《复变函数论》试卷一

合集下载

(完整word版)《复变函数》考试试题与答案各种总结(2)

(完整word版)《复变函数》考试试题与答案各种总结(2)

《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f (z)在z 0解析. ( ) 2。

有界整函数必在整个复平面为常数. ( ) 3。

若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛。

( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5。

若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数。

( ) 6。

若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若)(lim 0z f z z →存在且有限,则z 0是函数f (z)的可去奇点。

( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9。

若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )10。

若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数。

( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2。

=+z z 22cos sin _________. 3。

函数z sin 的周期为___________.4。

设11)(2+=z z f ,则)(z f 的孤立奇点有__________。

5。

幂级数0n n nz ∞=∑的收敛半径为__________。

6。

若函数f (z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________。

8.=)0,(Re n zz e s ________,其中n 为自然数。

9. zz sin 的孤立奇点为________ 。

10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三。

《复变函数论》试题库及答案

《复变函数论》试题库及答案

《复变函数论》试题库《复变函数》考试试题(一)一、判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析.( ) 2.有界整函数必在整个复平面为常数.( ) 3.若}{n z 收敛,则}{Re n z 与}{Im n z 都收敛.() 4.若f(z)在区域D 内解析,且0)('z f ,则Cz f )((常数).( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点.()7.若)(lim 0z f z z存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D zz f . ()9.若f(z)在区域D 内解析, 则对D 内任一简单闭曲线C0)(Cdzz f .()10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.()二.填空题(20分)1、1||00)(z z n z z dz__________.(n 为自然数)2.zz 22cos sin _________.3.函数z sin 的周期为___________.4.设11)(2zz f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz 的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若nnz lim ,则nz z z nn...lim21______________.8.)0,(Re nz ze s ________,其中n 为自然数.9.zzsin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0z f z z.三.计算题(40分):1. 设)2)(1(1)(z z z f ,求)(z f 在}1||0:{z z D内的罗朗展式.2..cos 11||z dz z3. 设Cdzz f 173)(2,其中}3|:|{z z C ,试求).1('i f 4. 求复数11z z w的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证:()(1)f z z z 在割去线段0Re 1z的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z上岸取正值的那支在1z的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f 在D 内连续,则u(x,y)与v(x,y)都在D 内连续.( ) 2. cos z 与sin z 在复平面内有界.( ) 3. 若函数f(z)在z 0解析,则f(z)在z 0连续. ( ) 4. 有界整函数必为常数.( ) 5. 如z 0是函数f(z)的本性奇点,则)(lim 0z f zz 一定不存在.( ) 6. 若函数f(z)在z 0可导,则f(z)在z 0解析.()7. 若f(z)在区域D 内解析, 则对D 内任一简单闭曲线C0)(Cdzz f .() 8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f(z)在区域D 内解析,则|f(z)|也在D 内解析. ()10. 存在一个在零点解析的函数f(z)使0)11(n f 且,...2,1,21)21(nn n f .( )二. 填空题. (20分)1. 设i z,则____,arg __,||zzz 2.设C iyx zy xi xy x z f ),sin(1()2()(222,则)(lim 1z f iz ________.3.1||00)(z z nz zdz_________.(n 为自然数)4. 幂级数nn nz 的收敛半径为__________ .5. 若z 0是f(z)的m 阶零点且m>0,则z 0是)('z f 的_____零点.6. 函数e z的周期为__________. 7. 方程083235zzz 在单位圆内的零点个数为________.8. 设211)(zz f ,则)(z f 的孤立奇点有_________.9. 函数||)(z z f 的不解析点之集为________.10. ____)1,1(Res 4zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z 处的值.3. 计算积分:i iz z Id ||,积分路径为(1)单位圆(1||z )的右半圆.4. 求dzzzz 22)2(sin .四. 证明题. (20分)1. 设函数f(z)在区域D 内解析,试证:f(z)在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分). 1. cosz 与sin z 的周期均为k2. ( )2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z)在z 0处解析,则f (z)在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z)在z 0解析,则f (z)在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{z z D上解析,且)1|(|1|)(|z z f ,则)1|(|1|)(|z z f . ()8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( )9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0z z f . ( )二. 填空题. (20分) 1. 设11)(2zz f ,则f (z)的定义域为___________.2. 函数e z的周期为_________. 3. 若nnni n n z )11(12,则nz nlim __________.4. zz22cos sin ___________.5.1||00)(z z nz zdz_________.(n 为自然数)6. 幂级数n nnx 的收敛半径为__________.7. 设11)(2zz f ,则f (z )的孤立奇点有__________.8.设1ze,则___z.9. 若0z 是)(z f 的极点,则___)(lim 0z f zz.10.____)0,(Res n zze .三. 计算题. (40分) 1.将函数12()zf z z e 在圆环域0z内展为Laurent 级数.2. 试求幂级数nnnznn!的收敛半径.3. 算下列积分:Czzz ze )9(d 22,其中C 是1||z .4. 求0282269z zzz在|z|<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ||时nz M z f |||)(|,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数与积分变换五套试题及答案

复变函数与积分变换五套试题及答案
Re s[ f (z),2] lim z 1 1 z2 2z 2 2
(2 分) (2 分) (2 分)
7
Re s[ f (z), ] 1
(1 分)
6.解:原式(3
分)
2iRe

s
z
ze z 2
1
,1

Re s
z
ze z 2
1
,1
zi i( cos z)zi i cos i = ich1
五、1.解:
f
(z)
(1分)
1 (z i)

z
1 i
i

(1分) 1 (z i)
1 i 31
1 z
i i

(1分) 1 z
i
1 i
n0

z
i
i n
n1

(3分)2i
e 2

e 1 2

2i ch1
(1 分)
7.解:
原式=(2 分)
1 dz =(1 分)
2i dz
| z | 1
2
z2
1
iz
|z|1 z 2 4z 1
2z
=(1 分)
2i
dz
|z|1 (z 2 3)(z 2 3)
数,且 f(0)=0。
三、(10 分)应用留数的相关定理计算
dz
|z|2 z 6 (z 1)(z 3)
四、计算积分(5 分×2)
dz
1. |z|2 z(z 1)
2. cos z c (z i)3
C:绕点 i 一周正向任意简单闭曲线。

2012《复变函数论》试题库

2012《复变函数论》试题库

2012《复变函数论》试题库【最全免费版,求评论。

您的评论 是我分享的动力】《复变函数》考试试题(一)一、 判断题(20分):1.若 f( z)在z 0的某个邻域内可导,则函数f( z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若 f( z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若 函数f( z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若 z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f( z)的可去奇点. ( )8.若 函数f( z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若 f ( z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若 函数f( z)在区域D 内的某个圆内恒等于常数,则f( z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z n z z dz______________.(n 为自然数) 2.=+z z 22cos sin ____________. 3.函数z sin 的周期为______________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有_____________.5.幂级数nn nz∞=∑的收敛半径为_____________.6.若 函数f( z)在整个平面上处处解析,则称它是_____________.7.若 ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21__________________.8.=)0,(Re n zz e s __________,其中n 为自然数.9. zz sin 的孤立奇点为__________ .10.若 0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.( 20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若 函数),(),()(y x iv y x u z f +=在D 内连续,则u ( x,y )与v ( x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若 函数f ( z )在z 0解析,则f ( z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f ( z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若 函数f ( z )在z 0可导,则f ( z )在z 0解析. ( )7. 若 f ( z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若 数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若 f ( z )在区域D 内解析,则|f ( z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f ( z )使0)11(=+n f 且,...2,1,21)21(==n nn f .( )二. 填空题. ( 20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz __________.3.=-⎰=-1||00)(z z n z z dz____________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为_____________ .5. 若 z 0是f ( z )的m 阶零点且m >0,则z 0是)('z f 的______零点.6. 函数e z 的周期为_____________.7. 方程083235=++-z z z 在单位圆内的零点个数为__________. 8. 设211)(z z f +=,则)(z f 的孤立奇点有____________. 9. 函数||)(z z f =的不解析点之集为__________.10. ____)1,1(Res 4=-zz . 三. 计算题. ( 40分)1. 求函数)2sin(3z 的幂级数展开式.2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. ( 20分)1. 设函数f ( z )在区域D 内解析,试证:f ( z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. ( 20分).1. cos z 与sin z 的周期均为πk2. ( )2. 若 f ( z )在z 0处满足柯西-黎曼条件, 则f ( z )在z 0解析. ( )3. 若 函数f ( z )在z 0处解析,则f ( z )在z 0连续. ( )4. 若 数列}{n z 收敛,则}{R en z 与}{Im n z 都收敛. ( )5. 若 函数f ( z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f ( z )在区域D 内为常数. ( )6. 若 函数f ( z )在z 0解析,则f ( z )在z 0的某个邻域内可导. ( )7. 如果函数f ( z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( ) 8. 若 函数f ( z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )9. 若 z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若z 是)(z f 的可去奇点,则)),((Res 0=z z f .( )二. 填空题. ( 20分)1. 设11)(2+=z z f ,则f ( z )的定义域为______________.2. 函数e z的周期为____________.3. 若 n n n i n n z )11(12++-+=,则=∞→n z n lim _____________.4. =+z z 22cos sin ______________.5. =-⎰=-1||00)(z z n z z dz____________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为_____________.7. 设11)(2+=z z f ,则f ( z )的孤立奇点有_____________.8. 设1-=ze ,则___=z .9. 若 0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. ( 40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. ( 20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数期末考试复习题及答案详解

复变函数期末考试复习题及答案详解

最新范本,供参考!《复变函数》考试试题(一) 1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin_________.3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数n n nz ∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz es ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 试证: ()f z =在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)二. 填空题. (20分)最新范本,供参考!1. 设i z -=,则____,arg __,||===z z z2.设Ciy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(l i m 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数nn nz∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________.8. 设211)(z z f +=,则)(z f 的孤立奇点有_________.9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z =处的值.3. 计算积分:⎰-=iiz z I d ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z的周期为_________.最新范本,供参考!3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n nnx的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=z e ,则___=z . 9. 若0z是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze.三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn nz nn ∑+∞=!的收敛半径. 3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数.2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

复变函数论试题库及答案

复变函数论试题库及答案

《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 解析, 则对D 任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 的某个圆恒等于常数,则f(z)在区域D 恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 的罗朗展式.2..cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 解析. 证明:如果|)(|z f 在D 为常数,那么它在D 为常数.2. 试证: ()f z 0Re 1z ≤≤的z 平面能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 连续,则u (x,y )与v (x,y )都在D 连续.( )2. cos z 与sin z 在复平面有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 解析, 则对D 任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 解析,则|f (z )|也在D 解析. ( ) 10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 解析,试证:f (z )在D 为常数的充要条件是)(z f 在D 解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 解析且在D 的某个圆恒为常数,则数f (z )在区域D 为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z 的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 解析. 证明:如果|)(|z f 在D 为常数,那么它在D为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。

《复变函数论》试卷一

《复变函数论》试卷一

《复变函数论》试卷一一、填空(30分)1. 将复数()πααα≤≤+-=0sin cos 1i z 化为三角表示式,则=z 把它化为指数表示式,则=z2.=+i e π3 ,()ii +1的辐角的主值为 3. =z 0是()44sin z z z f =的 阶零点.4.0z 是()z f 的()1>m m 阶零点,则0z 是()z f '1的 阶极点. 5.已知()()2323cxy x i y bx ay z f +++=为解析函数,则___________________===c b a6.方程0273=+z 的根为 , ,二、简要回答下列各题(15分)1. 用复数i 去乘复数i +1的几何意义是什么?2. 函数()z f 在0z 解析有哪几个等价条件?3. 设函数()z f 在单连通区域D 内处处解析,且不为零,C 是D 内的任一简单闭曲线,问积分()()dz z f z f c ⎰'是否等于零,为什么?三、计算下列积分(16分)1. czdz ⎰,c 是从点1i -到点1i +的有向直线段2. 202cos d πθθ+⎰四、(12分)求函数()11z z +在圆环112z <-<内的洛朗级数展开式.五、(12分)证明方程24290z z ++=在单位圆1z =内及其上无解.六、(15分)求映射,把带形区域0Re 2z <<共形映射成单位圆1w <,且把1z =映射成0w =,把2z =映射成1w =.《复变函数》试卷二一、填空题(20分)1. -2是 的一个平方根2. 设21iz --=,则,=z A r g z = =z Im 3. 若22z z =,则θi re z =满足条件 4. =z e e ,()=z e e Re5. 设1≠=θi re z ,则()=-1ln Re z6. 设变换βαβα,,+=z w 为复常数,则称此变换为 变换,它是由 等三个变换复合而成.7. 幂级数∑∞=12n n n z n 的收敛半径=R 8.函数baz +1在0=z 处的幂级数展开式为 ,其收敛半径为 9.变换z e W =将区域π<<z D Im 0:变换成区域:G二、判断下列命题之真伪(20分)1.()z e z F cos =在全平面上任意阶可微. ( )2. 若函数()z F 在有界区域D 内有解析,且在其中有无穷多个零点,则()z F 在D内恒为零. ( )3. 设扩充复平面上的点a 时函数()z F 的可去奇点,则()Re 0z asF z ==.4. 若()W F z =是区域D 内的保形变换,则()W F z =在D 内单叶解析且保角.5. 若函数()z F 在区域D 内解析,则()0cf z dz =⎰,其中c 是D 内的任意一条围线.6. 设()()(),,F z u x y iv x y =+在区域D 内可导,则在D 内,()'y x F z v iv =+7. 设函数()z F 在点()a ≠∞解析,则总存在0R >,在z a R -<内()z F 能展成幂级数()0nn n c z a ∞=-∑.8. 非常数的整函数必为无界函数.9. 设()f z 在区域D 内解析,则()f z 在D 内连续.10. 若函数()f z 在a 点可导,则()f z 在a 点解析.三、计算下列各题(24分)1. 求极限0cos lim sin z z z z z z→--2. 求21c I dz z=⎰ ,其中是下半圆周,起点11z =-,终点21z =3. 求i 的立方根4. 求22012cos d I p p πθθ=-+⎰()1p >5. 求()11f z z =-在1z =及z =∞的残数6. 求1sin z dz I z z ==⎰四、(16分)1. 叙述儒歇定理2. 证明方程()01z n e e z λλ-=>在单位圆1z <内有n 根五、求下列变换(20分)1. 求将2,,2i -对应变成1,,1i -的线性变换2. 求出将圆42z i -<变为半平面v u >的保形变换,使得圆心变到-4,而圆周上的点2i 变到0w =《复变函数》试卷三一、填空题(45分)1. ()1Arg i -= ,复数()1cos sin 0z i ϕϕϕπ=-+<≤的模为2. 设()()32256f z z z =+-,则()'f z = 3. 设()()cos sin x f z e y i y =+,则()'f z =4. z e 是周期函数,其基本周期为5. 如果函数()w f z =在区域D 内满足条件: ,则称()f z 为区域D 内的解析函数6. 设c 是连接a 与b 的直线段,则czdz ⎰= 7. 设圆周:3c z =,则3cdz z ⎰= 8. 级数21nn z n∞=∑的收敛半径为 ,级数2491z z z ++++⋅⋅⋅的收敛半径为 9. 0z =为函数()sin f z z z =-的 级零点10. 叙述最大模原理:11. 设()()()25121zf z z z =-+,则1z =为()f z 的 级极点,12z =-为()f z 的 级极点12. 设()22f z z z =+,则在点12z i =-+处的旋转角()'arg 12f i -+=二、判断下列命题之真伪(15分)1. 函数()2f z z =在z 平面上处处不解析2. ()z F z e =是整函数3. 若函数()F z 在区域D 内解析,c 是D 内任一条围线,则()0c F z dz =⎰4. 设函数()F z 在点()a ≠∞解析,则总存在0R >,在z a R -<内能展成幂级数()0nn n c z a ∞=-∑5. 若函数()f z 在点a 可导,则()f z 在点a 解析三、求解下列各题(20分)1. 求积分()ln 1z r I z dz ==+⎰ ()01r <<2. 求积分()()229I d i ξξξξξ==-+⎰3. 求积分()22521z z I dz z z =-=-⎰4. 试将函数()2z f z z =+按1z -的幂展开,并指出其收敛范围5. 求将2,,2i -对应变成1,,1i -的线性变换四、证明题(20分)1. ①叙述代数学基本定理②试用复分析方法证明代数学基本定理2. 证明方程()00z n e e z λλ-=>在单位圆1z <内有n 根试卷4一、填空题(50分)1. 已知1z i =-,则arg z = ()a r g z ππ-<≤,z = ,z =2. 38-=3. 设()()cos sin x f z e y i y =+,则()'f z =4. sin z 的零点为 ,cos z 的零点为5. ()1Ln -= , i i =6. 函数()f z ()(),,u x y iv x y =+在区域D 内解析的充要条件是7. 1z dz z =⎰= 21z dz z =⎰= 8. 幂级数21nn z n ∞=∑ 的收敛半径为 9. 0z =是函数()sin f z z z =-的 级零点10. 叙述最大模原理:11.函数()()()112f z z z =--在z 平面内有 个奇点,它们是12. 1z =为函数()()()251121z f z z z +=-+的 级极点13. 方程742520z z z -+-=在单位圆内有 个根14. 设()22f z z z =+,则()f z 在12z i =-+处的旋转角为 伸缩率为15. 线性变换()0az b w ad bc cz d+=-≠+的逆变换为 16. 变换3w z =将z 平面上区域:0arg 3D z π<<变换为w 平面上的区域G :二、判断题(15分) 1. 设()f z 在区域D 内可导,则()f z 在D 内解析2. 互为共轭的两复数具有相同的模3. 复数0z =的充要条件是0z =4. 设()f z 在区域D 内解析,c 为D 内任一闭曲线,则()0cf z dz =⎰ 5. sin z 和cos z 都是平面上的有界函数三、计算下列各题(15分)1. 设()()()112f z z z =--,求()f z 在1z <内的泰勒展式2. 求积分()22521z z I dz z z =-=-⎰3. 求将2,,2i -对应地变成1,,1i -的线性变换四、证明题(20分)1. 证明函数()2f z z =在z 平面上处处不解析2. 设a 为()f z 的n 级零点,证明:a 必为函数()()'f z f z 的一级极点,并且()()'Re z a f z s n f z =⎡⎤=⎢⎥⎣⎦《复变函数》试卷五一、填空题(18分) 1. 41i +的所有值为:2. ()cos 1i += ()1Ln -=3. 0cos lim sin z z z z z z→--= 4. 设()()0n n f z c z r z +∞-∞=≤<<+∞∑,则()Re z s f z =∞=5. 令z x iy =+,2z w e =,则w = Im w =6. 线性变换()()0az b W L z ad bc cz d +==-≠+在扩充z 平面上有下列特性,请你完整地予以叙述⑴ 保形性:⑵ 保交比性:⑶ 保圆周性:⑷ 保对称性: 7. 1w z=将z 平面上的直线y x =变换为w 平面上的曲线 二、判断题(10分)下列断语如果正确则打“ √”,否则打“×”1. 如果函数()f z 在点()a ≠∞处解析,则存在0R >,使()f z 在z a R -<内可展成泰勒级数,且展式唯一 ( )2. 设a 是z 平面上的一点,若a 为函数()f z 的可去奇点,则()Re 0z as f z ==( ) 3. 如果函数()f z 在某有界区域D 内解析,且在D 内有一列零点,则()f z 在D 内恒为零 ( ) 4. sin z 和cos z 都是z 平面上的有界整函数 ( )5. 若函数()f z 在区域D 内解析,则()0cf z dz =⎰. 其中c 是内的任意一条围线 ( )三、解下列各题(24分)1. 求1c dz z⎰的值,其中c 是上半单位圆周,起点为1z =-,终点为1z =2. 求函数()11z f z e-=在1,z =∞的留数3. 计算积分()20sin 01x mx I dx m x +∞=>+⎰4. 将函数()11z f z z -=+在1z =处展开成幂级数,并求其收敛半径四、证明题(24分)1. 试证:在原点解析,且在()11,2,z n n==⋅⋅⋅处取下列值的函数()f z 是不存在的: 111111,,,,,224466⋅⋅⋅2. 试证:73120z z -+=的根全在12z <<内五、(12分)求将2,,2i -对应地变成1,,1i -的线性变换六、(12分)求出将圆42z i -<变成半平面v u >的保形变换,使得圆心变到-4,而圆周上的点变到2i 变到0w =《复变函数》试卷六一、填空题(30分)1.已知z=1-i ,则arg z= (-π<arg z ≤π),| z |= , z = 2.变换W=Z 3将Z 平面上区域D :0< arg z <3π变换为W 平面上的区域G :3.Ln (-1)= , i i = , Arctg(2i) =4.函数f (z )在区域D 内解析的充要条件是下列条件之一(1)(2)(3)(4)5.幂级数z +z 4+z 9+…+2n z +…的收敛半径为 6.在原点解析,而在z=1n (n=1,2,…)处取值为 f(1n )=211n+的函数为 7.函数f (z )=z 2(21z e -)的零点是 ,它是 级的二、判断题(10分)1.设f (z )在区域D 内可导,则f (z )在D 内解析 ( )2.设f (z )在区域D 内解析,C 是D 内任一闭曲线,则c⎰f (z )dz=0 ( )3.Sinz 和cosz 都是z 平面上的有界函数 ( ) 4.f (z )=u +iv 在区域D 内解析,则-u 是v 的共轭调和函数 ( )5. f (z )=| z |2在z 平面上处处不解析 ( )三、求下列积分(15分) 1.I= zcze dz ⎰,其中c 是连结o 到-1+i 的直线段 2.I=212ln(1)z z z dz =+⎰3.I=22(8)()z zdz z z i =--⎰四、(12分)已知u=x 3+6x 2y-3xy 2-2y 3,求解析函数f(z)=u+iv 使合条件f (0)=0五、(12分)将函数f(z)=1az b+(a,b 为复数,ab ≠0)展开为z 的幂级数,并指出展式成立的范围,六、(12分)叙述并证明代数学基本定理七、(9分)设f (z )=u(x ·y )+iv(x ·y )在区域内解析,试证在D 内,0fz∂=∂《复变函数》试卷七一.填空题(20分)1.已知z =1-I ,则argz = (-π<arg z ≤π),| z |= ,z =2.变换W=Z 3将z 平面上的区域D 变换为W 平面上的区域G : ,其中D : 0< arg z <3π 3. sin 2z +cos 2z =1在直线z =x ,(y=0)上成立,则由 定理,sin 2z +cos 2z =1 在全平面上也成立4.设f(z)=2z 4-z 3+11z 2-1,f(z)在| z |<2内有 个零点,f(z)在 2≤| z |<3内有 个零点,f(z)在3≤| z |<+∞内有 零点,f(z)在z =1处的旋转角为 ,伸缩率为 。

《复变函数论》试题库

《复变函数论》试题库

《复变函数》考试试题(一)一、 判断题.(正确者在括号内打√,错误者在括号内打×,每题2分) 1.当复数0z =时,其模为零,辐角也为零. ( )2.若0z 是多项式110()n n n n P z a z a z a --=+++(0)n a ≠的根,则0z 也()P z 是的根.( )3.如果函数()f z 为整函数,且存在实数M ,使得Re ()f z M <,则()f z 为一常数.( ) 4.设函数1()f z 与2()f z 在区域内D 解析,且在D 内的一小段弧上相等,则对任意的z D ∈,有1()f z 2()f z ≡. ( )5.若z =∞是函数()f z 的可去奇点,则Re ()0z s f z =∞=. ( )二、填空题.(每题2分)1.23456i i i i i ⋅⋅⋅⋅= _____________________. 2.设0z x iy =+≠,且arg ,arctan22y z x ππππ-<≤-<<,当0,0x y <>时,arg arctanyx =+________________. 3.函数1w z =将z 平面上的曲线22(1)1x y -+=变成w 平面上的曲线______________.4.方程440(0)z a a +=>的不同的根为________________. 5.(1)i i +___________________.6.级数20[2(1)]nn z ∞=+-∑的收敛半径为____________________.7.cos nz 在z n <(n 为正整数)内零点的个数为_____________________. 8.函数336()6sin (6)f z z z z =+-的零点0z =的阶数为_____________________. 9.设a 为函数()()()z f z z ϕψ=的一阶极点,且()0,()0,()0a a a ϕψψ'≠=≠,则()Re ()z af z sf z ='=_____________________. 10.设a 为函数()f z 的m 阶极点,则()Re ()z af z sf z ='=_____________________. 三、计算题(50分)1.设221(,)ln()2u x y x y =+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《复变函数论》试卷一一、填空(30分)1. 将复数()πααα≤≤+-=0sin cos 1i z 化为三角表示式,则=z 把它化为指数表示式,则=z2.=+i e π3 ,()ii +1的辐角的主值为 3. =z 0是()44sin z z z f =的 阶零点.4.0z 是()z f 的()1>m m 阶零点,则0z 是()z f '1的 阶极点. 5.已知()()2323cxy x i y bx ay z f +++=为解析函数,则___________________===c b a6.方程0273=+z 的根为 , ,二、简要回答下列各题(15分)1. 用复数i 去乘复数i +1的几何意义是什么?2. 函数()z f 在0z 解析有哪几个等价条件?3. 设函数()z f 在单连通区域D 内处处解析,且不为零,C 是D 内的任一简单闭曲线,问积分()()dz z f z f c ⎰'是否等于零,为什么?三、计算下列积分(16分)1. czdz ⎰,c 是从点1i -到点1i +的有向直线段2. 202cos d πθθ+⎰四、(12分)求函数()11z z +在圆环112z <-<内的洛朗级数展开式.五、(12分)证明方程24290z z ++=在单位圆1z =内及其上无解.六、(15分)求映射,把带形区域0Re 2z <<共形映射成单位圆1w <,且把1z =映射成0w =,把2z =映射成1w =.《复变函数》试卷二一、填空题(20分)1. -2是 的一个平方根2. 设21iz --=,则,=z Argz = =z Im 3. 若22z z =,则θi re z =满足条件 4. =z e e ,()=z e e Re5. 设1≠=θi re z ,则()=-1ln Re z6. 设变换βαβα,,+=z w 为复常数,则称此变换为 变换,它是由 等三个变换复合而成.7. 幂级数∑∞=12n n n z n 的收敛半径=R 8.函数baz +1在0=z 处的幂级数展开式为 ,其收敛半径为 9.变换z e W =将区域π<<z D Im 0:变换成区域:G二、判断下列命题之真伪(20分)1.()z e z F cos =在全平面上任意阶可微. ( )2. 若函数()z F 在有界区域D 内有解析,且在其中有无穷多个零点,则()z F 在D内恒为零. ( )3. 设扩充复平面上的点a 时函数()z F 的可去奇点,则()Re 0z asF z ==.4. 若()W F z =是区域D 内的保形变换,则()W F z =在D 内单叶解析且保角.5. 若函数()z F 在区域D 内解析,则()0cf z dz =⎰,其中c 是D 内的任意一条围线.6. 设()()(),,F z u x y iv x y =+在区域D 内可导,则在D 内,()'y x F z v iv =+7. 设函数()z F 在点()a ≠∞解析,则总存在0R >,在z a R -<内()z F 能展成幂级数()0nn n c z a ∞=-∑.8. 非常数的整函数必为无界函数.9. 设()f z 在区域D 内解析,则()f z 在D 内连续.10. 若函数()f z 在a 点可导,则()f z 在a 点解析.三、计算下列各题(24分)1. 求极限0cos lim sin z z z z z z→--2. 求21c I dz z=⎰ ,其中是下半圆周,起点11z =-,终点21z =3. 求i 的立方根4. 求22012cos d I p p πθθ=-+⎰()1p >5. 求()11f z z =-在1z =及z =∞的残数6. 求1sin z dz I z z==⎰四、(16分)1. 叙述儒歇定理2. 证明方程()01z n e e z λλ-=>在单位圆1z <内有n 根五、求下列变换(20分)1. 求将2,,2i -对应变成1,,1i -的线性变换2. 求出将圆42z i -<变为半平面v u >的保形变换,使得圆心变到-4,而圆周上的点2i 变到0w =《复变函数》试卷三一、填空题(45分)1. ()1Arg i -= ,复数()1cos sin 0z i ϕϕϕπ=-+<≤的模为2. 设()()32256f z z z =+-,则()'f z = 3. 设()()cos sin x f z e y i y =+,则()'f z =4. z e 是周期函数,其基本周期为5. 如果函数()w f z =在区域D 内满足条件: ,则称()f z 为区域D 内的解析函数6. 设c 是连接a 与b 的直线段,则czdz ⎰= 7. 设圆周:3c z =,则3c dz z ⎰= 8. 级数21nn z n∞=∑的收敛半径为 ,级数2491z z z ++++⋅⋅⋅的收敛半径为 9. 0z =为函数()sin f z z z =-的 级零点10. 叙述最大模原理:11. 设()()()25121zf z z z =-+,则1z =为()f z 的 级极点,12z =-为()f z 的 级极点12. 设()22f z z z =+,则在点12z i =-+处的旋转角()'arg 12f i -+=二、判断下列命题之真伪(15分)1. 函数()2f z z =在z 平面上处处不解析2. ()z F z e =是整函数3. 若函数()F z 在区域D 内解析,c 是D 内任一条围线,则()0c F z dz =⎰4. 设函数()F z 在点()a ≠∞解析,则总存在0R >,在z a R -<内能展成幂级数()0nn n c z a ∞=-∑5. 若函数()f z 在点a 可导,则()f z 在点a 解析三、求解下列各题(20分)1. 求积分()ln 1z r I z dz ==+⎰ ()01r <<2. 求积分()()229I d i ξξξξξ==-+⎰3. 求积分()22521z z I dz z z =-=-⎰4. 试将函数()2z f z z =+按1z -的幂展开,并指出其收敛范围5. 求将2,,2i -对应变成1,,1i -的线性变换四、证明题(20分)1. ①叙述代数学基本定理②试用复分析方法证明代数学基本定理2. 证明方程()00z n e e z λλ-=>在单位圆1z <内有n 根试卷4一、填空题(50分)1. 已知1z i =-,则arg z = ()arg z ππ-<≤,z = ,z =2.3. 设()()cos sin x f z e y i y =+,则()'f z =4. sin z 的零点为 ,cos z 的零点为5. ()1Ln -= , i i =6. 函数()f z ()(),,u x y iv x y =+在区域D 内解析的充要条件是7. 1z dz z =⎰= 21z dz z =⎰= 8. 幂级数21nn z n ∞=∑ 的收敛半径为 9. 0z =是函数()sin f z z z =-的 级零点10. 叙述最大模原理:11.函数()()()112f z z z =--在z 平面内有 个奇点,它们是12. 1z =为函数()()()251121z f z z z +=-+的 级极点13. 方程742520z z z -+-=在单位圆内有 个根14. 设()22f z z z =+,则()f z 在12z i =-+处的旋转角为 伸缩率为15. 线性变换()0az b w ad bc cz d+=-≠+的逆变换为 16. 变换3w z =将z 平面上区域:0arg 3D z π<<变换为w 平面上的区域G :二、判断题(15分) 1. 设()f z 在区域D 内可导,则()f z 在D 内解析2. 互为共轭的两复数具有相同的模3. 复数0z =的充要条件是0z =4. 设()f z 在区域D 内解析,c 为D 内任一闭曲线,则()0cf z dz =⎰ 5. sin z 和cos z 都是平面上的有界函数三、计算下列各题(15分)1. 设()()()112f z z z =--,求()f z 在1z <内的泰勒展式2. 求积分()22521z z I dz z z =-=-⎰3. 求将2,,2i -对应地变成1,,1i -的线性变换四、证明题(20分)1. 证明函数()2f z z =在z 平面上处处不解析2. 设a 为()f z 的n 级零点,证明:a 必为函数()()'f z f z 的一级极点,并且()()'Re z a f z s n f z =⎡⎤=⎢⎥⎣⎦《复变函数》试卷五一、填空题(18分)1.2. ()cos 1i += ()1Ln -=3. 0cos lim sin z z z z z z→--= 4. 设()()0n n f z c z r z +∞-∞=≤<<+∞∑,则()Re z s f z =∞= 5. 令z x iy =+,2z w e =,则w = Im w =6. 线性变换()()0az b W L z ad bc cz d+==-≠+在扩充z 平面上有下列特性,请你完整地予以叙述⑴ 保形性:⑵ 保交比性:⑶ 保圆周性:⑷ 保对称性: 7. 1w z=将z 平面上的直线y x =变换为w 平面上的曲线 二、判断题(10分)下列断语如果正确则打“ √”,否则打“×”1. 如果函数()f z 在点()a ≠∞处解析,则存在0R >,使()f z 在z a R -<内可展成泰勒级数,且展式唯一 ( )2. 设a 是z 平面上的一点,若a 为函数()f z 的可去奇点,则()Re 0z as f z ==( ) 3. 如果函数()f z 在某有界区域D 内解析,且在D 内有一列零点,则()f z 在D 内恒为零 ( ) 4. sin z 和cos z 都是z 平面上的有界整函数 ( )5. 若函数()f z 在区域D 内解析,则()0cf z dz =⎰. 其中c 是内的任意一条围线 ( )三、解下列各题(24分)1. 求1c dz z⎰的值,其中c 是上半单位圆周,起点为1z =-,终点为1z =2. 求函数()11z f z e-=在1,z =∞的留数3. 计算积分()20sin 01x mx I dx m x +∞=>+⎰4. 将函数()11z f z z -=+在1z =处展开成幂级数,并求其收敛半径四、证明题(24分)1. 试证:在原点解析,且在()11,2,z n n==⋅⋅⋅处取下列值的函数()f z 是不存在的: 111111,,,,,224466⋅⋅⋅2. 试证:73120z z -+=的根全在12z <<内五、(12分)求将2,,2i -对应地变成1,,1i -的线性变换六、(12分)求出将圆42z i -<变成半平面v u >的保形变换,使得圆心变到-4,而圆周上的点变到2i 变到0w =《复变函数》试卷六一、填空题(30分)1.已知z=1-i ,则arg z= (-π<arg z ≤π),| z |= , z = 2.变换W=Z 3将Z 平面上区域D :0< arg z <3π变换为W 平面上的区域G :3.Ln (-1)= , i i = , Arctg(2i) =4.函数f (z )在区域D 内解析的充要条件是下列条件之一(1)(2)(3)(4)5.幂级数z +z 4+z 9+…+2n z +…的收敛半径为 6.在原点解析,而在z=1n (n=1,2,…)处取值为 f(1n )=211n+的函数为 7.函数f (z )=z 2(21z e -)的零点是 ,它是 级的二、判断题(10分)1.设f (z )在区域D 内可导,则f (z )在D 内解析 ( )2.设f (z )在区域D 内解析,C 是D 内任一闭曲线,则c⎰f (z )dz=0 ( )3.Sinz 和cosz 都是z 平面上的有界函数 ( ) 4.f (z )=u +iv 在区域D 内解析,则-u 是v 的共轭调和函数 ( ) 5. f (z )=| z |2在z 平面上处处不解析 ( )三、求下列积分(15分) 1.I= zcze dz ⎰,其中c 是连结o 到-1+i 的直线段 2.I=212ln(1)z z z dz =+⎰3.I=22(8)()z zdz z z i =--⎰四、(12分)已知u=x 3+6x 2y-3xy 2-2y 3,求解析函数f(z)=u+iv 使合条件f (0)=0五、(12分)将函数f(z)=1az b+(a,b 为复数,ab ≠0)展开为z 的幂级数,并指出展式成立的范围,六、(12分)叙述并证明代数学基本定理七、(9分)设f (z )=u(x ·y )+iv(x ·y )在区域内解析,试证在D 内,0fz∂=∂《复变函数》试卷七一.填空题(20分)1.已知z =1-I ,则argz = (-π<arg z ≤π),| z |= ,z =2.变换W=Z 3将z 平面上的区域D 变换为W 平面上的区域G : ,其中D : 0< arg z <3π 3. sin 2z +cos 2z =1在直线z =x ,(y=0)上成立,则由 定理,sin 2z +cos 2z =1 在全平面上也成立4.设f(z)=2z 4-z 3+11z 2-1,f(z)在| z |<2内有 个零点,f(z)在 2≤| z |<3内有 个零点,f(z)在3≤| z |<+∞内有 零点,f(z)在z =1处的旋转角为 ,伸缩率为 。

相关文档
最新文档