (2)题干图中与E→F方向相同的向量有A→B,D→C,E→O,O→F. (3)题干图中与O→B的模相等的向量为A→O,与O→D的模相等的向量为O→C. (4)题干图中与E→O相等的向量为O→F.
→ 2.已知D为平行四边形ABPC两条对角线的交点,则|P→D|的值为( )
|AD|
A.12
B.13
C.1
D.2
平面向量的概念课件(共34张PPT)-高一下学期数学人教A版(2019)必修第二册

(1)向量的几何表示:向量可以用有向线段来表示, 有向线段的
长度
方向
______表示向量的大小,有向线段的______表示向量的方向.如
, .
(2)向量的字母表示:向量可以用黑体小写字母,,,…表示,书写时,
→ → →
用带箭头的小写字母 , , ,…表示.
课前预习
3.向量的相关概念
=
(5 2)2 − 52 = 5 m .
△ 是直角三角形,其中∠ = 90∘ , = 3 m, = 5 m,
所以 = 32 + 52 = 34(m),故|| = 34 m.
课中探究
[素养小结]
在画图时,向量是用有向线段来表示的,用有向线段的长度表示向
量的大小,用箭头所指的方向表示向量的方向.应该注意的是有向
课前预习
知识点三 相等向量与共线向量
相同或相反
非零向量
1.平行向量:方向____________的__________叫作平行向量.向量与
//
平行,记作______.规定:零向量与任意向量平行.
相等
相同
2.相等向量:长度______且方向______的向量叫作相等向量.向量与
相等,记作 = .
课中探究
[解析] 因为,,为非零向量,且//,所以与方向相同或相反,
又//,所以与方向相同或相反,因此与方向相同或相反,所
以//,故A正确;
两个相等的非零向量的起点与终点也可能在一条直线上,故B不正确;
易知C正确;有相同起点的两个非零向量有可能是平行向量,故D不正确.
以//,且 = .
由图可知,与向量相等的向量有.
课中探究
,
(2)与向量相反的向量有_________;
长度
方向
______表示向量的大小,有向线段的______表示向量的方向.如
, .
(2)向量的字母表示:向量可以用黑体小写字母,,,…表示,书写时,
→ → →
用带箭头的小写字母 , , ,…表示.
课前预习
3.向量的相关概念
=
(5 2)2 − 52 = 5 m .
△ 是直角三角形,其中∠ = 90∘ , = 3 m, = 5 m,
所以 = 32 + 52 = 34(m),故|| = 34 m.
课中探究
[素养小结]
在画图时,向量是用有向线段来表示的,用有向线段的长度表示向
量的大小,用箭头所指的方向表示向量的方向.应该注意的是有向
课前预习
知识点三 相等向量与共线向量
相同或相反
非零向量
1.平行向量:方向____________的__________叫作平行向量.向量与
//
平行,记作______.规定:零向量与任意向量平行.
相等
相同
2.相等向量:长度______且方向______的向量叫作相等向量.向量与
相等,记作 = .
课中探究
[解析] 因为,,为非零向量,且//,所以与方向相同或相反,
又//,所以与方向相同或相反,因此与方向相同或相反,所
以//,故A正确;
两个相等的非零向量的起点与终点也可能在一条直线上,故B不正确;
易知C正确;有相同起点的两个非零向量有可能是平行向量,故D不正确.
以//,且 = .
由图可知,与向量相等的向量有.
课中探究
,
(2)与向量相反的向量有_________;
数学人教A版(2019)必修第二册6.1平面向量的概念(共41张ppt)

方向
起点
方向
自主思考1 “有向线段就是向量,向量就是有向线段”,这种说法正确吗?________________________________________________________________________________________________________________
新知生成
1.平行向量 方向____________的非零向量叫做平行向量.向量 与 平行,记作 . 规定:零向量与任意向量平行,即对于任意向量 ,都有 .
任务学习一 向量的概念与表示
任务学习二 相等向量与共线向量
任务学习一 向量的概念与表示
活动探究
李老师每天下班开车5千米从学校回到家,你能据此确定李老师家的位置吗?为什么?
提示 不能确定李老师家的位置.要想确定李老师家的位置,不仅要知道李老师家与学校的直线距离,还要知道李老师家在学校的什么方向.
1.下列各量中,向量的个数为( ) ①浓度;②年龄;⑨盈利;⑩时间.
B
A. 3 B. 4 C. 5 D. 6
[解析] 向量是既有大小又有方向的量,故符合题意的有③风力,⑤位移,⑥人造卫星的速度,⑧向心力,共4个.
2.下列说法中正确的是( )
任务学习二 相等向量与共线向量
活动探究
某地一网格形街道分布图如图所示,方格由若干个边长为1的小正方形拼成,甲同学从 地到 地,乙同学从 地到 地,丙同学从 地到 地,分别用向量表示甲、乙、丙三位同学的位移,并判断它们有何关系.
提示 甲、乙、丙三位同学的位移分别用向量 , 和 表示,如图所示.由图可知向量 与 的大小相等、方向相同, 与 的大小不等、方向相反.
(2) ,点 在点 正东方向.
[解析] 由于点 在点 正东方向,且 ,所以在坐标纸上点 距点 的横向小方格数为4,纵向小方格数为0,于是点 的位置可以确定,画出向量 ,如图所示.
起点
方向
自主思考1 “有向线段就是向量,向量就是有向线段”,这种说法正确吗?________________________________________________________________________________________________________________
新知生成
1.平行向量 方向____________的非零向量叫做平行向量.向量 与 平行,记作 . 规定:零向量与任意向量平行,即对于任意向量 ,都有 .
任务学习一 向量的概念与表示
任务学习二 相等向量与共线向量
任务学习一 向量的概念与表示
活动探究
李老师每天下班开车5千米从学校回到家,你能据此确定李老师家的位置吗?为什么?
提示 不能确定李老师家的位置.要想确定李老师家的位置,不仅要知道李老师家与学校的直线距离,还要知道李老师家在学校的什么方向.
1.下列各量中,向量的个数为( ) ①浓度;②年龄;⑨盈利;⑩时间.
B
A. 3 B. 4 C. 5 D. 6
[解析] 向量是既有大小又有方向的量,故符合题意的有③风力,⑤位移,⑥人造卫星的速度,⑧向心力,共4个.
2.下列说法中正确的是( )
任务学习二 相等向量与共线向量
活动探究
某地一网格形街道分布图如图所示,方格由若干个边长为1的小正方形拼成,甲同学从 地到 地,乙同学从 地到 地,丙同学从 地到 地,分别用向量表示甲、乙、丙三位同学的位移,并判断它们有何关系.
提示 甲、乙、丙三位同学的位移分别用向量 , 和 表示,如图所示.由图可知向量 与 的大小相等、方向相同, 与 的大小不等、方向相反.
(2) ,点 在点 正东方向.
[解析] 由于点 在点 正东方向,且 ,所以在坐标纸上点 距点 的横向小方格数为4,纵向小方格数为0,于是点 的位置可以确定,画出向量 ,如图所示.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
零向量
23.05.2020
.
BACK
20
练习 1、若两个向量在同一直线上,则这两个
向量是什么向量?
共线向量 或者说平行向量
2、共不线一向定量一定在一条直线上吗?
23.05.2020
BACK
.
21
练习: 在质量、重力、速度、加速度、身 高、面积、体积这些量中,哪些是 数量?哪些是向量?
数量有:质量、身高、面积、体积
23.05.2020
.
1
金钱豹以5m/s的速度追赶一只以2m/s逃跑的小狗……
请问:金钱豹 能追上小狗吗?为什么?
23.05.2020
.
2
由于大陆和台湾没有直航,因此2006年春节探亲, 乘飞机要先从台北到香港,再从香港到上海,这里发 生了两次位移。
位移和距离 这两个量有 什么不同?
23.05.2020
平行向量就是共线向量
两向量的共线与平面几何里两线段的共线是否一样?
为什么?
说明:在平行向量、共线向量、相等向量
的概念中应注意.零向量的特殊性
12
例1:已知O为正六边形ABCDEF的中心,
在图中所标u 出u u r 的向量中:
E
( 1 ) 试 找 出 与 F u E u r 共 线 的 向 量 ;
( 2 ) 确 定 与 F E 相 等 的 向 量 ;
方向。
B
D
B
D
A
C
A
C
有向线段AB、CD是不 向量 AB、CD 是同一个向量。 同的。
23.05.2020
.
8
说明3:两个特殊向量
1、零向量 :长度为 0 的向量。记作 0
2、单位向量 :长度为 1 个单位长度的向量。 0 向量大小为0,方向
不确定的。可以是任意方向 单位向量大小为1,方向 不一定相同。
23.05.2020
但 是 它 们 方 向 相 反 , 故 这 两 个 向 量 不 相 等 .
uuur uuur
OABC.
13
例2:在图中的4×5方格纸中有一个向量 AB ,
分别以图中的格点为起点和终点作向量,
(1)其中与 AB 相等的向量有多少个?
(2)与 AB长度相等的共线向量有多少个?
( AB 除外)
向量有:重力、速度、加速度
23.05.2020
BACK
.
22
在下列结论中,哪些是正确的? (1)如果两个向量相等,那么它们的起点和终
如图:他们都表示
a
a
同一个向量。
1、温度有零上和零下之分,温度是向量吗?为
什么? 不是,温度只有大小,没有方向。
2、向量 AB 和 BA 同一个向量吗?为什么?
23.05.2020
不是,方向. 不同
说明2: 有向线段与向量的区别:
有向线段:有固定起点、大小、方向
向量:可选任意点作为向量的起点、有大小、有
c
r e
ur f
ru r 那 么 e 与 f 之 间 是 什 么 关 系 ?
两向量的平行与平面几何里两线段的平行有什么区别?
23.05.2020
.
10
三:向量之间的关系
4.相等向量的定义: 长度相等且方向相同的向量
A
D
uuu r uuu r
记 作 : A BD C
B
C
s
相反向量的定义:向 我 量 们 叫 把 做 与 a r a的 长 相 度 反 相 向 等 量 , . 方 记 向 做 相 反 :-的 ar
u u r u u u r ( 3 ) O A 与 B C 相 等 吗 ?
O F
D C
若 不 相 等 , 则 之 间 有 什 么 关 系 ?
解:(1) Buuuu Crr, O uuA uruuu r
A
B
( 2) BCFE
u u r u u u r u u r u u r
( 3 ) 虽 然 O A //B C , 且 | O A | = | B C | ,
所以 0 向量只有一个, 而单位向量可以有无数个
思考:平面直角坐标系内,起点在原点的单位向量,
它们的终点的轨迹是什么图形?
23.05.2020
.
9
三:向量之间的关系
3.平行向量的定义:
➢方向相同或相反的非零向量叫做平行向量
➢我r 们规定零向量与任一向量平行
ra b
r 记 做 : a r//br//cr
.
上海
台北 香港
3
合作探究:
观察下述三个量有什么区别?
m=20kg
(1)
F=20N
(2)
V =20km/h
(3)
(2)(3)都是有大小和方向的量
23.05.2020
.
4
23.05.2020
江苏省板浦高级中学
23.05.2020 4:22:05
.
5
一、向量的定义 既有大小又有方向的量
向量的模
向量的长度
二、向量的表示方法
①几何表示——向量常用有向线段表示:有向线段的 长度表示向量的大小,箭头所指的方向表示向量的方 向。以A为起点、B为终点的向量记为:AB。
大小记着:│AB│
B
A
a
②也可以表示: a b c d ….
23.05.2020
.
大小记为┃a┃
6
说明1:
我们现在研究的向量,与起点无关,用有向线段表 示向量时,起点可以取任意位置。所以数学中的向 量也叫 自由向量
12
.
17
练习:
1、单位向量是否一定相等?
不一定
2、单位向量的大小是否一定相等?
一定
23.05.2020
BACK
.
18
练习:
1、平行向量是否一定方向相同?
不一定
2、不相等的向量一定不平行吗?
不一定
23.05.2020
BACK
.
19
练习
1、与零向量相等的向量一定是什么向量?
零向量
2、与任意向量都平行的向量是什么向量?
B
u u u r
( 1 ) 共 有 7 个 向 量 与 A B 相 等
u u u r
A
( 2 ) 共 有 1 5 个 向 量 与 A B 共 线
23.05.2020
.
14
合作探究:
如图:以1× 1方格纸中的格点为起点和 终点的所有向量中,可得到多少种不同 的模?有多少种不同的向量?
共有2种不同的模
23.05.2020
.
共有8种不同的向量
15
若改为1×2的方格纸中的格点为起点和 终点的所有向量中,可得到多少种不同 的模?多少种不同的向量呢?
共有4种不同的模
23.05.2020
共有14种不同的向量
.
16
欢迎来到:
过关竞技场
★题:
1
2
3
4
5
6
★★题:
7
8
9
10
★★★题:
23.05.2020
11
r a
r c
r
r rr r c=-a a = -c
r -(-a)=?
23.05.2020
b
.
11
三:向量之间的关系
5.共线向量与平行向量的关系:
rrr a// b// c
a r,b r,c r为 共 线 向 量
r a r b
r c
rr r bc a
任意一组平行向量都可以平移到同一直线上
23.05.2020
23.05.2020
.
BACK
20
练习 1、若两个向量在同一直线上,则这两个
向量是什么向量?
共线向量 或者说平行向量
2、共不线一向定量一定在一条直线上吗?
23.05.2020
BACK
.
21
练习: 在质量、重力、速度、加速度、身 高、面积、体积这些量中,哪些是 数量?哪些是向量?
数量有:质量、身高、面积、体积
23.05.2020
.
1
金钱豹以5m/s的速度追赶一只以2m/s逃跑的小狗……
请问:金钱豹 能追上小狗吗?为什么?
23.05.2020
.
2
由于大陆和台湾没有直航,因此2006年春节探亲, 乘飞机要先从台北到香港,再从香港到上海,这里发 生了两次位移。
位移和距离 这两个量有 什么不同?
23.05.2020
平行向量就是共线向量
两向量的共线与平面几何里两线段的共线是否一样?
为什么?
说明:在平行向量、共线向量、相等向量
的概念中应注意.零向量的特殊性
12
例1:已知O为正六边形ABCDEF的中心,
在图中所标u 出u u r 的向量中:
E
( 1 ) 试 找 出 与 F u E u r 共 线 的 向 量 ;
( 2 ) 确 定 与 F E 相 等 的 向 量 ;
方向。
B
D
B
D
A
C
A
C
有向线段AB、CD是不 向量 AB、CD 是同一个向量。 同的。
23.05.2020
.
8
说明3:两个特殊向量
1、零向量 :长度为 0 的向量。记作 0
2、单位向量 :长度为 1 个单位长度的向量。 0 向量大小为0,方向
不确定的。可以是任意方向 单位向量大小为1,方向 不一定相同。
23.05.2020
但 是 它 们 方 向 相 反 , 故 这 两 个 向 量 不 相 等 .
uuur uuur
OABC.
13
例2:在图中的4×5方格纸中有一个向量 AB ,
分别以图中的格点为起点和终点作向量,
(1)其中与 AB 相等的向量有多少个?
(2)与 AB长度相等的共线向量有多少个?
( AB 除外)
向量有:重力、速度、加速度
23.05.2020
BACK
.
22
在下列结论中,哪些是正确的? (1)如果两个向量相等,那么它们的起点和终
如图:他们都表示
a
a
同一个向量。
1、温度有零上和零下之分,温度是向量吗?为
什么? 不是,温度只有大小,没有方向。
2、向量 AB 和 BA 同一个向量吗?为什么?
23.05.2020
不是,方向. 不同
说明2: 有向线段与向量的区别:
有向线段:有固定起点、大小、方向
向量:可选任意点作为向量的起点、有大小、有
c
r e
ur f
ru r 那 么 e 与 f 之 间 是 什 么 关 系 ?
两向量的平行与平面几何里两线段的平行有什么区别?
23.05.2020
.
10
三:向量之间的关系
4.相等向量的定义: 长度相等且方向相同的向量
A
D
uuu r uuu r
记 作 : A BD C
B
C
s
相反向量的定义:向 我 量 们 叫 把 做 与 a r a的 长 相 度 反 相 向 等 量 , . 方 记 向 做 相 反 :-的 ar
u u r u u u r ( 3 ) O A 与 B C 相 等 吗 ?
O F
D C
若 不 相 等 , 则 之 间 有 什 么 关 系 ?
解:(1) Buuuu Crr, O uuA uruuu r
A
B
( 2) BCFE
u u r u u u r u u r u u r
( 3 ) 虽 然 O A //B C , 且 | O A | = | B C | ,
所以 0 向量只有一个, 而单位向量可以有无数个
思考:平面直角坐标系内,起点在原点的单位向量,
它们的终点的轨迹是什么图形?
23.05.2020
.
9
三:向量之间的关系
3.平行向量的定义:
➢方向相同或相反的非零向量叫做平行向量
➢我r 们规定零向量与任一向量平行
ra b
r 记 做 : a r//br//cr
.
上海
台北 香港
3
合作探究:
观察下述三个量有什么区别?
m=20kg
(1)
F=20N
(2)
V =20km/h
(3)
(2)(3)都是有大小和方向的量
23.05.2020
.
4
23.05.2020
江苏省板浦高级中学
23.05.2020 4:22:05
.
5
一、向量的定义 既有大小又有方向的量
向量的模
向量的长度
二、向量的表示方法
①几何表示——向量常用有向线段表示:有向线段的 长度表示向量的大小,箭头所指的方向表示向量的方 向。以A为起点、B为终点的向量记为:AB。
大小记着:│AB│
B
A
a
②也可以表示: a b c d ….
23.05.2020
.
大小记为┃a┃
6
说明1:
我们现在研究的向量,与起点无关,用有向线段表 示向量时,起点可以取任意位置。所以数学中的向 量也叫 自由向量
12
.
17
练习:
1、单位向量是否一定相等?
不一定
2、单位向量的大小是否一定相等?
一定
23.05.2020
BACK
.
18
练习:
1、平行向量是否一定方向相同?
不一定
2、不相等的向量一定不平行吗?
不一定
23.05.2020
BACK
.
19
练习
1、与零向量相等的向量一定是什么向量?
零向量
2、与任意向量都平行的向量是什么向量?
B
u u u r
( 1 ) 共 有 7 个 向 量 与 A B 相 等
u u u r
A
( 2 ) 共 有 1 5 个 向 量 与 A B 共 线
23.05.2020
.
14
合作探究:
如图:以1× 1方格纸中的格点为起点和 终点的所有向量中,可得到多少种不同 的模?有多少种不同的向量?
共有2种不同的模
23.05.2020
.
共有8种不同的向量
15
若改为1×2的方格纸中的格点为起点和 终点的所有向量中,可得到多少种不同 的模?多少种不同的向量呢?
共有4种不同的模
23.05.2020
共有14种不同的向量
.
16
欢迎来到:
过关竞技场
★题:
1
2
3
4
5
6
★★题:
7
8
9
10
★★★题:
23.05.2020
11
r a
r c
r
r rr r c=-a a = -c
r -(-a)=?
23.05.2020
b
.
11
三:向量之间的关系
5.共线向量与平行向量的关系:
rrr a// b// c
a r,b r,c r为 共 线 向 量
r a r b
r c
rr r bc a
任意一组平行向量都可以平移到同一直线上
23.05.2020