山东大学网络教育《线性代数》期末考试复习题

合集下载

(完整版)线性代数期末测试题及其答案.doc

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。

1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。

x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。

4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。

5.n阶方阵A满足A23A E 0 ,则A1。

二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。

a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。

2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。

线性代数期末考试试卷+答案

线性代数期末考试试卷+答案

×××大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题2分,共10分)1. 若022150131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。

每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。

( )2. 零向量一定可以表示成任意一组向量的线性组合。

( )3. 向量组m a a a ,,,Λ21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,,Λ21线性相关。

( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。

( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。

( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。

每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。

① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,,Λ21(3 ≤ s ≤ n )线性无关的充要条件是( )。

① s ααα,,,Λ21中任意两个向量都线性无关 ② s ααα,,,Λ21中存在一个向量不能用其余向量线性表示 ③ s ααα,,,Λ21中任一个向量都不能用其余向量线性表示④ s ααα,,,Λ21中不含零向量 3. 下列命题中正确的是( )。

山东大学网络教育《线性代数(1-3)》

山东大学网络教育《线性代数(1-3)》

线性代数模拟题(一)一.单选题.1.下列( A )是4级偶排列.(A ) 4321; (B) 4123; (C) 1324; (D) 2341. 2. 如果1333231232221131211==a a a a a a a a a D ,3332313123222121131211111324324324a a a a a a a a a a a a D ---=, 那么=1D ( D ).(A ) 8; (B) 12-; (C) 24; (D ) 24-.3. 设A 与B 均为n n ⨯矩阵,满足O AB =,则必有( C ).(A )O A =或O B =; (B )O B A =+;(C )0=A 或0=B ; (D )0=+B A .4. 设A 为n 阶方阵)3(≥n ,而*A 是A 的伴随矩阵,又k 为常数,且1,0±≠k ,则必有()*kA 等于( B ).(A )*kA ; (B )*1A kn -; (C )*A k n ; (D )*1A k -.5.向量组s ααα,....,,21线性相关的充要条件是( C ) (A )s ααα,....,,21中有一零向量 (B) s ααα,....,,21中任意两个向量的分量成比例 (C ) s ααα,....,,21中有一个向量是其余向量的线性组合 (D)s ααα,....,,21中任意一个向量都是其余向量的线性组合6. 已知21,ββ是非齐次方程组b Ax =的两个不同解,21,αα是0=Ax 的基础解系,21,k k 为任意常数,则b Ax =的通解为( B ) (A) 2)(2121211ββααα-+++k k ; (B ) 2)(2121211ββααα++-+k k(C) 2)(2121211ββββα-+++k k ; (D) 2)(2121211ββββα++++k k7. λ=2是A 的特征值,则(A 2/3)-1的一个特征值是(B )(a)4/3 (b )3/4 (c)1/2 (d)1/48. 若四阶矩阵A 与B 相似,矩阵A 的特征值为1/2,1/3,1/4,1/5,则行列式|B -1-I|=(B)(a)0 (b )24 (c)60 (d)1209. 若A 是( A ),则A 必有A A ='.(A )对角矩阵; (B) 三角矩阵; (C) 可逆矩阵; (D) 正交矩阵. 10. 若A 为可逆矩阵,下列( A )恒正确. (A )()A A '='22; (B) ()1122--=A A ;(C) [][]111)()(---''='A A ; (D) [][]'=''---111)()(A A .二.计算题或证明题1. 设矩阵⎪⎪⎪⎭⎫⎝⎛----=3241223k kA (1)当k 为何值时,存在可逆矩阵P ,使得P -1AP 为对角矩阵?(2)求出P 及相应的对角矩阵。

线性代数[第三章n维向量]山东大学期末考试知识点复习

线性代数[第三章n维向量]山东大学期末考试知识点复习

线性代数[第三章n维向量]⼭东⼤学期末考试知识点复习第3章 n维向量⼀、n维向量的概念1.n维向量的定义由n个数a1,a2,…,a n所组成的⼀个有序数组α=(a1,a2,…,a n)称为⼀个n维向量,其中第i个数ai称为向量α的第i个分量(i=1,2,…,n).向量常⽤希腊字母α,β,γ,…来表⽰,其分量常⽤⼩写拉丁字母a,b,c,…来表⽰.2.零向量所有分量都是零的向量称为零向量.3.负向量向量α中的每个分量都变号后得到的向量,称为α的负向量,记为-α.4.向量相等两个向量相等的充要条件是它们的对应分量相等.⼆、向量的线性运算1.向量的加法设α=(a1,a2,…,a n),β=(b1,b2,…,b n),定义α+β为这两个向量的对应元素相加所得到的向量,即α+β=(a1+b1,a2+b2,…,a n+b n),并称其为向量的加法.2.数与向量的乘法设α=(a1,a2,…,a n),k∈R,则kα=(ka1,ka2,…,ka n)3.向量的减法设α=(a1,a2,…,a n),β=(b1,b2,…,b n),则α-β=(a1-b1,a2-b2,…,a n-b n).4.向量的线性运算向量的加法以及数与向量的乘法称为向量的线性运算.向量的线性运算满⾜以下⼋条运算规律:(1)α+β=β+α;(2)(α+β)+γ=α+(β+γ);(3)α+θ=α;(4)α+(-α)=θ;(5)1.α=α;(6)(kl)α=k(lα);(7)k(α+β)=kα+kβ;(8)(k+l)α=kα+lα三、向量的线性组合1.向量的线性组合的定义设β,α1,α2,…,αn是⼀组m维向量,如果存在数k1,k2,…,k n使得关系式β=k1α1+k2α2+…+k nαn成⽴,则称卢是向量组α1,α2,…,αn的线性组合,或称β可由向量组α1,α2,…,αn线性表⽰.2.⼏个常⽤结论(1)零向量可由任意同维向量组线性表⽰;(2)向量组中的任⼀向量可由该向量组线性表⽰;(3)任⼀n维向量α=(a1,a2,…,a n)都可由n维单位向量组ε1,ε2,…,ε线性表⽰,且α=a1ε1+a2ε2+…+a nεn.n四、向量组的等价1.定义设有两个向量组α1,α2,…,αm,(1)β1,β2,…,βn.(2)若向量组(1)中每个向量可以由向量组(2)线性表⽰,则称向量组(1)可由向量组(2)线性表⽰.若向量组(1)与向量组(2)可互相线性表⽰,则称两向量组等价,记作{α1,α2,…,αm}≌{β1,β2,…,βn}.2.向量组的等价性质向量组的等价满⾜反⾝性、对称性、传递性.五、向量组线性相关与线性⽆关1.定义设α1,α2,…,αn为n个m维向量,如果存在⼀组不全为零的数k1,k2,…,k n,使得k1α1+k2α2+…+k nαn=θ成⽴,则称向量组α1,α2,…,αn线性相关;否则,称向量组α1,α2,…,αn线性⽆关.线性⽆关的⼏种等价定义:(1)对任意⼀组不全为零的数k1,k2,…,k n,都有k1α1+k2α2+…+k nαn≠θ(2)k1α1+k2α2+…+k nαn=θ当且仅当k1,k2,…,k n全为零.2.⼏个常⽤结论(1)由⼀个向量α构成的向量组线性相关的充要条件是α=θ.(2)由两个向量构成的向量组线性相关的充要条件是其对应分量成⽐例.(3)含有零向量的任⼀向量组线性相关.(4)若⼀个向量组中有⼀个部分向量组线性相关,则该向量组线性相关;反之,若⼀个向量组线性⽆关,则它的任⼀部分组都线性⽆关.我们可把这个结论简单地记为“部分相关,整体相关;整体⽆关,部分⽆关”.(5)⼀个线性⽆关的向量组中的每个向量按相同的位置随意增加⼀些分量所得到的⾼维向量组仍线性⽆关.逆否命题:⼀个线性相关的向量组中的每个向量按相同的序号划去⼀些分量所得的低维向量组仍线性相关.(6)n维向量组α1,α2,…,αn线性⽆关的充要条件是D=det(α1,α2,…,αn)≠0;n维向量组α1,α2,…,αn线性相关的充要条件是D=det(α1,α2,…,αn)=0.(7)向量组α1,α2,…,αs(s≥2)线性相关的充要条件是其中⾄少有⼀个向量是其余s-1个向量的线性组合.(8)若向量组α1,α2,…,αs线性⽆关,⽽α1,α2,…,αs,β线性相关,则向量β可由向量组α1,α2,…,αs线性表⽰,且表⽰法惟⼀.(9)若向量组α1,α2,…,αs可由向量组β1,β2,…,βt线性表⽰,且s>t,则向量组α1,α2,…,αs线性相关.逆否命题:若向量组α1,α2,…,αs线性⽆关,且可由向量组β1,β2,…,βt线性表⽰,则s≤t.(10)m个n维向量组(m>n)必线性相关.(11)两个等价的线性⽆关的向量组必含有相同个数的向量.六、向量组的极⼤线性⽆关组1.极⼤线性⽆关组的概念向量组α1,α2,…,αr,αr+1,…,αs的部分组α1,α2,…,αr是极⼤⽆关组(1)α1,α2,…,αr线性⽆关;(2)α1,α2,…,αr,αr+1,…,αs中每个向量可由α1,α2,…,αr 线性表⽰.(1)α1,α2,…,αr线性⽆关;(2)α1,α2,…,αr,αr+1,…,αs中任意r+1个向量线性相关.2.关于极⼤线性⽆关组的常⽤结论(1)含⾮零向量的任⼀向量组⼀定存在极⼤⽆关组.(2)线性⽆关向量组的极⼤⽆关组是其⾃⾝、.(3)任何向量组均与其极⼤⽆关组等价.(4)⼀个向量组的任意两个极⼤⽆关组都含有相同个数的向量.七、向量组的秩1.向量组的秩的定义向量组α1,α2,…,αs的任⼀极⼤⽆关组所含向量的个数称为这个向量组的秩,记为r(α1,α2,…,αs).2.关于向量组的秩的常⽤结论(1)对任何向量组α1,α2,…,αs均有0≤r(α1,α2,…,αs)≤s;(2)向量组α1,α2,…,αs线性⽆关?r(α1,α2,…,αs)=s;(3)向量组α1,α2,…,αs线性相关?r(α1,α2,…,αs)(4)若向量组α1,α2,…,αs可由向量组β1,β2,…,βt线性表⽰,则r(α1,α2,…,αs)≤r(β1,β2,…,βt).特别地,若两向量组等价,则它们的秩相同;反之不真.(5)若向量组的秩为r,则其任何含r个向量的线性⽆关的部分组都是其极⼤线性⽆关组.⼋、矩阵的⾏秩与列秩1.定义矩阵A的⾏(列)向量组的秩称为A的⾏(列)秩.2.矩阵秩的性质(1)对任何矩阵A,都有A的⾏秩=A的列秩=r(A);(2)r(AB)≤min{r(A),r(B)};(4)r(A+B)≤r(A)+r(B).九、极⼤⽆关组的求法1.矩阵的初等⾏(列)变换不改变其列(⾏)向量间的线性关系2.求向量组α1,α2,…,αs的⼀个极⼤⽆关组的⽅法(1)以α1,α2,…,αs为列向量作矩阵A;(2)对A施以初等⾏变换化成阶梯形矩阵B,设r(B)=r,且B中第j1,j2,…,j r列有⼀个r阶⼦式不等于零,则αj1,αj2,…,αjr 即为所求向量组的⼀个极⼤⽆关组.3.求向量组α1,α2,…,αs的极⼤⽆关组并将其余向量⽤该极⼤⽆关组表出的⽅法(1)以α1,α2,…,αs为列向量作矩阵A;(2)对A施以初等⾏变换化成阶梯形矩阵B;(3)再通过初等⾏变换化为⾏简化阶梯形矩阵C,设矩阵C的第j1,j2,…,j r列为单位向量,则αj1,αj2,…,αjr即为所求向量组的⼀个极⼤⽆关组,且C 中列向量间的线性关系即为A中相应列向量间的线性关系.⼗*、向量空间1.向量空间的定义设V是⾮空的n维向量的集合,若集合V对于加法及数乘两种运算封闭,则称V是向量空间.2.向量空间的⽣成3.向量空间的相等若{α1,α2,…,αm}≌{β1,β2,…,βn},则span(α1,α2,…,αm)=span(β1,β2,…,βn).4.向量空间的⼦空间设有向量空间V1,V2,若V1?V2,则称V1是V2的⼦空间.5.向量空间的基及其维数设V是向量空间,如果存在r个向量α1,α2,…,αr∈V,满⾜(1)α1,α2,…,αr线性⽆关;(2)V中任⼀向量都可由α1,α2,…,αr线性表⽰;则称α1,α2,…,αr为V的⼀个基,r称为V的维数.⼗⼀、重点难点(⼀)重点(1)向量的线性运算可以看做是特殊矩阵的线性运算,它是后⾯讨论向量的线性组合、线性相关性等概念的基础,必须熟练掌握.(2)向量的线性组合、线性相关、线性⽆关的概念、性质及三者之间的关系定理是本章的重点,要熟练掌握三个概念及有关结论,详见内容提要;要深刻理解概念、定理的本质,熟练掌握线性相关和线性⽆关的有关性质及判别法,并能灵活应⽤.(3)向量组的极⼤⽆关组是特别重要的概念,它在向量组线性相关性的证明中往往能起到重要的作⽤;此外,还应当掌握求向量组的极⼤⽆关组的⽅法.(4)理解并掌握向量组的秩的概念,理解矩阵的秩与其⾏(列)向量组的秩的关系,熟练掌握求向量组的秩的⽅法,并能通过秩这⼀重要⼯具来判断向量组的线性相关性.(⼆)难点(1)向量组的线性相关性的证明.常见的⽅法有:定义法、利⽤有关结论及定理、利⽤齐次线性⽅程组有⽆⾮零解、利⽤向量组的秩与向量组所含向量的个数关系等.(2)向量组的秩与线性⽅程组有关理论的证明.。

大一线性代数期末考试试卷+答案

大一线性代数期末考试试卷+答案

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题2分,共10分)1. 若022150131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。

每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。

( )2. 零向量一定可以表示成任意一组向量的线性组合。

( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。

( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。

( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。

( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。

每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。

① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。

① s ααα,,, 21中任意两个向量都线性无关 ② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ ααα,,, 中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量 3. 下列命题中正确的是( )。

① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。

线性代数a期末考试题及答案

线性代数a期末考试题及答案

线性代数a期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 对角矩阵D. 奇异矩阵答案:B2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中非零行的最大数目D. 矩阵中非零列的最大数目答案:C3. 如果一个矩阵A的行列式为0,则:A. A是可逆的B. A是不可逆的C. A是正定的D. A是负定的答案:B4. 以下哪个选项不是线性方程组解的性质?A. 唯一性B. 存在性C. 零解D. 非零解答案:D二、填空题(每题5分,共20分)1. 矩阵的________是矩阵中所有元素的和。

答案:迹2. 如果一个向量组线性无关,则该向量组的________等于向量的个数。

答案:秩3. 对于一个n阶方阵A,如果存在一个非零向量x使得Ax=0,则称x为矩阵A的________。

答案:零空间4. 一个矩阵的________是指矩阵中所有行向量或列向量的最大线性无关组的个数。

答案:秩三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的行列式。

答案:\[ \text{det}(A) = 1*4 - 2*3 = 4 - 6 = -2 \]2. 设A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],B=\[\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}\],求AB。

答案:\[ AB = \begin{pmatrix} 1*2 + 2*1 & 1*0 + 2*3 \\ 3*2 +4*1 & 3*0 + 4*3 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 10 & 12 \end{pmatrix} \]3. 已知矩阵A=\[\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}\],求A的特征值。

2019-2020学年线性代数期末考试题(含答案)

2019-2020学年线性代数期末考试题(含答案)

线性代数2019-2020学年第二学期期末考试试卷一、填空题(本大题共5个小题,每小题3分,共15分。

)1. 行列式11111111---x 的展开式中x 的系数是_________;2. 已知3阶矩阵A 的特征值为0,1,2,则=+-E A A 752__________;3. 向量组)0,0,1(),1,1,1(),1,1,0(),1,0,0(4321====αααα的秩为______;4. 设⎪⎪⎪⎭⎫ ⎝⎛-=12032211t A ,若3阶非零方阵B 满足0=AB ,则=t ;5. 设3阶可逆方阵A 有特征值2,则方阵12)(-A 有一个特征值为_________。

二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸相应位置处。

答案错选或未选者,该题不得分。

每小题3分,共15分。

) 1. A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是【 】A .若A 是可逆矩阵,则*A 也是可逆矩阵;B .若A 不是可逆矩阵,则*A 也不是可逆矩阵;C .若0||*≠A ,则A 是可逆矩阵;D .AE AA =||*。

2. 设⎪⎪⎪⎭⎫ ⎝⎛=333222111c b a c b a c b a A ,若⎪⎪⎪⎭⎫ ⎝⎛=333222111b c a b c a b c a AP ,则P =【 】 A . ⎪⎪⎪⎭⎫ ⎝⎛010100001; B . ⎪⎪⎪⎭⎫ ⎝⎛010001100;C . ⎪⎪⎪⎭⎫ ⎝⎛001010100;D . ⎪⎪⎪⎭⎫ ⎝⎛010100000.3. n m >是n 维向量组m ααα,,,21 线性相关的【 】.A 充分条件 .B 必要条件.C 充分必要条件 .D 必要而不充分条件4.设321,,ααα是0=Ax 的基础解系,则该方程组的基础解系还可以表示为【 】A .321,,ααα的一个等价向量组;B. 321,,ααα的一个等秩向量组;C. 321221,,αααααα+++;D . 133221,,αααααα---.5. s ααα,,,21 是齐次线性方程组0=AX (A 为n m ⨯矩阵)的基础解系,则=)(A R 【 】A .sB .s n -C .s m -D .s n m -+三、计算题(要求在答题纸相应位置上写出详细计算步骤及结果。

线性代数期末考试考核试卷

线性代数期末考试考核试卷
(答题括号:________)
4.以下哪个向量组构成一个基?
A. (1, 0, 0), (0, 1, 0), (0, 0, 0)
B. (1, 2, 3), (4, 5, 6), (7, 8, 9)
C. (1, 2, 3), (2, 4, 6), (1, 1, 1)
D. (1, 1, 0), (0, 1, 1), (1, 0, 1)
...
20.(根据实际题目内容填写答案)
二、多选题
1. BCD
2. ABCD
3. ABC
4. AB
5. ABC
...
20.(根据实际题目内容填写答案)
三、填题
1. 1
2.线性无关
3.主
...
10.(根据实际题目内容填写答案)
四、判断题
1. √
2. √
3. √
...
10. ×
五、主观题(参考)
1.向量组线性无关,可以通过计算行列式不为零来证明。一个可以由给定向量组线性表示的向量可以是它们的线性组合,例如\(a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3\),其中\(a, b, c\)是适当的系数。
D. (1, 1), (1, -1)
(答题括号:________)
5.在求解线性方程组时,以下哪些情况下可以使用高斯消元法?
A.系数矩阵是方阵
B.系数矩阵是非奇异的
C.方程组中方程的个数等于未知数的个数
D.方程组可能有无穷多解
(答题括号:________)
(以下题目类似,省略以节约空间)
6. ...
A.若A为m×n矩阵,则A的转置为n×m矩阵
B.若A为m×n矩阵,则A的转置为m×n矩阵
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 专科《线性代数》 模拟题1
一 填空题
1、设A,B 是两个3阶矩阵,且det A=-2,det B=-1,则det (-212-B A )=__32_.
2、如果向量α,β是正交的,则(α,β)=_0_.
3、若矩阵A 满足 __A T =A_ ,则称A 为对称矩阵.
4、设A 是m ×n 矩阵,B 是p ×m 矩阵,则T T B A 是_p n ⨯_矩阵.
5、若数00=λ为矩阵A 的特征值,则齐次线性方程组AX=0必有___非零___解.
6、二次型)(.,,.........2,1n x x x f ,如果对任意一组不全为零的实数n c c c ,......2,1,0),......,(21>n c c c f 则称)(.,,.........2,1n x x x f 为___正定__ .
二 单项选择题
t
n s n t m n m B A B A T T t s n m ====⨯⨯ ④ ③ ② ①则必须满足做乘积 由 ____,.1逆矩阵
矩阵 ③数量矩阵 ④ ①对称矩阵 ②对角的是则有阶矩阵,若都是设___,,.2A B E BA AB n B A ==④可能有解一解 ③有无穷多解 ①可能无解 ②有唯组则该线性方程零解的齐次线性方程组只有若某个线性方程组相应.___.,.3
向量一个向量 ④任何一个没有一个向量 ③至多 ①至少一个向量 ②量线性表出。

可被该向量组内其余向线性相关,则向量组内αα若向量组α____,.....4,2,1s
三 是非题。

()个线性无关的特征向量有阶实对称矩阵也是对称矩阵。

()阶对称矩阵,则为若n A 、n A n A 、512
的解。

()的解之和不是的解与线性相关。

()αα可知ααα由α。

()有对方阵B AX AX B 、AX 、B A B A B A 、===-=+=+042det det )det(,33,2,1,213 四:解线性方程组:

② ④


X
√ X ① 0
6745
229
638
52432143
24214321====+-+-+---+-+x x x x x x x x x x x x x
x。

相关文档
最新文档