1.2.4 绝对值教学设计

合集下载

1.2.4绝对值(第1课时)教学设计

1.2.4绝对值(第1课时)教学设计

1.2.4绝对值(第1课时)教学目标1.理解绝对值的概念,能正确的写出一个有理数的绝对值;2.知道一个有理数的绝对值是非负数。

教学重点正确理解绝对值的概念,会求一个已知数的绝对值。

教学难点绝对值的几何意义、代数意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法。

教学过程一、创造情境,引入新课两辆汽车从同一处O出发,分别向东、西方向行驶了3千米,到达A、B两处.(1)你能够用数轴表示出这一情景.(2)两辆汽车运动的路线相同吗?(3)两辆汽车运动的路程(两条线段的长度)一样吗?二、互动新授,新知探究合作探究:1.-2的绝对值是____,说明数轴上表示-2的点到____ 的距离是____个长度单位.2.-0.8的绝对值是____ .例1.求下列各数的绝对值:-21,12,-5/3,+49,0,-7.8. 通过例1,你有什么发现呢?1.原点右边的点表示的数(正数)的绝对值有何特点?2.原点上的点表示的数0呢?3.原点左边的点表示的数(负数)的绝对值呢?4.互为相反数的两个数的绝对值相等.归纳总结:1.几何定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作2.代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;任意一个数的绝对值为唯一非负数.用式子表示为:0000.a a a a a a ⎧⎪=⎨⎪⎩(>);(=);-(<)思考:相反数、绝对值的联系是什么?通过研究我们可以发现:一对相反数虽然分别在原点两边,但它们到x x 原点的距离是相等的.结论:互为相反数的两个数互为相反数。

例2.绝对值等于0的数是___,绝对值等于5.25的正数是_____,绝对值等于5.25的负数是______;绝对值等于2的数是____________。

变式练习:如果| a | = 4,则 a 等于__________.例3(1)设x 为一个有理数,若 则x 必定是( )A .负数B .正数C .非负数D .零(2)如果一个数的绝对值等于它的相反数,那么这个数一定是( )A .正数B .负数C .正数或零D .负数或零例4.若|a +5|+|2b −6|=0,则a=____,b=_____.分析:几个非负数的和为0,则这几个数都为0.变式练习:1.若|a|+|b|=0,则a 与b 的大小关系是( )A .a =b =0B .a 与b 互为倒数C .a 与b 异号D .a 与b 不相等2.若|a −2|+|b −3|=0,则的值为a+b=____.三、总结梳理1.绝对值的概念2.绝对值的性质与应用板书设计。

人教版七年级数学上册:1.2.4《绝对值》教学设计2

人教版七年级数学上册:1.2.4《绝对值》教学设计2

人教版七年级数学上册:1.2.4《绝对值》教学设计2一. 教材分析《绝对值》是人教版七年级数学上册第一章第二节第四个小节的内容,主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些简单的问题。

绝对值是数学中的一个重要概念,它在日常生活和工农业生产中有着广泛的应用。

二. 学情分析学生在学习《绝对值》之前,已经学习了有理数的概念,对正数、负数、零有所了解。

但是,他们对绝对值的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。

同时,学生可能对绝对值的应用场景有所疑惑,需要通过生活中的实例来帮助他们理解。

三. 教学目标1.理解绝对值的概念,掌握绝对值的性质。

2.能够运用绝对值解决一些简单的问题。

3.理解绝对值在日常生活和工农业生产中的应用。

四. 教学重难点1.绝对值的概念和性质。

2.绝对值的应用。

五. 教学方法采用讲授法、实例分析法、练习法、小组合作学习法等,结合多媒体教学手段,让学生在理解绝对值的概念和性质的基础上,能够运用绝对值解决实际问题。

六. 教学准备1.PPT课件。

2.练习题。

3.生活中的实例。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,引出绝对值的概念。

例如,一个人在地图上从原点出发,走了10公里向东,又走了10公里向西,问他现在离原点有多远?引出绝对值的概念,即离原点的距离是10公里。

2.呈现(10分钟)通过PPT课件,呈现绝对值的性质,如:–绝对值是非负数。

–互为相反数的两个数的绝对值相等。

–绝对值大的数比绝对值小的数大。

同时,给出相应的例子,让学生理解和掌握这些性质。

3.操练(10分钟)让学生独立完成一些练习题,巩固对绝对值概念和性质的理解。

例如:–计算下列各数的绝对值:-5, 3, -2, 0, 4。

–如果两个数互为相反数,它们的绝对值是否相等?4.巩固(10分钟)让学生分组合作,找出生活中的其他实例,运用绝对值的概念和性质解决问题。

例如,计算两个人之间的距离,或者计算物体的位移等。

1.2.4 绝对值教案

1.2.4 绝对值教案

1.2.4 绝对值三维目标一、知识与技能(1)借助数轴初步理解绝对值的概念,能求一个数的绝对值.(2)通过应用绝对值解决实际问题,体会绝对值的意义和作用.二、过程与方法通过观察实例及绝对值的几何意义,探索一个数的绝对值与这个数之间的关系,培养学生语言描述能力.三、情感态度与价值观培养学生积极参与探索活动,体会数形结合的方法.教学重、难点与关键1.重点:正确理解绝对值的概念,能求一个数的绝对值.2.难点:正确理解绝对值的几何意义和代数意义.3.关键:借助数轴理解绝对值的几何意义,•根据绝对值定义和相反数的概念,理解绝对值的代数意义.四、教学过程一、复习提问,新课引入1.什么叫互为相反数?2.在数轴上表示互为相反数的两个点和原点的位置关系怎样?五、新授在一些量的计算中,有时并不注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向.1.观察课本第11页图1.2-5,回答:(1)两辆汽车行驶的路线相同吗?(2)它们行驶路程的远近相同吗?• •这两辆车行驶的路线不同(方向相反),•但行驶的路程的远近相同,•都是10km.课本图1.2-5中表示-10的点B和表示10的点A离开原点的距离都是10,•我们就把这个距离10叫做数-10、10的绝对值.一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作│a │. 这里的数a 可以是正数、负数和0.例如上述的10和-10的绝对值记作│10│=10,│-10│=10,•同样在数轴上表示+6和-6的两个点,离开原点的距离都是6,即6和-6的绝对值都是6,记作│6│=6,•│-6│=6.数轴上表示数0的点与原点的距离是0,所以│0│=0.2.试一试:(1)│+2│=______,││=_____,│+10.6│=________. (2)│0│=_______.(3)│-12│=_______,│-20.8│=_______,│-32│=_______. 3.你能从上面解答中发现什么规律吗?学生若有困难,教师可提示:所得的结果与绝对值符号内的数有什么关系? 从而得出绝对值的代数意义:(1)一个正数的绝对值是它本身;(2)零的绝对值是零;(3)一个负数的绝对值是它的相反数.我们用a 表示任意一个有理数,上述式子可以表示为:①当a 是正数时,│a │=_______;②当a 是负数时,│a │=_______;③当a=0时,│a │=_______.以上先让学生填空,然后让学生给a•取一些具体数值检验所填写的结果是否正确.教师问:(1)任何一个有理数都有绝对值吗?一个数的绝对值有几个?(2)有没有一个数的绝对值等于-2?任何一个数的绝对值一定是怎样的数?(3)绝对值等于2的数有几个?它们是什么? 1517归纳:①任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或0,•不可能是负数,即对任意有理数a,总有│a│≥0.②两个互为相反数的绝对值相等,即│a│=│-a│.③因为0的绝对值是0,而0的相反数是它本身0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零.六、巩固练习1.课本第12页练习1、2题.第1题强调书写格式,防止出现“-8=8”的错误.第2题(1)错,如3与-2的符号相反,但它们不是互为相反数,•应改为“只有大小相等符号相反的数是互为相反数”.(2)正确.(3)错,因为这个点也可能越靠左,应改为:“一个数的绝对值越大,表示它的点离原点越远.”(4)正确.七、课堂小结理解绝对值的几何意义和代数意义.从几何意义可知,一个数的绝对值是表示该数的点与原点的距离,因为距离总是正数和零,所以有理数的绝对值不可能是负数,从绝对值的代数定义也可进一步理解这一点.引入绝对值概念后,有理数可以理解为由性质符号和绝对值两部分组成的,如-5就是由“-”号和它的绝对值5两部分组成.八、作业布置1.课本第15页习题1.2第4、7、10题.九、板书设计:1.2.4 绝对值①任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或0,•不可能是负数,即对任意有理数a,总有│a│≥0.②两个互为相反数的绝对值相等,即│a│=│-a│.③因为0的绝对值是0,而0的相反数是它本身0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零.2、随堂练习。

人教版七年级数学上册1.2.4《绝对值》教学设计

人教版七年级数学上册1.2.4《绝对值》教学设计

人教版七年级数学上册1.2.4《绝对值》教学设计一. 教材分析绝对值是初中数学中的一个重要概念,它在解决实际问题和进一步学习数学中起着关键的作用。

人教版七年级数学上册1.2.4节主要介绍绝对值的概念、性质及其应用。

本节内容通过具体的例子让学生理解绝对值的含义,并通过练习让学生掌握绝对值的性质和运用。

二. 学情分析七年级的学生已经具备了一定的抽象思维能力,但对于绝对值这一概念可能还比较陌生。

因此,在教学过程中,需要通过具体的例子和实际应用,让学生逐步理解绝对值的含义,并能够运用绝对值解决实际问题。

三. 教学目标1.了解绝对值的概念,掌握绝对值的性质。

2.能够运用绝对值解决实际问题。

3.培养学生的抽象思维能力和解决问题的能力。

四. 教学重难点1.绝对值的概念和性质。

2.运用绝对值解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过具体的例子和实际应用,引导学生主动探索、讨论和总结绝对值的含义和性质。

同时,通过小组合作,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.准备相关的例子和实际应用问题。

2.准备课件和教学素材。

七. 教学过程1.导入(5分钟)通过一个实际问题引出绝对值的概念,例如:“小明的家距离学校3公里,请问小明从学校走到家的距离是多少?”让学生思考并回答,从而引出绝对值的概念。

2.呈现(10分钟)通过PPT展示绝对值的定义和性质,让学生直观地理解绝对值的概念。

同时,给出一些例子,让学生观察和总结绝对值的性质。

3.操练(10分钟)让学生分组讨论,每组选取一个例子,运用绝对值的性质解决问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对绝对值概念和性质的掌握程度。

同时,教师选取部分学生的作业进行点评和讲解。

5.拓展(10分钟)出示一些综合性的实际问题,让学生运用绝对值的知识解决问题。

例如:“一辆汽车从A地出发,以60公里/小时的速度向B地行驶,行驶了3小时后,汽车距离A地有多远?”让学生分组讨论并解答。

1.2.4绝对值教学设计(第一二课时)人教版七年级数学上册

1.2.4绝对值教学设计(第一二课时)人教版七年级数学上册

教学设计一、创造情境,引入新课为了锻炼身体,小明和爸爸在暑假里制定了每天跑2km的运动计划,在一条东西走向的绿道上,小明从起点O向东跑2km到达A处,小明爸爸从起点O向西跑2km到达B 处,小明和爸爸都完成运动计划了吗?思考:1.若记向东为正方向,则A处记做_______,B处记做________.这两个数相同吗?2.在数轴上,A,B两点到原点的距离相同吗?二、新知探究定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,用|a |表示.(这里的数a 可以是正数、负数和0)例如:|−5|=5,|0|=0,|5|=5.|a |的几何意义是数轴上表示数a 的点到原点的距离. 三、例题解析例1:求下列各数的绝对值:6,8,3.9,52,8,0.解析:|6|=6,|−8|=8,|3.9|=3.9,|52|=52,|8|=8,|0|=0.1.问题:一个数的绝对值的大小,和表示它的点与远点的距离有什么关系? 结论:一个数的绝对值越大,表示它的点在数轴上离原点越远.2.思考:观察以上6个等式(1)从结果看,一个数的绝对值有什么特点? (2)一个数的绝对值与原数有什么关系?(3)互为相反数的两个数,它们的绝对值有什么关系? 3.小结:(1)任何数的绝对值都大于或等于0.(即绝对值具有非负性)(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0; 即:如果a >0,那么|a |=a ;如果a <0,那么|a |=−a ; 如果a =0,那么|a |=0;(3)互为相反数的两个数的绝对值相等. 四、课堂练习1.求下列各数的绝对值:(1)125 ;(2)23;(3)3.5.2.判断下列说法是否正确:(1)符号相反的数互为相反数.(2)一个数的绝对值越大,表示它的点在数轴上越靠右.(3)一个数的绝对值越大,表示它的点在数轴上离原点越远.(4)当a≠0时,|a|总是大于0.3.(1)求绝对值等于4的数是.(2)绝对值小于2的整数是.(3)若|x3|=2,则x= .五、课堂小结备注:教学设计应至少含教学目标、教学内容、教学过程等三个部分,如有其它内容,可自行补充增加。

人教版七年级数学上册:1.2.4《绝对值》教学设计3

人教版七年级数学上册:1.2.4《绝对值》教学设计3

人教版七年级数学上册:1.2.4《绝对值》教学设计3一. 教材分析绝对值是初中数学中的一个重要概念,它在解决实际问题和进一步学习数学中有着广泛的应用。

本节课的教学内容主要包括绝对值的定义、性质及其应用。

通过本节课的学习,学生能够理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些简单的问题。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对数学概念的理解和运用已经有了一定的基础。

但是,对于绝对值这一概念,学生可能较为陌生,需要通过具体的例子和实践活动来加深理解。

三. 教学目标1.知识与技能:理解绝对值的定义,掌握绝对值的性质,能够运用绝对值解决一些简单的问题。

2.过程与方法:通过观察、思考、交流等活动,培养学生的逻辑思维能力和抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极进取的精神。

四. 教学重难点1.重点:绝对值的定义和性质。

2.难点:绝对值的性质的理解和运用。

五. 教学方法本节课采用讲授法、案例分析法、小组合作法等多种教学方法,通过教师的讲解、学生的实践和合作交流,引导学生主动探索、积极思考,从而达到对绝对值概念的理解和应用。

六. 教学准备1.教师准备:教材、教案、PPT、例题、练习题等。

2.学生准备:课本、笔记本、文具等。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入绝对值的概念,如“小明从家出发,向正北方向走了3公里,又向正南方向走了5公里,他离家有多远?”让学生思考并回答,引导学生认识到绝对值表示的是一个数与原点的距离。

2.呈现(10分钟)教师通过PPT展示绝对值的定义和性质,让学生认真听讲并做好笔记。

3.操练(10分钟)教师给出一些例题,让学生独立完成,并及时给予讲解和指导。

4.巩固(10分钟)教师学生进行小组讨论,共同解决一些关于绝对值的问题,巩固所学知识。

5.拓展(10分钟)教师引导学生思考绝对值在实际生活中的应用,如计算两地之间的距离、判断点的位置等,让学生尝试用绝对值解决问题。

1.2.4绝对值教案_257

1.2.4绝对值教案_257

1.2.4绝对值教案篇一:1.2.4 绝对值(一)教学设计第5课时绝对值(一)设计者:尹道伦审定者:何祖平教学目标1.知识与技能①能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值.②通过应用绝对值解决实际问题,体会绝对值的意义和作用.2.过程与方法经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.3.情感、态度与价值观①通过解释绝对值的几何意义,渗透数形结合的思想.②体验运用直观知识解决数学问题的成功.教学重点难点重点:给出一个数,会求它的绝对值.难点:绝对值的几何意义、代数定义的导出.教与学互动设计一、创设情境,导入新课活动请两同学到讲台前,分别向左、向右行3米.交流①他们所走的路线相同吗?②若向右为正,分别可怎样表示他们的位置?③他们所走的路程的远近是多少?二、合作交流,解读探究观察出示一组数6与-6,3.5与-3.5,1和-1,它们是一对互为________,?它们的__________不同,__________相同.【总结】例如6和-6两个数在数轴上的两点虽然分布在原点的两边,?但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值.绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│.想一想(1)-3的绝对值是什么?3(2)+2的绝对值是多少?7(3)-12的绝对值呢?(4)a的绝对值呢?答案略.交流同桌间合作交流,每位同学任说五个数,由同桌指出它们的绝对值.11思考例1 求8,-8,3,-3,,-的绝对值.(出示胶片)44由此,你想到什么规律?总结互为相反数的两个数的绝对值相同.求+2.3,-1.6,9,0,-7,+3的绝对值.(出示胶片)由此,你想到什么规律?讨论交流正数的绝对值是它本身,负数的绝对值是它的相反数,0?的绝对值是零.总结正数的绝对值是它本身.负数的绝对值是它的相反数.零的绝对值是零.讨论字母a可以代表任意的数,那么表示什么数?这时a的绝对值分别是多少?学生活动:分组讨论,教师加入讨论,学生相反补充回答.归纳若a>0,则│a│=a 若a<0,则│a│=-a 若a=0,则│a│=0 三、应用迁移,巩固提高例题填空:(1)绝对值等于4的数有个,它们是.(2)绝对值等于-3的数有个.(3)绝对值等于本身的数有个,它们是.(4)①若│a│=2,则a= .②若│-a│=3,则a= .(5)绝对值不大于2的整数是.(6)根据绝对值的意义,思考:①如果=1,那么a 0;②如果=-1,那么a 0;③如果a<0,那么-│a│= .【点评】去绝对值符号,首先要判断绝对值里的正负情况,由此发展自身的合情推理能力.四、总结反思,拓展升华本节课,我们学习认识了绝对值,要注意掌握以下两点:①一个数的绝对值是在数轴上表示这个数的点到原点的距离;②求一个数的绝对值必须先判断是正数还是负数.1.阅读与理解:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为│AB│.当AB两点中有一点在原点时,不妨设点A在原点,如图(1)所示,│AB│=│OB│=│b│=│a-b│;当A、B两点都不在原点时:① 如图(2)所示,点都在原点的右边,│AB│=│OB│-│OA│=│b│-│a│=?b-a=│a-b│;② 如图(3)所示,点都在原点的左边,│AB=│OB│-│OA│=│b│-│a│=-b-?(-a)=│a-b│;③ 如图(4)所示,点都在原点的两边,│AB│=│OA│+│OB│=│a│+│b│=?-a+b=│a-b│;(1)(2)(3)(4)综上,数轴上A、B两点之间的距离│AB│=│a-b│.2.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示-2和-5?的两点之间的距离是,数轴上表示1和-3的两点之间的距离是;(2)数轴上表示x和-1的两点之间的距离是,如果│AB│=2,那么x?为;(3)当代数式│x+1│+│x-2│取最小值时,相应的x的取值范围是.五、课堂跟踪反馈1.填空题(1)-│-3│= ,+│-0.27│= ,-│+26│= ,-(+24)= .(2)-4的绝对值是,绝对值等于4的数是.(3)若│x│=2,则x= ,若│-x│=2,则x= .若│-x│=-3,则x .(4)│3.14-?|= .(5)绝对值小于3的所有整数有.2.选择题(1)则│a│≥0,那么()A.a>0B.a<0 C.a≠0 D.a为任意数(2)若│a│=│b│,则a、b的关系是()A.a=bB.a=-b C.a+b=0或a-b=0 D.a=0且b=0 (3)下列说法不正确的是()A.如果a的绝对值比它本身大,则a一定是负数B.如果两个数相等,那么它们的绝对值也必不相等C.两个负有理数,绝对值大的离原点远D.两个负有理数,大的离原点近(4)若│x│+x=0,则x一定是()A.负数B.0 C.非正数D.非负数(5)已知│a+b│+│a-b│-2b=0,在数轴上给出关于a、b的四种位置关系,?则可能成立的有()A.1种B.2种C.3种D.4种3.若实数a、b满足│3a-1│+│b-2│=0,求a+b的值.4.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表:+15 -10 +30 -20 -40指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?篇二:1.2.4绝对值教案1.2.4 绝对值【教学目标】1.知识与技能① 初步理解绝对值的意义,掌握绝对值的概念,会求有理数的绝对值。

七年级(人教版)集体备课教学设计:1.2.4《绝对值》

七年级(人教版)集体备课教学设计:1.2.4《绝对值》

七年级(人教版)集体备课教学设计:1.2.4《绝对值》一. 教材分析《绝对值》这一节主要让学生了解绝对值的概念,理解绝对值与有理数的关系,以及掌握绝对值的性质。

教材通过生活中的实例引入绝对值的概念,然后通过例题和练习让学生掌握绝对值的性质。

二. 学情分析七年级的学生已经学习了有理数,对负数和正数有一定的了解。

但是,他们可能对抽象的概念理解起来比较困难,因此需要通过具体的实例和生活中的例子来帮助他们理解绝对值的概念。

三. 教学目标1.让学生了解绝对值的概念,理解绝对值与有理数的关系。

2.让学生掌握绝对值的性质,并能运用绝对值的性质解决实际问题。

四. 教学重难点1.绝对值的概念和绝对值与有理数的关系。

2.绝对值的性质。

五. 教学方法采用讲授法和实例教学法,通过生活中的例子和数学例题,让学生理解绝对值的概念和性质。

同时,采用小组讨论法,让学生在小组内讨论和探究绝对值的问题,培养学生的合作能力和解决问题的能力。

六. 教学准备1.PPT课件。

2.实例和练习题。

七. 教学过程1.导入(5分钟)通过一个生活中的例子,如“小明从家出发,向东走了5公里,然后又向西走了3公里,他现在离家多少公里?”让学生思考,引出绝对值的概念。

2.呈现(10分钟)讲解绝对值的概念,并用PPT展示绝对值的定义和性质。

让学生理解绝对值是与数轴上的点到原点的距离相关的概念。

3.操练(10分钟)让学生做一些关于绝对值的练习题,如判断题、选择题和填空题,巩固对绝对值概念的理解。

4.巩固(10分钟)让学生分组讨论,每组找一个生活中的例子,用绝对值的概念和性质来解决。

如“小华在数轴上表示-3和2,他需要走到哪个点才能离原点更远?”5.拓展(10分钟)让学生思考绝对值在实际生活中的应用,如导航、地图等,让学生体会数学与生活的联系。

6.小结(5分钟)总结本节课的重点内容,让学生复述绝对值的定义和性质。

7.家庭作业(5分钟)布置一些有关绝对值的练习题,让学生回家后巩固所学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.4 绝对值教学设计
1.2.4 teaching design of absolute value
1.2.4 绝对值教学设计
前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。

本教案根据数学课程标准的要求和针对教学对象是初中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。

便于学习和使用,本文下载后内容可随意修改调整及打印。

1.2.4 绝对值
教学目标1,掌握绝对值的概念,有理数大小比较法则.2,学会绝对值的计算,会比较两个或多个有理数的大小.3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.教学难点两个负数大小的比较
知识重点绝对值的概念
教学过程(师生活动)
设计理念
设置情境
引入课题星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,
①用有理数表示黄老师两次所行的路程;
②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?学生思考后,教师作如下说明:实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.学生回答后,教师说明如下:数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a| 例如,上面的问题中|20|=20,|-10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.使学生体验数学知识与生活实际的联系.因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.
合作交流
探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?、-3,5,0,+58,0.6 要求小组讨论,合作学习.教师引导学生利用绝对值的意义先求
出答案,然后观察原数与它的绝对值这两个数据的特征,并结合
相反数的意义,最后总结得出求绝对值法则(见教科
书).巩固练习:教科书练习.其中第1题按法
则直接写出答案,是求绝对值的基本训练;第2题是对相反数和
绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要
注意思考的周密性,要让学生体会出不同说法之间的区别.求一
个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安
排此例.学生能做的尽量让学生完成,教师在教学过程中只
是组织者.本着这个理念,设计这个讨论.
结合实际发现新知引导学生看教科书的图,并回答相关问题:把14个气温从低到高排列;把这14个数用数轴上的点表示出来;观察并思考:观察这些点在数轴上的位置,并思考它们与温度的
高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎
样比较两个数的大小呢?学生交流后,教师总结:14个数从左到
右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们
从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.在上面14个数中,选两个数比较,再选两个数试试,通过比较,
归纳得出有理数大小比较法则想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点
的距离(即它们的绝对值)以及这两个数的大小之间的关系.要
求学生在头脑中有清晰的图形.让学生体会到数学的规定都来源
于生活,每一种规定都有它的合理性。

数在大小比较法则第2点
学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面
结合起来来了解,所以配置想象练习,加强数与形的想象。

课堂练习例2,比较下列各数的大小(教科书例)比较大小
的过程要紧扣法则进行,注意书写格式练习:练习
小结与作业
课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?
本课作业1,必做题:教产书习题1,2,第4,5,6,102,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)1,情景的创设出于如下考虑:
①体现数学知识与生活实际的紧密联系,让学生在这些熟悉
的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更
感受到学习绝对值概念的必要性和激发学习的兴趣.
②教材中数的绝对值概念是根据几何意义来定义的(其本质
是将数转化为形来解释,是难点),然后通过练习归纳出求有理
数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味
道很浓,且太抽象,学生不易接受.2,一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所
以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识
的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

3,有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

附板书:
1.2.4 绝对值
-------- Designed By JinTai College ---------。

相关文档
最新文档