北师大版初二数学《一次函数》优秀教案
八年级数学上册 一次函数教案 北师大版

y2=0.6×300=180(元)
所以每月通话时间为300分时,应选择A类收费方式.
(3)当y1=y2,即50+0.4x=0.6x时,
∴x=250(分)时,两类收费方式所缴话费相等.
(4)∵y1=50+0.4x,y2=0.6x
当y1<y2,即50+0.4x<0.6x,x>250时,选择A类收费方式;
2
3
4
…
售价y/元
8+0.4
16+0.8
24+1.2
32+1.6
…
[生]
∵8+0.4=8×1+0.4×1
16+0.8=8×2+0.4×2
24+1.2=8×3+0.4×3
32+1.6=8×4+0.4×4……
∴y=8x+0.4x=8.4x
当x=2.5时
y=8.4×2.5=21(元)
投影片(§6.2 C)
3.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过的部分按1元/米3收费.设某户每月用水量为x米3,应缴水费y元.
(1)写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数.
第二张:补充练习(记作§6.2 B);
第三张:补充练习(记作§6.2 C).
七、教学过程
Ⅰ.创设问题情境,导入新课
[师]在上节课我们已学习过函数的概念,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数(fanction),其中x是自变量,y是因变量.在现实生活中有许多问题都可以归结为函数问题.大家能不能举一些例子呢?
北师大版初二数学《一次函数》优秀教案

精心整理一次函数 知识点:函数的概念定义:在某一变化过程中,可以取不同数值的量,叫做变量,例如x 和y ,对于x 的每一个值,y 都有惟一..的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数. 例1:求下列函数中自变量x 的取值范围: (1)21+=x y ; (2)2-=x y . 例2:圆柱底面半径为5cm ,则圆柱的体积V (cm 3)与圆柱的高h (cm )之间的函数关系式为 ,它是 函数.知识点:一次函数的概念定义:一次函数:若两个变量x 、y 间的关系可以表示成 (k 、b 为常数,k ≠0)形式,则称y 是x 的一次函数(x 是自变量,y 是因变量).特别地,当b =0时,称y 是x 的____________.正比例函数是一次函数的特殊情况.例1:有下列函数:①y =-x -2;②y =-2x;③y =-x 2+(x +1)(x -2);④y =-2, 其中不是一次函数的是 .(填序号)例2:要使y =(m -2)x n -1+n 是关于x 的一次函数,则m 、n 应满足______________. 例3:已知y =(k -1)2k x 是正比例函数,则k = . 【变式练习】1、若函数y = (k +1)x +k 2-1是正比例函数,则k 的值为( )A .0B .1C .±1D .-12、若23y x b =+-是正比例函数,则b 的值是( )A . 0B . 23C . 23-D . 32- 3.下列关于x 的函数中,是一次函数的是( )考点:正比例函数的图象和性质例1 已知正比例函数y = kx ( k ≠0 ) 的图象过第二、四象限,则( )A .y 随x 的增大而减小B .y 随x 的增大而增大C .当x <0时,y 随x 的增大而增大,当x >0时,y 随x 的增大而减小D .不论x 如何变化,y 不变例2 已知32)12(--=m x m y 是正比例函数,且y 随x 的增大而减小,则m 的值为_______.【变式练习】1、正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大.2、函数y = (k -1)x ,y 随x 增大而减小,则k 的范围是 ( )A .0<kB .1>kC .1≤kD .1<k考点:一次函数的图象和性质总结:一次函数的图象一次函数y =kx +b 的图象是经过点(0,b ),(-kb ,0)的一条直线 正比例函数y =kx 的图象是经过原点(0,0)的一条直线,如下表所示.例1:已知函数y =(m -3)x -32,当m________时,y 随x 的增大而增大;当m _________时,y 随x 的增大而减小.例2:已知正比例函数y =(3k -1)x ,y 随着x 的增大而增大,则k 的取值范围是( )A .k <0B .k >0C .k <13D .k >13例3:如图,表示一次函数y mx n =+与正比例函数y mnx =(m n ,为常数,且mn 0≠)图象的是( )【变式练习】 Ox y x y O x yO x y O ABC . D .1、两个一次函数y 1= mx +n ,y 2= nx +m ,它们在同一坐标系中的图象可能是图中的( )2、已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是( )A .2325≤<-y B .2523<<y C .2523<≤y D .2523≤<y 3、若关于x 的函数1(1)m y n x -=+是一次函数,则m = ,n .4、若m < 0,n > 0,则一次函数y= mx + n 的图象不经过( ) A .第一象限 B . 第二象限 C .第三象限 D .第四象限考点:直线的平移:例1:在同一平面直角坐标系中画出下列函数的图象.y =2x 与y =2x +3观察y =2x 与y =2x +3两条直线,它们有什么样的位置关系?请回答:两条直线11y b kx +=与22b kx y +=平行,那么1k ____2k ,1b ____2b直线的平移: 左“+”右“-”,上“+”下“-”点的平移同样按照“左‘+’右‘-’,上‘+’下‘-’”.平移几个单位就加上或者减去几.例2:直线y =-2x 与直线y =-2x -4的位置关系是__________.函数y =-2x -4图象可以由函数y =-2x 的图象向______平移_____个单位得到.【变式练习】1、下列说法是否正确,为什么?(1)直线y = 3x +1与y =-3x +1平行;向左(右)平移p 个单位向上(下)平移p 个单位(2)直线212+=x y 与212-=x y 重合;(3)直线y =-x -3与y =-x 平行;(4)直线121+=x y 与15.0+=x y 相交.2、将直线y =3x 向下平移5个单位,得到直线 ;将直线y =-x -5向上平移5个单位,得到直线 . 考点:用待定系数法确定一次函数表达式的一般步骤:一设,二代,三解,四代入:(1)设一次函数表达式为y =kx +b ;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值;(4)将k 、b 的值带入y =kx +b ,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.解:设一次函数的关系式为y =kx +b (k ≠0),由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y =3534-x .例1:已知正比例函数的图象如下图如示,则正比例函数的解析式为多少?例2:已知弹簧的长度y (厘米)在一定的限度内是所挂物质量x (千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米,求这个一次函数的关系式例3:一次函数y =3x +b 的图象与两坐标轴围成的三角形面积是24,求b . 例4. 若一次函数y =kx +b 的图象经过(0,1)和(-1,3)两点,则此函数的解析式为_____________.例5、若正比例函数y = kx 的图象经过点(1,2),则此函数的解析式为_____________.例6. 直线y =2x +8与x 轴和y 轴的交点的坐标分别是_______、_______. 例7、已知一次函数的图象经过A (-2,-3),B (1,3)两点.(1)求这个一次函数的解析式; (2)试判断点P (-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.【变式练习】1. 油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量 Q (升)与流出时间t (分钟)的函数关系是( )A .Q =0.2tB .Q =20-0.2tC .t =0.2QD .t =20—0.2Q2. 若正比例函数的图象经过(-l ,5)那么这个函数的表达式为__________,y 的值随x 的减小而____________3. 若一次函数y =kx -3经过点(3,0),则k = ,该图象还经过点( 0, )和( ,-2)4. 一某市市内出租车行程在 4km 以内(含 4km )收起步费 8元,行驶超过4km 时,每超过1 km ,加收1.80元,当行程超出4km 时收费y 元与所行里程x (km )之间的函数关系式 .5. 小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与卖瓜的千克数之间的关系如图l -6-3所示,那么小李赚了( )A .32元B .36元C .38元D .44元6. 直线 y =43x +4与 x 轴交于 A ,与y 轴交于B , O 为原点,则△A O B 的面积为( ) A .12 B .24 C .6 D .107.一次函数的图象如图l -6-42所示,那么这个一次函数的表达式是( )A .y =-2x +2B .y =-2x -2C .y = 2x +2D .y =2x -2考点:一次函数的应用例1. 如果每盒圆珠笔有12支,售价6元,那么圆珠笔的售价y (元)与圆珠笔的支数x (支)之间的关系式是( )A .y = 12x B .y =2x C .y =6x D .y =12x 例2. 幸福村办工厂,今年前五个月生产某种产品的总量C (件)关于时间t (月)的函数图象如图l -6-43所示,则该工厂对这种产品来说( )A.1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减小B.l月至3月生产总量逐月增加,4、5两月生产总量与3月持平C.l月至3月每月生产总量逐月增加,4、5两月均停止生产D.l月至3月每月生产总量不变,4、5两月均停止生产例3. 在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y 与x的函数关系如图所示.根据图像信息,解答下列问题:(1)这辆汽车的往、返速度是否相同? 请说明理由;(2)求返程中y与x之间的函数表达式;(3)求这辆汽车从甲地出发4h时与甲地的距离.【变式练习】1、一天,小军和爸爸去登山,已知山脚到山顶的路程为300米.小军先走了一段路程,爸爸才开始出发.图l-6-44中两条线段分别表示小军和爸爸离开山脚登山的路程S(米)与登山所用的时间t (分)的关系(从爸爸开始登山时计时).根据图象,下列说法错误的是()A.爸爸登山时,小军已走了50米B.爸爸走了5分钟,小军仍在爸爸的前面C.小军比爸爸晚到山顶D.爸爸前10分钟登山的速度比小军慢,10分钟后登山的速度比小军快2. 某地区的电力资源丰富,并且得到了较好的开发. 该地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费. 月用电量x(度)与相应电费y(元)之间的函数图像如图所示.⑴月用电量为100度时,应交电费元;⑵当x≥100时,求y与x之间的函数关系式;⑶月用电量为260度时,应交电费多少元?基础练习1. 下列函数是一次函数的是.①y=2x;②y=3+4x;③y=0.5;④y=ax(a≠0的常数);⑤xy=3;⑥2x+3y-1=0;2. 若函数y=(m-2)x+5是一次函数,则m满足的条件是____________.3.已知y与x-1成正比例,且x=2时,y=7.(1)写出y 与x 之间的函数关系:_________;(2)y 与x 之间是_________函数关系4.已知一次函数y =kx +5的图象经过点(-1,2),则k =_______,图象不经过_______象限.6.如果直线y =kx +b 经过一、二、四象限,那么有( )A .k >0,b >0B .k >0,b <0C .k < 0,b <0D .k <0,b >07. 已知函数:①y =-x ,②y =7-3x ,③y =3x -1,④y =3x 2,⑤y = x 3 ,⑥y = 3x中,正比例函数有( ) A .①⑤ B .①④ C .①③ D .③⑥8.(1)当m = 时,y =()()m x m x m +-+-1122是一次函数. (2)我国是一个水资源缺乏的国家,大家要节约用水.据统计,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.李丽同学在洗手时,没有把水龙头拧紧,当李丽同学离开x 小时后水龙头滴了y 毫升水.则y 与x 之间的函数关系式是 .(4)设圆的面积为s ,半径为R ,那么下列说法正确的是( )A .S 是R 的一次函数B .S 是R 的正比例函数C .S 是2R 的正比例函数 D .以上说法都不正确9.已知一次函数y =(m +2)x +m -m -4的图象经过点(0,2),则m 的值是(??? ? )A .2??????B .-2???????C .-2或3?????D .310.直线y =-x +2与x 轴的交点坐标是 ,与y 轴的交点坐标是 . 直线y =-x -1与x 轴的交点坐标是 ,与y 轴的交点坐标是 .直线y =4x -2与x 轴的交点坐标是 ,与y 轴的交点坐标是 . 直线y =232-x 与x 轴的交点坐标是 ,与y 轴的交点坐标是 . 12. 在下列四个函数中,y 的值随x 值的增大而减小的是( ) A.2y x =B.36y x =- C.25y x =-+ D.37y x =+ 13、直线521,321--=+-=x y x y 和x y 21-=的位置关系是 ,直线132y x =-+可以看作是直线x y 21-=向 平移 个单位得到的. 14. 将直线y =-2x +3向下平移5个单位,得到直线 .15. 直线y =kx -4平行于直线y =-2x ,则直线4y kx =-的解析式为 ;16.电话每台月租费28元,市区内电话(三分钟以内)每次0.20元,若某台电话每次通话均不超过3分钟,则每月应缴费y (元)与市内电话通话次数x 之间的函数关系式是( )A .y =28x +0.20B .y =0.20x +28xC .y =0.20x +28D .y =28-0.20x17.某人购进一批苹果到集市上零售,已知卖出的苹果x (千克)与销售的金额y 元的关系如下表: x (千克) 1 23 4 5 … y (元) 2+0.1 4+0.2 6+0.3 8+0.4 10+0.5… (1)写出y 与x 的函数关系式:___________;(2)该商贩要想使销售的金额达到250元,至少需要卖出多少千克的苹果?18.如图2-4,某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶,游客爬山所用时间t (小时)与山高h (千米)间的函数关系用图象表示是( )19.一次函数321+-=x y 的图象与y 轴的交点坐标是_________,与x 轴的交点坐标是_________.一般的,一次函数y =kx +b 与y 轴的交点坐标是__________,与x 轴的交点坐标是__________.20.依据给定的条件,求一次函数的解析式.(1)已知一次函数的图象如图4-5所示,求此一次函数的解析式,并判断点(6,5)是否在此函数图象上.图4-5(2)已知一次函数y =2x +b 的图象与y 轴的交点到x 轴的距离是4,求其函数解析式.21.依据给定的条件,求一次函数解析式:y=ax+7经过一次函数y=4-3x和y=2x-1的交点.=+的图象与轴交点的纵坐标为5-,且当x=1时,y=2,则此函数的解析式。
八年级数学上册《 一次函数》教案 北师大版

福建省南安市九都中学八年级数学上册《一次函数》教案北师大版一:教学地位这节课的内容是八年级(下)第18章“函数”的第四节“一次函数性质”的第一课时, 内容是结合一次函数图象研究一次函数的性质这一课时在明确了一次函数的图象是一条直线后, 进一步结合图象研究一次函数的的性质.让学生明了它的研究方式和结果.从而使学生对一次函数有了从‘数’到‘形’ 、从‘形’到‘数’两方面的理解,从此展开了一个“数形结合”的新天地.接着重研究如何确定一次函数表达式及其应用.且这节课的研究为将来学习研究反比例函数性质,二次函数性质打下良好的基础.二:学生的学情分析八年级学生刚学函数, 但有了七年级“字母表示数”和“变量之间的关系”铺垫,他们在学一次函数时知识结构中印象最深的用“关系式”表示和用“表格”表示。
虽有前一章“位置的确定”使学生初步接触到数形结合,但只是一种形象的实际应用。
学生还没有抽象成“数形的对应关系”和这种“对应关系的应用”充实到他们的知识结构中。
而且与他们的实际生活经验和学习经验差距较大.也更复杂更抽象.这个学段的学生有好奇心,好强,自尊心强,,但心理较脆弱.大部分的学生正在艰难的由形象思维朝抽象思维发展.观察力偏重于第一印象,仍用自己原有的认识与知识结构作出判断,不会自觉利用直角坐标系从函数的这种数形对应角度出发考虑.使学习产生困难,容易产生畏难情绪。
三:教学目标1、知识与技能目标1、能熟练地作出一次函数的图象,了解一次函数图象的特点。
2、在认识一次函数的图象的基础上,掌握一次函数及其图象简单性质3、能够利用一次函数的性质解决数学问题.2、过程与方法目标1、经历对一次函数的图象的探究过程,在探究中学会解决一次函数问题的一些基本方法和策略2、进一步培养学生数形结合的意识和能力及分类讨论的思想。
3、探究活动中培养学生的探索精神和合作交流意识,团队精神。
3、情感目标让学生全身心地投入学习活动中,能积极与同伴合作交流,并能进行探索的活动,发展实践能力与创新精神。
北师大版数学八年级上册2《一次函数》教案1

北师大版数学八年级上册2《一次函数》教案1一. 教材分析《一次函数》是北师大版数学八年级上册第2单元的内容。
本节课主要让学生了解一次函数的定义、性质及图像,能够运用一次函数解决实际问题。
教材通过丰富的实例,引导学生探究一次函数的规律,培养学生的抽象思维能力和解决问题的能力。
二. 学情分析学生在七年级时已经学习了平面直角坐标系,对坐标系的认识较为基础。
但他们对一次函数的定义、性质及应用可能还不够清晰。
因此,在教学过程中,教师需要关注学生的认知基础,通过生动的实例和丰富的活动,激发学生的学习兴趣,引导学生主动探究一次函数的规律。
三. 教学目标1.了解一次函数的定义、性质及图像,能运用一次函数解决实际问题。
2.培养学生的抽象思维能力和解决问题的能力。
3.激发学生的学习兴趣,培养他们合作、交流的良好学习习惯。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图像的特点及其应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生认识一次函数。
2.探究教学法:学生分组讨论,探究一次函数的性质。
3.直观教学法:利用多媒体展示一次函数图像,帮助学生理解一次函数的性质。
4.实践教学法:让学生运用一次函数解决实际问题,巩固所学知识。
六. 教学准备1.多媒体教学设备。
2.一次性函数的实例材料。
3.坐标纸、直尺、铅笔等学习用品。
七. 教学过程导入(5分钟)教师通过展示一些生活中的实例,如身高与年龄的关系、商品价格与销售数量的关系等,引导学生认识一次函数。
让学生思考:这些实例中存在什么规律?怎样用数学语言来描述这些规律?呈现(10分钟)教师给出一次函数的一般形式:y = kx + b(k≠0,k、b为常数),并解释一次函数的各个组成部分。
然后,通过具体的一次函数实例,让学生观察函数图像,分析一次函数的性质。
操练(10分钟)学生分组讨论,每组选择一个实例,探究一次函数的性质。
教师巡回指导,解答学生的疑问。
巩固(10分钟)教师出示一些练习题,让学生独立完成。
北师大版数学八年级上册2《一次函数》教学设计4

北师大版数学八年级上册2《一次函数》教学设计4一. 教材分析《一次函数》是北师大版数学八年级上册第2章的内容,本节内容是在学生已经掌握了函数概念的基础上进行学习的。
一次函数是数学中的一种基本函数,它的一般形式为y=kx+b(k≠0,k、b为常数)。
本节内容主要让学生了解一次函数的定义、性质和图像,学会如何运用一次函数解决实际问题。
二. 学情分析八年级的学生已经具备了一定的函数知识,对于函数的概念已经有了初步的了解。
但是,对于一次函数的定义、性质和图像,学生可能还比较陌生,需要通过实例和活动来加深理解。
此外,学生可能对于如何运用一次函数解决实际问题还有一定的困难,需要通过具体的案例和练习来进行引导和训练。
三. 教学目标1.了解一次函数的定义、性质和图像,掌握一次函数的解法。
2.能够运用一次函数解决实际问题,提高学生的应用能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数的图像。
3.如何运用一次函数解决实际问题。
五. 教学方法1.案例教学法:通过具体的案例,让学生了解一次函数的定义、性质和图像。
2.实践教学法:让学生通过动手操作,加深对一次函数的理解。
3.问题解决法:引导学生运用一次函数解决实际问题,提高学生的应用能力。
六. 教学准备1.教学PPT:制作一次函数的相关PPT,包括一次函数的定义、性质、图像和实际应用案例。
2.教学素材:准备一些实际问题,用于引导学生运用一次函数解决实际问题。
3.练习题:准备一些练习题,用于巩固学生对一次函数的理解。
七. 教学过程1.导入(5分钟)利用PPT展示一次函数的图像,引导学生思考一次函数的特点和性质。
2.呈现(15分钟)通过PPT呈现一次函数的定义、性质和图像,让学生初步了解一次函数的基本概念。
3.操练(20分钟)让学生分组讨论,根据一次函数的性质,尝试画出给定的一次函数的图像。
然后,让学生汇报自己的成果,互相交流和学习。
北师大版 八年级上册 课题:《一次函数》复习课教案

北师大版八年级上册课题:《一次函数》复习课教案一. 教材分析北师大版八年级上册《一次函数》复习课教案旨在帮助学生巩固已学的一次函数知识,提高解题能力和思维水平。
本节课的主要内容有一次函数的定义、性质、图像和应用等方面,通过本节课的学习,学生可以更好地理解和掌握一次函数的知识,并能够运用一次函数解决实际问题。
二. 学情分析学生在学习一次函数时,已经具备了一定的数学基础和思维能力,能够理解和掌握一次函数的基本概念和性质。
但学生在应用一次函数解决实际问题时,还存在着一些困难,如对一次函数图像的理解和运用不够灵活等。
因此,在复习课中,需要针对这些难点进行讲解和练习,帮助学生更好地掌握一次函数的知识。
三. 教学目标1.掌握一次函数的定义、性质和图像。
2.学会运用一次函数解决实际问题。
3.培养学生的逻辑思维和解题能力。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图像的理解和运用。
3.运用一次函数解决实际问题。
五. 教学方法采用讲授法、练习法、讨论法等教学方法,通过讲解、示例、练习和讨论等方式,帮助学生理解和掌握一次函数的知识,提高学生的解题能力和思维水平。
六. 教学准备1.教学课件或黑板。
2.练习题和答案。
3.教学参考书和资料。
七. 教学过程导入(5分钟)通过提问方式引导学生回顾一次函数的定义和性质,激发学生的学习兴趣和思维能力。
呈现(15分钟)讲解一次函数的图像和应用,通过示例和练习,让学生理解和掌握一次函数图像的特点和运用方法。
操练(15分钟)让学生独立完成练习题,教师进行个别辅导和指导,帮助学生巩固已学知识,提高解题能力。
巩固(10分钟)通过讨论和练习,让学生进一步理解和掌握一次函数的知识,培养学生的思维能力和解决问题的能力。
拓展(10分钟)讲解一次函数在实际问题中的应用,通过示例和练习,让学生学会运用一次函数解决实际问题。
小结(5分钟)总结一次函数的知识点,强调一次函数的定义、性质和图像的重要性,提醒学生注意运用一次函数解决实际问题。
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例

3.创设具有挑战性的问题情境,激发学生的思考,培养学生解决问题的能力。
(二)问题导向
1.引导学生提出问题,培养学生的问题意识。例如,在讲解商店促销活动时,引导学生思考:“购买不同数量的商品,费用如何变化?”
2.设计具有启发性的问题,引导学生进行思考、讨论,培养学生分析问题、解决问题பைடு நூலகம்能力。
(四)反思与评价
1.引导学生进行自我反思,总结一次函数在实际问题中的应用方法和规律。
2.组织学生进行互评、师评,评价学生在解决问题过程中的表现,给予鼓励和指导。
3.教师根据学生的表现,及时调整教学策略,提高教学质量。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示商店促销活动的图片,引导学生关注实际问题。
5.作业小结的个性化设计:本节课的作业小结具有个性化设计,让学生运用一次函数的知识解决实际问题,例如家庭用电费用计算、购物预算等。这种作业设计既能够巩固所学知识,提高学生的应用能力,还能够激发学生的创新意识。
3.引导学生掌握一次函数的解析式,学会用数学模型表示实际问题。
4.讲解一次函数的性质,例如斜率、截距等,让学生了解一次函数的变化规律。
(三)学生小组讨论
1.组织学生进行小组讨论,让学生分享各自对一次函数应用的理解。
2.讨论一次函数在实际问题中的变化规律,例如购买商品数量与费用的关系。
3.引导学生通过举例、绘制图像等方式,验证一次函数的性质。
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例
一、案例背景
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例,主要针对八年级学生进行设计。本节课的主要内容是让学生掌握一次函数在实际生活中的应用,通过具体案例的分析,让学生了解一次函数在解决实际问题中的重要性。
数学北师大版八年级上册《一次函数》教学设计

《一次函数》教学设计【教学目标】(1)理解一次函数和正比例函数的概念,以及它们之间的关系;(2)能根据所给条件写出简单的一次函数表达式.(3)经历一般规律的探索过程,发展学生的抽象思维能力;(4)通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力.(5)通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维.【教学重点】(1)一次函数、正比例函数的概念及关系.(2)会根据已知信息写出一次函数的表达式. 【教学难点】(1)根据实际情景写出一次函数的表达式;(2)应用一次函数知识解决实际问题.教学过程:(一)做一做1、某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克弹簧长度y增加0.5厘米.(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:x/千克0 1 2 3 4 5y/厘米(2)你能写出x与y之间的关系式吗?(二)想一想1.上面的两个关系式中,y是否为x的函数?它们有何共同特点?2.什么是一次函数?什么是正比例函数?二者有怎样的关系?设计意图:1.激发学生的学习兴趣,调动学生的学习热情和学习积极性。
2.通过自主探究,培养学生自主学习能力。
引导学生主动地从事观察、操作、交流、归纳等探索活动,从而使学生形成自己对数学学习的理解和有效的学习模式,进一步丰富学生数学学习的成功经验。
(三)应用新知,解决问题例1写出下列各题中x与y之间的关系式,并判断y是否为x一次函数?是否为正比例函数?(1)汽车以60千米/时的速度行使,行使路程y(千米)与行使时间x(时)之间的关系;(2)圆的面积y(cm2)与它的半径x(cm)之间的关系;(3)等腰三角形的周长是18,若腰长为y,底边长为x,试写出y与x之间的关系,并指出自变量的取值范围.例2 我国现行个人工资薪金税征收办法规定:月收入低于800元但低于1300元的部分征收5%的所得税……如某人某月收入1160元,他应缴个人工资薪金所得税为(1160-800)×5%=18(元)(1)当月收入大于800元而又小于1300元时,写出应缴所得税y(元)与月收入x(元)之间的关系式.(2)某人某月收入为960元,他应缴所得税多少元?(3)如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元?例题3:巩固新知,变式训练十堰旅游资源丰富,“道教圣地武当山”、“中国水都丹江口”和“中国卡车之都”是该市的三张名片。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数定义:在某一变化过程中,可以取不同数值的量,叫做变量,例如x 和y ,对于x 的每一个值,y 都有惟一..的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数. 例1:求下列函数中自变量x 的取值范围: (1)21+=x y ; (2)2-=x y . 例2:圆柱底面半径为5cm ,则圆柱的体积V (cm 3)与圆柱的高h (cm )之间的函数关系式为,它是函数.定义:一次函数:若两个变量x 、y 间的关系可以表示成(k 、b 为常数,k ≠0)形式,则称y 是x 的一次函数(x 是自变量,y 是因变量).特别地,当b =0时,称y 是x 的____________.正比例函数是一次函数的特殊情况.例1:有下列函数:①y =-x -2;②y =-2x ;③y =-x 2+(x +1)(x -2);④y =-2,其中不是一次函数的是.(填序号)例2:要使y =(m -2)x n -1+n 是关于x 的一次函数,则m 、n 应满足______________. 例3:已知y =(k -1)2k x 是正比例函数,则k =. 【变式练习】1、若函数y = (k +1)x +k 2-1是正比例函数,则k 的值为( )A .0B .1C .±1D .-12、若23y x b =+-是正比例函数,则b 的值是() A . 0 B .23C . 23-D . 32- 3.下列关于x 的函数中,是一次函数的是()22221A.3(1) B.y=x+x1C.y=-x D.y=(x+3)-x xy x例1 已知正比例函数y = kx ( k ≠0 ) 的图象过第二、四象限,则( )A .y 随x 的增大而减小B .y 随x 的增大而增大C .当x <0时,y 随x 的增大而增大,当x >0时,y 随x 的增大而减小D .不论x 如何变化,y 不变 例2 已知32)12(--=m x m y 是正比例函数,且y 随x 的增大而减小,则m 的值为_______.【变式练习】1、正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大.2、函数y = (k -1)x ,y 随x 增大而减小,则k 的范围是 ( ) A .0<k B .1>k C .1≤k D .1<k考点:一次函数的图象和性质总结:一次函数的图象一次函数y =kx +b 的图象是经过点(0,b ),(-kb,0)的一条直线 正比例函数y =kx 的图象是经过原点(0,0)的一条直线,如下表所示.例1:已知函数y =(m -3)x -32,当m________时,y 随x 的增大而增大;当m _________时,y 随x 的增大而减小.例2:已知正比例函数y =(3k -1)x ,y 随着x 的增大而增大,则k 的取值范围是() A .k <0 B .k >0 C .k <13D .k >13例3:如图,表示一次函数y mx n =+与正比例函数y mnx =(m n ,为常数,且mn 0≠)图象的是( )【变式练习】1、两个一次函数y 1= +n ,y 2= nx +m ,它们在同一坐标系中的图象可能是图中的()2、已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是() A .2325≤<-y B .2523<<y C .2523<≤y D .2523≤<y3、若关于x 的函数1(1)m y n x-=+是一次函数,则m =,n .4、若m < 0,n > 0,则一次函数y= mx + n 的图象不经过() A .第一象限B . 第二象限C .第三象限D .第四象限考点:直线的平移:例1:在同一平面直角坐标系中画出下列函数的图象.y =2x 与y =2x +3观察y =2x 与y =2x +3两条直线,它们有什么样的位置关系? 请回答:两条直线11y b kx +=与22b kx y +=平行,那么1k ____2k ,1b ____2b直线的平移:左“+”右“-”,上“+”下“-”点的平移同样按照“左‘+’右‘-’,上‘+’下‘-’”.平移几个单位就加上或者减去几. 例2:直线y =-2x 与直线y =-2x -4的位置关系是__________.函数y =-2x -4图象可以由函数y =-2x 的图象向______平移_____个单位得到. 【变式练习】1、下列说法是否正确,为什么?(1)直线y = 3x +1与y =-3x +1平行;b kx y +=向左(右)平移p 个单位b p x k y +±=)(b kx y += p b kx y ±+=向上(下)平移p 个单位O xyxy OxyOxyO ABC . D .(2)直线212+=x y 与212-=x y 重合; (3)直线y =-x -3与y =-x 平行; (4)直线121+=x y 与15.0+=x y 相交. 2、将直线y =3x 向下平移5个单位,得到直线;将直线y =-x -5向上平移5个单位,得到直线.考点:用待定系数法确定一次函数表达式的一般步骤:一设,二代,三解,四代入:(1)设一次函数表达式为y =kx +b ;(2)将已知点的坐标代入函数表达式,解方程(组); (3)求出k 与b 的值;(4)将k 、b 的值带入y =kx +b ,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式. 解:设一次函数的关系式为y =kx +b (k ≠0),由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y =3534-x .例1:已知正比例函数的图象如下图如示,则正比例函数的解读式为多少?例2:已知弹簧的长度y (厘M )在一定的限度内是所挂物质量x (千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘M ,挂4千克质量的重物时,弹簧的长度是7.2厘M ,求这个一次函数的关系式例3:一次函数y =3x +b 的图象与两坐标轴围成的三角形面积是24,求b .例4. 若一次函数y =kx +b 的图象经过(0,1)和(-1,3)两点,则此函数的解读式为_____________. 例5、若正比例函数y = kx 的图象经过点(1,2),则此函数的解读式为_____________. 例6. 直线y =2x +8与x 轴和y 轴的交点的坐标分别是_______、_______. 例7、已知一次函数的图象经过A (-2,-3),B (1,3)两点.(1)求这个一次函数的解读式;(2)试判断点P (-1,1)是否在这个一次函数的图象上; (3)求此函数与x 轴、y 轴围成的三角形的面积. 【变式练习】1. 油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q (升)与流出时间t (分钟)的函数关系是()A .Q =0.2tB .Q =20-0.2tC .t =0.2QD .t =20—0.2Q2. 若正比例函数的图象经过(-l ,5)那么这个函数的表达式为__________,y 的值随x 的减小而____________3. 若一次函数y =kx -3经过点(3,0),则k =,该图象还经过点( 0,)和(,-2)4. 一某市市内出租车行程在 4km 以内(含 4km )收起步费 8元,行驶超过4km 时,每超过1 km ,加收1.80元,当行程超出4km 时收费y 元与所行里程x (km )之间的函数关系式.5. 小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与卖瓜的千克数之间的关系如图l -6-3所示,那么小李赚了() A .32元B .36元C .38元D .44元6. 直线y =43 x +4与x 轴交于A ,与y 轴交于B , O 为原点,则△A O B 的面积为()A .12B .24C .6D .107.一次函数的图象如图l -6-42所示,那么这个一次函数的表达式是() A .y =-2x +2 B .y =-2x -2 C .y = 2x +2 D .y =2x -2考点:一次函数的应用例1. 如果每盒圆珠笔有12支,售价6元,那么圆珠笔的售价y (元)与圆珠笔的支数x (支)之间的关系式是()A .y = 12xB .y =2xC .y =6xD .y =12x例2. 幸福村办工厂,今年前五个月生产某种产品的总量C (件)关于时间t (月)的函数图象如图l -6-43所示,则该工厂对这种产品来说()A .1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减小B .l 月至3月生产总量逐月增加,4、5两月生产总量与3月持平C .l 月至3月每月生产总量逐月增加,4、5两月均停止生产D .l 月至3月每月生产总量不变,4、5两月均停止生产例3. 在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h )时,汽车与甲地的距离为y (km ),y 与x 的函数关系如图所示.根据图像信息,解答下列问题:(1)这辆汽车的往、返速度是否相同? 请说明理由; (2)求返程中y 与x 之间的函数表达式; (3)求这辆汽车从甲地出发4h 时与甲地的距离. 【变式练习】1、一天,小军和爸爸去登山,已知山脚到山顶的路程为300M .小军先走了一段路程,爸爸才开始出发.图l -6-44中两条线段分别表示小军和爸爸离开山脚登山的路程S(M )与登山所用的时间t(分)的关系(从爸爸开始登山时计时).根据图象,下列说法错误的是() A .爸爸登山时,小军已走了50M B .爸爸走了5分钟,小军仍在爸爸的前面 C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟后登山的速度比小军快2. 某地区的电力资源丰富,并且得到了较好的开发. 该地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费. 月用电量x (度)与相应电费y (元)之间的函数图像如图所示. ⑴月用电量为100度时,应交电费元; ⑵当x ≥100时,求y 与x 之间的函数关系式; ⑶月用电量为260度时,应交电费多少元? 基础练习1. 下列函数是一次函数的是.①y =2x ;②y =3+4x ;③y =0.5;④y =ax (a ≠0的常数);⑤xy =3;⑥2x +3y -1=0; 2. 若函数y =(m -2)x +5是一次函数,则m 满足的条件是____________. 3.已知y 与x -1成正比例,且x =2时,y =7.(1)写出y 与x 之间的函数关系:_________;(2)y 与x 之间是_________函数关系4.已知一次函数y =kx +5的图象经过点(-1,2),则k =_______,图象不经过_______象限. 6.如果直线y =kx +b 经过一、二、四象限,那么有()A .k >0,b >0B .k >0,b <0C .k < 0,b <0D .k <0,b >0 7. 已知函数:①y =-x ,②y =7-3x ,③y =3x -1,④y =3x 2,⑤y = x 3 ,⑥y = 3x中,正比例函数有()A .①⑤B .①④C .①③D .③⑥8.(1)当m =时,y =()()m x m x m +-+-1122是一次函数.(2)我国是一个水资源缺乏的国家,大家要节约用水.据统计,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.李丽同学在洗手时,没有把水龙头拧紧,当李丽同学离开x 小时后水龙头滴了y 毫升水.则y 与x 之间的函数关系式是.(4)设圆的面积为s ,半径为R ,那么下列说法正确的是() A .S 是R 的一次函数B .S 是R 的正比例函数C .S 是2R 的正比例函数D .以上说法都不正确9.已知一次函数y =(m +2)x +m -m -4的图象经过点(0,2),则m 的值是( )A .2B .-2C .-2或3D .310.直线y =-x +2与x 轴的交点坐标是,与y 轴的交点坐标是.直线y =-x -1与x 轴的交点坐标是,与y 轴的交点坐标是. 直线y =4x -2与x 轴的交点坐标是,与y 轴的交点坐标是.直线y =232-x 与x 轴的交点坐标是,与y 轴的交点坐标是. 12.在下列四个函数中,y 的值随x 值的增大而减小的是( )A.2y x =B.36y x =-C.25y x =-+D.37y x =+ 13、直线521,321--=+-=x y x y 和x y 21-=的位置关系是,直线132y x =-+可以看作是直线x y 21-=向平移个单位得到的.14.将直线y =-2x +3向下平移5个单位,得到直线.15.直线y =kx -4平行于直线y =-2x ,则直线4y kx =-的解读式为;16.电话每台月租费28元,市区内电话(三分钟以内)每次0.20元,若某台电话每次通话均不超过3分钟,则每月应缴费y (元)与市内电话通话次数x 之间的函数关系式是()A .y =28x +0.20B .y =0.20x +28xC .y =0.20x +28D .y =28-0.20x17.某人购进一批苹果到集市上零售,已知卖出的苹果x (千克)与销售的金额y 元的关系如下表:x (千克) 1 2 3 4 5 … y (元)2+0.14+0.26+0.38+0.410+0.5…(1)写出y 与x 的函数关系式:___________;(2)该商贩要想使销售的金额达到250元,至少需要卖出多少千克的苹果?18.如图2-4,某游客为爬上3千M 的山顶看日出,先用1小时爬了2千M ,休息0.5小时后,再用1小时爬上山顶,游客爬山所用时间t (小时)与山高h (千M )间的函数关系用图象表示是() 19.一次函数321+-=x y 的图象与y 轴的交点坐标是_________,与x 轴的交点坐标是_________.一般的,一次函数y =kx +b 与y 轴的交点坐标是__________,与x 轴的交点坐标是__________. 20.依据给定的条件,求一次函数的解读式.(1)已知一次函数的图象如图4-5所示,求此一次函数的解读式,并判断点(6,5)是否在此函数图象上.图4-5 (2)已知一次函数y=2x+b的图象与y轴的交点到x轴的距离是4,求其函数解读式.21.依据给定的条件,求一次函数解读式:y=ax+7经过一次函数y=4-3x和y=2x-1的交点.=+的图象与轴交点的纵坐标为5-,且当x=1时,y=2,则此函数的解读式。