初中数学一次函数学案
一次函数(第一课时)教案

19.2.2 一次函数(第一课时)教学详案【设计说明】.一次函数是中学阶段接触到的最简单、最基本的函数,它在实际生活中有着广泛的应用.一次函数的学习是建立在学习了平面直角坐标系、变量与函数和正比例函数的基础上的.一次函数的第一课时主要内容是一次函数的有关概念,本课是在学习正比例函数的基础上,进一步学习一次函数的概念.一次函数的概念是在观察一类具体函数的解析式的特点的基础上,通过抽象得到的函数模型.【教学目标】1.结合具体情境理解一次函数的意义,能结合实际问题中的数量关系写出一次函数的解析式;2.能辨别正比例函数与一次函数的区别与联系;3.初步体会用待定系数法求一次函数解析式的方法.【教学重难点】重点:一次函数的概念.难点:求一次函数解析式.【课前准备】多媒体、图片【教学过程】(-)导入新课1、什么是正比例函数?能举例说明吗?2、购买一枝钢笔需5.6元,付款总数y(元)随所购枝数x(枝)的变化而变化,用解析式表示为:.3、问题:某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.师生共同分析:从大本营向上当海拔每升高1km时,气温从5℃就减少6℃,那么海拔增加xkm时,气温从5℃减少6x℃.因此y与x的函数关系式为:y=5-6x(x≥0)当然,这个函数也可表示为:y=-6x+5 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是当x=0.5时函数y=-6x+5的值,即y=-6×0.5+5=2(℃).这个函数叫什么函数,它与我们上节所学的正比例函数有何不同?我们这节课将学习这些问题.(二)探究新知4、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式,这些函数解析式有哪些共同特征?(1).有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(单位:℃)有关,即C•的值约是t的7倍与35的差.(2).一种计算成年人标准体重G(单位:kg)的方法是,以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3).某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话xmin的计时费(按0.1元/min收取).(4).把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm2)随x的值而变化.师生活动:学生先独立思考,然后小组交流,可以得到这些问题的函数解析式分别为:(1).C=7t-35.(20≤t≤25)(2).G=h-105.(3).y=0.1x+22.(4).y=-5x+50(0≤x≤10).教师引导观察后请学生代表归纳:它们的形式与y=-6x+5一样,这些函数都是常数k与自变量的积与常数b的和的形式.师:确实如此,如果我们用b 来表示这个常数的话.•这些函数形式就可以写成:y=kx+b (k≠0)教师出示一次函数的定义: 一般地,形如y=kx+b (k 、b 是常数,k≠0•)的函数,•叫做一次函数(•linearfunction ). 教师引导学生继续思考 当b =0时,y =kx +b 是什么函数?学生思考后回答:当b=0时,y=kx+b 即y=kx .所以说正比例函数是一种特殊的一次函数.5、同桌合作探究:请写出若干个变量y 与x 之间的函数解析式,让同桌判断是否是一次函数;如果是,请说出其一次项系数与常数项. (三)新知应用例1 下列函数中哪些是一次函数,哪些又是正比例函数?师生活动:学生先独立思考,然后小组讨论,教师根据学生讨论情况加以点拨:如(7)和(8)这两种形式需要加以整理,最后根据学生的回答情况得出答案;解:一次函数:(4)、(5)、(7)、(8)。
一次函数的图象教案(优秀4篇)

一次函数的图象教案(优秀4篇)一次函数篇一〖教学目标〗◆1、理解正比例函数、一次函数的概念。
◆2、会根据数量关系,求正比例函数、一次函数的解析式。
◆3、会求一次函数的值。
〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。
◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。
〖教学过程〗比较下列各函数,它们有哪些共同特征?提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。
定义:一般地,函数叫做一次函数。
当时,一次函数就成为叫做正比例函数,常数叫做比例系数。
强调:(1)作为一次函数的解析式,其中中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中符合什么条件?(2)在什么条件下,为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?例1:求出下列各题中与之间的关系,并判断是否为的一次函数,是否为正比例函数:(1)某农场种植玉米,每平方米种玉米6株,玉米株数与种植面积之间的关系。
(2)正方形周长与面积之间的关系。
(3)假定某种储蓄的月利率是0.16%,存入1000元本金后。
本钱与所存月数之间的关系。
此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。
解:(1)因为每平方米种玉米6株,所以平方米能种玉米株。
得,是的一次函数,也是正比例函数。
(2)由正方形面积公式,得,不是的一次函数,也不是正比例函数。
(3)因为该种储蓄的月利率是0.16%,存月所得的利息为,所以本息和,是的一次函数,但不是的正比例函数。
练习:1.已知若是的正比例函数,求的值。
2.已知是的一次函数,当时,;当时,(1)求关于的一次函数关系式。
(2)求当时,的值。
例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至XX元部分的税率为10% (1)设全月应纳税所得额为元,且。
一次函数与方程、不等式(学案)

19.2.3一次函数与方程、不等式(学案)一、新课引入情景引入:x+y=2应该坐在哪里呢?举例说明:一次函数y=-x+2 与二元一次方程x+y=2之间的转化播放动画:一次函数点坐标与二元一次方程的解的关系从动画中可看见,一次函数图象上点的坐标与二元一次方程的解是一一对应的。
思考:一元一次方程、不等式与一次函数之间有着怎样的联系呢?二、知识探究(一)一次函数与一元一次方程的关系1.思考:下面三个方程有什么共同点和不同点?2x+1=3 ;2x+1=0 ;2x+1=-1共同点:;不同点:2.求出方程的解2x+1=3 2x+1=0 2x+1=-13.小组讨论:你能从函数的角度对解这三个方程进行解释吗?(提示:分别从“数”和“形”的角度进行分析)从“数”的角度:解2x+1=3,可以看成求函数y=2x+1的值为时,x为何值;解2x+1=0,可以看成求函数y=2x+1的值为时,x为何值;解2x+1=-1,可以看成求函数y=2x+1的值为时,x为何值;解ax+b=k,可以看成求函数y=ax+b的值为时,x为何值;从“形”的角度:解2x+1=3,可以看成求函数y=2x+1图象上的点纵坐标为时,所对应的横坐标为何值解2x+1=0,可以看成求函数y=2x+1图象上的点纵坐标为时,所对应的横坐标为何值解2x+1=-1,可以看成求函数y=2x+1图象上的点纵坐标为时,所对应的横坐标为何值解ax+b=k,可以看成求函数y=ax+b图象上的点纵坐标为时,所对应的横坐标为何值4.通过动图验证,发现:一次函数上各点的坐标与各方程的解一一对应。
5.小试牛刀练习1.已知一次函数为y=3x+2 ,求函数图象与x 轴交点坐标分析:要求交点坐标,则要观察图象,确定函数值y ,然后再解方程。
练习2.已知,如图为一次函数为y=kx+b (k ≠0)的图象,求关于x的方程的解(1)kx+b=3 _____(2)kx+b=0 _____分析:要解方程,则要通过观察图象,确定当y 值分别为3、0 时,对应点的横坐标是多少。
鲁教版五四学制:2024-2025年七年级第一学期上册数学6.2一次函数学案和答案

2024-2025学年度七年级数学上册第六章学案6.2一次函数【学习目标】1.掌握一次函数和正比例函数的概念,能根据已知条件确定一次函数的表达式;2.经历一次函数概念的抽象概括过程,努力拓展自己的抽象思维能力.【自主学习】自学课本第148至150页的内容,思考并解答下列问题.1.若两个变量x 、y 间的关系式可以表示成 (k 、b 为常数k ≠0)的形式,则称 (x 为自变量,y 为因变量).特别地,当b=0时,即 (k 常数且k ≠0),称为 .注意:一次函数与正比例函数的辨证关系.可以用下图来表示:2.确定函数有意义的方法:(1)关系式为整式时,函数自变量为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;【课堂练习】知识点一 一次函数的定义1.下列函数是一次函数的是( )A .y =8x²B .1y x =+C .y =9x 2 D .y =2.若y 关于x 的函数()23221-=-+-my m x m 是一次函数,则m 的值为( ) A .2± B .2 C .2- D .1知识点二 函数有意义的条件3.函数y =√x −6中,自变量x 的取值范围是( )A.x ≥−6B.x ≤−6C.x ≥6D.x ≤6【当堂达标】1.下列函数中,是一次函数的有_____________,是正比例函数的有______________.(1)x y 8-= (2)xy 8-= (3)652+=x y (4)15.0--=x y (5)y=2x (6))3(2+=x y (7)x y 34-=2.某地海拔高度h 与温度T 之间的关系可用235T h =-(温度单位:℃,海拔高度单位:km )来表示,则该地区海拔高度为3km 的山顶上的温度为( )A .3℃B .8℃C .10℃D .13℃3.已知函数y =(m −2)x +m −4,当m ______时,y 是x 的一次函数;当m ______时,y 是x 的正比例函数4. 如果函数y=kx-k+1是正比例函数,则k= .5.元朝朱世杰的《算学启蒙》一书记载了一个驽马先行的问题,其中良马与劣马行走路程s(单位:里)关于行走时间t(单位:日)的函数图象如图所示,下列说法:①劣马比良马早出发12日;①良马出发32日时,良马追上劣马;①良马的速度比劣马的速度快90里/日.其中正确的是()A.①①B.①①C.①①D.①①①6.已知函数y=(m+1)x2−|m|+4是一次函数,则m的值为()A.1B.-1C.1或-1D.任意实数【课后拓展】7.将长为30厘米,宽10厘米的长方形纸条,按图中所示的方法黏合起来,黏合的部分的宽为3厘米.(1)求5张白纸黏合后的长度____厘米(2)设x张白纸黏合后的总长度为y厘米,写出y与x之间的关系式.(3)当黏合后的总长度为543厘米时,请问这是由几张白纸黏合而成的.6.2一次函数【自主学习】1.y=kx+b y是x的一次函数 y=kx y是x的正比例函数【典型例题】1.B2.解:设y=k(x+2)将x=1,y=-6代入得-6=k(1+2)解得k=-2∴y=-2(x+2)=-2x-43.C【当堂达标】1.(1)(4)(5)(6)(7);(1)(5)2.D3.2 -64.15.D6.B【当堂达标】m1.(1)m≠2 (2)5.12.(1)5张白纸粘合后的长度为138cm.(2)y与x的关系式为y=27x+3.(3)当x=20时,y的值为543cm.是由20张白纸黏合而成的.。
初二数学一元一次函数教案3篇一元一次函数的教案

初二数学一元一次函数教案3篇一元一次函数的教案教学目标:学问与技能1.把握直角三角形的判别条件,并能进展简洁应用;2.进一步进展数感,增加对勾股数的直观体验,培育从实际问题抽象出数学问题的力量,建立数学模型.3.会通过边长推断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.情感态度与价值观敢于面对数学学习中的困难,并有独立克制困难和运用学问解决问题的胜利阅历,进一步体会数学的应用价值,进展运用数学的信念和力量,初步形成积极参加数学活动的意识.教学重点运用身边熟识的事物,从多种角度进展数感,会通过边长推断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.教学难点会辨析哪些问题应用哪个结论.课前预备标有单位长度的细绳、三角板、量角器、题篇教学过程:复习引入:请学生复述勾股定理;使用勾股定理的前提条件是什么?已知△ABC的两边AB=5,AC=12,则BC=13对吗?创设问题情景:由课前预备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.这样做得到的是一个直角三角形吗?提出课题:能得到直角三角形吗讲授新课:⒈如何来推断?(用直角三角板检验)这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?就是说,假如三角形的三边为,,,请猜测在什么条件下,以这三边组成的三角形是直角三角形?(当满意较小两边的平方和等于较大边的平方时)⒉连续尝试:下面的三组数分别是一个三角形的三边长a,b,c: 5,12,13;6,8,10;8,15,17.(1)这三组数都满意a2+b2=c2吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?⒊直角三角形判定定理:假如三角形的三边长a,b,c满意a2+b2=c2,那么这个三角形是直角三角形.满意a2+b2=c2的三个正整数,称为勾股数.⒋例1一个零件的外形如左图所示,按规定这个零件中∠A和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?随堂练习:⒈以下几组数能否作为直角三角形的三边长?说说你的理由.⑴9,12,15;⑵15,36,39;⑶12,35,36;⑷12,18,22.⒉已知?ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是角.⒊四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.⒋习题1.3课堂小结:⒈直角三角形判定定理:假如三角形的三边长a,b,c满意a2+b2=c2,那么这个三角形是直角三角形.⒉满意a2+b2=c2的三个正整数,称为勾股数.勾股数扩大一样倍数后,仍为勾股数.初二数学一元一次函数教案2教学目标:1.经受运用拼图的方法说明勾股定理是正确的过程,在数学活动中进展学生的探究意识和合作沟通的习惯。
一次函数教案优秀3篇

一次函数教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!一次函数教案优秀3篇作为一位杰出的老师,就难以避免地要准备教学设计,教学设计是实现教学目标的计划性和决策性活动。
一次函数教案【优秀10篇】

一次函数教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!一次函数教案【优秀10篇】在数学的学习中等差求和公式是学习的重点的内容,以下内容是本店铺为您带来的10篇《一次函数教案》,亲的肯定与分享是对我们最大的鼓励。
一次函数学案3

《一次函数》学案第1课时 一次函数的概念一、知识梳理1、我们把__________________________________________的函数称为一次函数。
2、一次函数的一般形式是________________,其中_______________________。
3、特别地,当__________时,一次函数_____________________也叫正比例函数。
二、牛刀小试1、下列函数中,_______________________是一次函数,__________________是正比例函数。
①y=-8x ;②xy 18-=;③y=4x+5;④s=60t ;⑤s=a 2;⑥y=3(x+1)-2x;⑦y=kx+b ;⑧y=x(1-x);⑨y=23+x .2、下列说法中正确的是( )A 、一次函数是正比例函数B 、正比例函数是一次函数C 、正比例函数不一定是一次函数D 、一个函数不是正比例函数就是一次函数3、把二元一次方程3y+2x=5化成y=kx+b 的形式为__________________,它可以看作变量_____是变量_______的一次函数。
4、对于函数y=3x-1,当x=1时,y=_____;当y=2时,x=________。
5、若函数52+=-xm y 是一次函数,则m=________;若函数()42-+-=b k y x m是一次函数,则k,m,b 应满足的条件是_________________________。
6、已知函数xaa y )1(+=是正比例函数,则a=_________。
已知函数4)2(2-+-=k x k y 是正比例函数,则k=___________。
7、我市乘坐出租车的计费方法是:起步价5元(不超出3千米),超出3千米后每千米1.2元,不足1千米的按1千米算。
某同学乘坐出租车行驶x(x >3)千米,花去y 元钱,试写出y 与x 的函数关系式____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:一次函数基础知识梳理1、正比例函数一般地,形如y = kx(k是常数,(k0))的函数叫做正比例函数,其中k叫做比例系数。
2、正比例函数图象和性质一般地,正比例函数y = kx(k为常数,(k0))的图象是一条经过原点和(1,k)的一条直线,我们称它为直线y = kx。
当k>0 时,直线y = kx经过第象限,从左向右上升,即随着x的增大,;当k<0时,直线y = kx经过第象限,从左向右下降,即随着x 的增大.3、正比例函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式y = kx(k0)中的常数k,其基本步骤是:(1)设出含有待定系数的函数解析式y = kx(k0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k 的一元一次方程;(3)解方程,求出待定系数k;(4)将求得的待定系数的值代回解析式.4、一次函数一般地,形如y = kx+ b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0 时,y =kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.5、一次函数的图象(1)一次函数y = kx+ b(k0)(的图象是经过(0,b)和(- b,0)两点的一条直k线,因此一次函数y = kx+ b的图象也称为直线y =kx+b.(2)一次函数y = kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可。
一般情况下:是先选取它与两坐标轴的交点:(0,b),(- b,0).即横坐标或纵坐标为0的点.k6、正比例函数与一次函数图象之间的关系一次函数y = kx+ b的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0 时,向上平移;当b<0 时,向下平移).7、直线y=kx+b 的图象和性质与k、b 的关系如下表所示:b>0b<0b=0经过第一、二、三象限经过第一、三、四象限经过第一、三象限k>0图象从左到右上升,y随x 的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k<0图象从左到右下降,y 随x 的增大而减小8、直线y1= kx+b与y2= kx图象的位置关系:(1)当 b>0 时,将y2= kx图象向 x 轴上方平移 b 个单位,就得到y1= kx+b的图象.(2)当 b<0 时,将y2= kx图象向 x 轴下方平移-b 个单位,就得到了y1= kx+b的图象.9、直线l1:y1= k1x+b1与l2:y2= k2x + b2的位置关系可由其解析式中的系数k和常数b来确定:当k1 k2时,l1与l2相交10、直线y = kx + b(k≠0) 与坐标轴的交点.(1)直线y=kx 与x 轴、y 轴的交点都是(0,0);(2)直线y = kx+ b与x轴交点坐标为(- b,0),与y轴交点坐标为(0,b).k11、用待定系数法确定函数解析式的一般步骤:关键:确定一次函数y= kx+ b 中的字母与的值步骤:1 、设一次函数表达式2、将x ,y 的对应值或点的坐标代入表达式;3、解关于系数的方程或方程组;4、将所求的待定系数代入所设函数表达式中。
12、一次函数与一元一次方程、一元一次不等式和二元一次方程组①、一次函数与一元一次方程:一般地将x= 或y 代入y= kx+ b中解一元一次方程可求求直线与坐标轴的交点坐标。
②、一次函数与一元一次不等式:kx+ b>0 或kx+ b<0 即一次函数图象位于x轴上方或下方时相应的x 的取值范围,反之也成立③、一次函数与二元一次方程组:两条直线的交点坐标即为两个一次函数所列二元一次方程组的解,反之根据方程组的解可求两条直线的交点坐标【特别提醒:1、一次函数与三者之间的关系问题一定要结合图象去解决2、在一次函数中讨论交点问题即是讨论一元一次不等式的解集或二元一次方程组解的问题】3、一次函数的应用一般步骤:(1)设定问题中的变量(2)建立一次函数关系式(3)确定自变量的取值范围(4)利用函数性质解决问题(5)作答【特别提醒:一次函数的应用多与二元一次方程组或一元一次不等式(组)相联系,经常涉及交点问题,方案设计问题等】13、正比例函数和一次函数的图象、性质考点一:一次函数的概念例 1 、一根弹簧长 15 ㎝,它所挂的物体质量不能超过 18kg ,并且每挂 1kg 就伸长 1 ㎝ . 写出挂上物体后的弹簧长度 y (㎝)与所挂物体质量 x (kg )之间的函数关系式例 2、下列函数中,哪些是一次函数?哪些是正比例函数?12(1)y=- 1 x ;(2)y=- 2 ;(3)y=-3-5x ;2x练习(1)当m 为何值时,函数y=-(m-2)x m 2-3 +(m-4)是一次函数?4)y=-5x 2;5)y=6x-126)y=x(x-4)-x 2.2)当m 为何值时,函数y=-(m-2)x m2-3+(m-4)是正比例函数?考点二:一次函数的图像例 3. 已知一次函数 y=(4m+1)x-(m+1).(1)m 为何值时,y 随 x 的增大而减小?。
(2)m 为何值时,直线与y 轴的交点在x 轴上?。
(3)m 为何值时,直线位于第二、三、四象限?。
练习(1)对于函数 y=5x+6,y 的值随 x 值的减小而_______ 。
(2)一次函数y=kx+b 满足kb>0,且y 随x 的增大而减小,则此函数的图象不经过象限。
(3)一次函数y=(6-3m)x+(2n-4)不经过第三象限,则m、n 的范围是 ____例 4. 下列图形中,表示一次函数 y=mx+n 与正比例函数 y=mnx(m,n 为常数,且mn≠0 )练习:(1)已知直线y=kx+b 经过第一、二、四象限,那么直线 y=-bx+k经过第___ 象限。
( 2 )无论 m 为何值,直线 y=x+2m 与直线 y=-x+4 的交点不可能在第象限。
2( 3 ) y=2x 与 y=-2x+3 的图像的交点在第___ 象限.( 4 )无论实数 m 取什么值,直线 y=x+m 与 y=-x+5 的交点都不能在()A 、第一象限B 、第二象限C 、第三象限D 、第四象限考点三:一次函数图像的变换例 5. 将直线 y=2x 向右平移 2 个单位所得的直线的解析式是()A、y=2x+2B、y=2x-2C、y=2(x-2)D、y=2(x+2)例 6. 一次函数 y=2x+3 的图象沿 y 轴向下平移 2 个单位,那么所得图象的函数解析式是()A、y=2x-3B、y=2x+2C、y=2x+1D、y=2x 例7.函数y1 =k1x的图象过点P(2,3),且与函数y2 = k2x的图象关于y轴对称,那么他们的解析式y1= ;y2=练习:(1)若正比例函数 y=kx 与 y=2x 的图象关于 x 轴对称,则 k 的值=(2)如图,是一个正比例函数的图象,把该图象向左平移一个单位长度,得到的函数图象的解析式为(3)直线y = 1x向上平移1个单位,再向右平移1个单位得到直线。
(4)已知直线 y=2x+1.①求已知直线与 y 轴交点 A 的坐标;②若直线 y=kx+b 与已知直线关于 y 轴对称,求 k 与 b 的值.考点四用待定系数法求函数解析式例8.若点 A(2,-3)、 B(4,3)、 C(5,a)在同一条直线上,则a的值是()A、6 或-6B、6C、-6D、6 和 3例9. 如图,已知点 A 的坐标为( 1 , 3 ),点 B 的坐标为( 3 , 1 ).1.写出一个图象经过 A , B 两点的函数表达式;2.指出该函数的两个性质.例 10、如图所示,已知直线 y=x+3 的图象与 x 轴、y 轴交于 A ,B 两点,直线l经过原点,与线段 AB 交于点 C,把△AOB 的面积分为 2:1 的两部分,求直线l的解析式.例 11、一次函数y = k1x - 4与正比例函数y = k2 x的图象都经过点(2,-1).1)分别求出这两个函数的解析式.2)求这两个函数图象与 x 轴围成的三角形的面积.考点五:一次函数与一元一次方程及一元一次不等式例12 已知一次函数 y=ax+b ( a 、 b 为常数), x 与 y 的部分对应值如下表:x2 -10 1 2 3y 6 4 2 0 -2 -4那么方程 ax+b=0 的解是;不等式 ax+b>0 的解是。
练习:(1)一元一次方程 3x-1=5 的解就是一次函数与 x 轴的交点横坐标.2)如图,直线 y=kx+b 交坐标轴于 A,B 两点,A、x>-2B、x>3C、x<-2D、x<3(3)作出函数y=2x-4 的图象,并根据图象回答下列问题:①当 -2 ≤ x ≤ 4 时,求函数 y 的取值范围;②当 x 取什么值时, y < 0 , y=0 , y > 0 ;③当 x 取何值时, -4 < y < 2 .考点六一次函数的实际运用例13 、小明、爸爸、爷爷同时从家里出发到达同一目的地后立即返回,小明去时骑自行车,返回时步行;爷爷去时是步行,返回时骑自行车;爸爸往返都是步行。
三人步行的速度不等,小明和爷爷骑自行车的速度相等,每个人的行走路程与时间的关系如图9 中的A、B、 C 表示,根据图象回答下列问题:(1)三个图象中哪个对应小明、爸爸、爷爷?(2)小明家距离目的地多远?(3)小明与爷爷骑自行车的速度是多少?爸爸步行的速度是多少?例 14、甲、乙两地相距 80km , A 骑自行车, B 骑摩托车沿相同路线由甲地驶往乙地 . 两人行驶路程y(km)与时间 x(h)之间的关系如图6-1-3 所示,请你根据图象回答下面问题:与时间 x(h)的关系式.(要求写自变量的取值范围)(4)指出在哪段时间里两车均行驶在途中(不包括端点),在这一时间段里,请你按要求写出关于时间 x的方程或不等式.①自行车行驶在摩托车之前.②自行车与摩托车相遇时.③自行车落后于摩托车.例 15、如图 6-3-4 ,某工厂有甲、乙两条生产线先后投产,在乙生产线投产以前,甲生产线已生产了 200 吨成品,从乙生产线投产开始,甲、乙两条生产线每天分别生产20 吨和 30 吨成品.(1)分别求出甲、乙两条生产线投产后,总产量 y(吨)与从乙开始投产以来所用时间x(天)之间的关系式,并求出第几天结束,甲、乙两条生产线的总产量相同.(2)在如图所示的坐标系中,作出上述两个函数在第一象限内的图象.观察图,分别指出第 15 天和第 25 天结束时,哪条生产线的总产量最高.练习(1)某航空公司规定,旅客乘机所携带行李的质量 x(kg)与其运费 y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A、20kgB、25kgC、28kgD、30kg(2)2007 年 4 月,巴中市出租车收经费方式全面调整,具体收费方式如下:行驶距离在3 千米以内(包括3 千米)付起步价 3 元,超过 3 千米后,每多行驶 1 千米加收 1.4 元,试写出乘车费用y(元)与乘车距离 x(千米)x>3之间的函数关系式为(3)从地面到高空11千米之间,气温随高度的升高而下降,每升高1千米,气温下降6℃.已知某处地面气温为23℃,设该处离地面x 千米(0≤x≤11)处的气温为y℃,则y 与x 的函数关系式是(4)某汽车加油站储油45000 升,每天给汽车加油1500 升,那么储油量y(升)与加油x (天)之间的关系式是什么?并指出自变量的取值范围【提高题】1.已知b + c = a+c = a+b = k(b0, a + b + c = 0),那么y = kx + b的图象一定不经过()abcA.第一象限B.第二象限C.第三象限D.第四象限2.当m满足时,一次函数y = - 2x+ 2m- 5的图象与y轴交于负半轴.3.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB的面积为 6 平方单位,求正比例函数和一次函数的解析式。