高二数学几何概型
几何概型

G
E G
EG
E
A
H
B
A
H
B
A
H
B
3.某人午休醒来 发觉表停了, 某人午休醒来, 例3.某人午休醒来,发觉表停了,他打开收音机想听电 台整点报时,求他等待的时间不多于于10分钟的概率. 10分钟的概率 台整点报时,求他等待的时间不多于于10分钟的概率.
分析: 分析:在哪个时间段打开收音机的概率只与该时间段的长度 有关,而与该时间段的位置无关,这符合几何概型的条件, 有关,而与该时间段的位置无关,这符合几何概型的条件, 由于收音机每一小时报一次, 由于收音机每一小时报一次,可以认为此人打 开收音机的时间正处于两次报时之间, 开收音机的时间正处于两次报时之间,即处于 [0,60]的任意一点 的任意一点, [0,60]的任意一点,于是概率等于等待时间 段的长度与两个整点之间长度的比. 段的长度与两个整点之间长度的比.
等待的时间小于10分钟”为事件A 10分钟 解:记“等待的时间小于10分钟”为事件A, 打开收音机的时刻位于[50 60]时间段内 [50, 打开收音机的时刻位于[50,60]时间段内 则事件A发生. 则事件A发生. 由几何概型的求概率公式得 10 1 P( A) = = 60 6 1 等待报时的时间不多于10分钟” 10分钟 答:等待报时的时间不多于10分钟”的概率为 .
6
变式训练2 某路公共汽车5 变式训练2:某路公共汽车5分钟一班准时到 达某车站,求某一人在该车站等车时间少于3 达某车站,求某一人在该车站等车时间少于3 分钟的概率(假定车到来后每人都能上) 分钟的概率(假定车到来后每人都能上).
a a+2 a+5
设上一班车离站时刻为a, 解:设上一班车离站时刻为a, 则某人到站的一切可能时刻为Ω=(a,a+5), 则某人到站的一切可能时刻为Ω=(a,a+5), 等车时间少于3分钟”为事件A 记“等车时间少于3分钟”为事件A, 则他到站的时刻只能为µ=(a+2,a+5)中的任一时刻 中的任一时刻, 则他到站的时刻只能为µ=(a+2,a+5)中的任一时刻,
高二数学概率知识点总结

高二数学概率知识点总结
一、随机事件的概率
1. 随机事件:在一定条件下可能发生也可能不发生的事件。
2. 必然事件:在一定条件下必然发生的事件。
3. 不可能事件:在一定条件下不可能发生的事件。
4. 概率的定义:对于一个随机事件A,它发生的概率P(A)满足0 ≤ P(A) ≤ 1。
如果P(A)=1,则事件A 为必然事件;如果P(A)=0,则事件A 为不可能事件。
二、古典概型
1. 古典概型的特征:
-试验中所有可能出现的基本事件只有有限个。
-每个基本事件出现的可能性相等。
2. 古典概型的概率计算公式:P(A)=事件A 包含的基本事件数÷总的基本事件数。
三、几何概型
1. 几何概型的特征:
-试验中所有可能出现的结果(基本事件)有无限多个。
-每个基本事件出现的可能性相等。
2. 几何概型的概率计算公式:P(A)=构成事件A 的区域长度(面积或体积)
÷试验的全部结果所构成的区域长度(面积或体积)。
四、互斥事件和对立事件
1. 互斥事件:如果事件A 和事件B 不能同时发生,那么称事件A 和事件B 为互斥事件。
-互斥事件的概率加法公式:P(A∪B)=P(A)+P(B)(A、B 互斥)。
2. 对立事件:如果事件A 和事件B 必有一个发生,且仅有一个发生,那么称事件A 和事件 B 为对立事件。
-对立事件的概率计算公式:P(A)=1 - P(A 的对立事件)。
高二数学几何概型试题

高二数学几何概型试题1.如图,EFGH是以O为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用A 表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形HOE(阴影部分)内”,则P (B|A)=()A. B. C. D.【答案】A【解析】由条件概率及几何概率可知:P(B|A),故选A.【考点】条件概率及几何概率.2.从如图所示的长方形区域内任取一个点M(x,y),则点M取自阴影部分的概率为________.【答案】【解析】阴影部分面积为,∴所求概率为.【考点】定积分计算曲边图形的面积,几何概型.3.如图所示的“赵爽弦图”中,四个相同的直角三角形与中间的小正方形拼成的一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是______________.【答案】【解析】观察这个图可知:大正方形的边长为2,总面积为4,而阴影区域的边长为,面积为,故飞镖落在阴影区域的概率.【考点】几何概率.4.已知,直线和曲线有两个不同的交点,他们围成的平面区域为,向区域上随机投以点,点落在内的概率为,若,则实数的取值范围是:【答案】【解析】将直线变形为,可知此直线过定点,为直线的斜率.曲线表示圆心在原点半径为2的上半个圆。
当直线与轴重合时平面区域和区域重合,此时;当直线位置时,区域的面积为,区域面积为,此时。
所以。
【考点】1不等式表示平面区域;2直线过定点问题及直线的斜率;3几何概型概率。
5.如图,在棱长为2的正方体内(含正方体表面)任取一点,则的概率 .【答案】【解析】以为原点为轴建立空间直角坐标系,则,设,则,则,从而.【考点】1.空间向量的数量积;2.几何概型.6.四边形ABCD为长方形,AB=2,BC=1,O为AB的中点。
在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为()A.B.C.D.【答案】C【解析】根据几何概型得,取到的点到O的距离大于2的概率:,选C.【考点】几何概型7.有一个底面半径为1、高为2的圆柱,点为这个圆柱底面圆的圆心,在这个圆柱内随机取一点,则点到点的距离大于1的概率为.【答案】【解析】空间内到点的距离等于1的点,是在以点为球心,1为半径的球面上,那么距离比1大的点在球的外部,因为基本事件总数是无限的,可以考虑几何概型,即圆柱内半球外部的体积与圆柱的体积比【考点】1、几何体的体积;2、几何概型.8.如图所示的矩形内随机撒芝麻,若落入阴影内的芝麻是628粒,则落入矩形内芝麻的粒数约是【答案】800【解析】由已知中矩形的长和宽可知,长是宽的2倍,根据随机模拟实验的概念,我们易得阴影部分的面积与矩形面积的比例约为芝麻落在阴影区域中的频率,由此我们构造关于S的方程,阴影解方程即可求矩形区域的粒数,故答案为800.【考点】几何概型点评:本题考查的知识点是几何概型与随机模拟实验,利用阴影面积与矩形面积的比例约为黄豆的方程,是解答本题的关键.落在阴影区域中的频率,构造关于S阴影9.取一根长度为米的绳子,拉直后在任意位置剪断,则剪得两段的长度都不小于1米,且以剪得的两段绳为两边的矩形的面积都不大于平方米的概率为()A.B.C.D.【答案】C【解析】设剪断后的两段绳长分别为x,y,那么可知的概率即为矩形区域的面积为25,那么满足题意的区域为,那么可知由几何概型概率可知为10:25=2:5,故答案为C.【考点】几何概型点评:主要是考查了几何概型的运用,分析区域长度和面积来求解,属于基础题。
山东省高二数学内容目录

山东省高二数学内容目录高二数学目录主要包括了高二数学必修三以及高二数学选修2-1、选修2-2、选修2-3的课程目录。
涵盖了高二整个数学的课程,供高二的学生参考使用。
必修三目录第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例阅读与思考割圆术小结复习参考题第二章统计2.1随机抽样2.2用样本估计总体2.3变量间的相关关系第三章概率3.1随机事件的概率3.2古典概型3.3几何概型选修2-1目录第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2目录第一章导数及其应用1.1变化率与导数و1.2导数的计算探究与发现牛顿法--用导数方法求方程的近似解1.3导数在研究函数中的应用信息技术应用图形技术与函数性质1.4生活中的优化问题举例1.5定积分的概念信息技术应用曲边梯形的面积1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理阅读与思考平面与空间中的余弦定理。
2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引人3.1数系的扩充和复数的概念3.2复数代数形式的四则运算阅读与思考代数基本定理小结选修2-3目录第一章计数原理1.1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2排列与组合探究与发现组合数的两个性质1.3二项式定理探究与发现“杨辉三角”中的一些秘密小结。
第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用阅读与思考这样的买彩票方式可行吗探究与发现服从二项分布的随机变量取何值时概率最大2.3离散型随机变量的均值与方差2.4正态分布信息技术应用p.e对正态分布的影响第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用。
高中数学 第三章第3节几何概型 理 知识精讲人教新课标A版必修3

高二数学 第三章第3节几何概型 理 知识精讲人教新课标A 版必修3一、学习目标:(1)了解几何概型的概念及基本特点 (2)熟练掌握几何概型中概率的计算公式 (3)会进行简单的几何概率计算(4)能运用模拟的方法估计概率,掌握模拟估计面积的思想二、重点、难点:重点:掌握几何概型中概率的计算公式;并能进行简单的几何概率计算。
难点:将实际问题转化为几何概型,并能正确应用几何概型的概率计算公式解决问题。
三、考点分析:本部分内容是新增的内容,对几何概型的要求仅限于体会几何概型的意义,所以在练习时,侧重于一些简单的试题即可。
(1)区别古典概型与几何概型(2)理解随机模拟求几何概型的概率1、几何概型的概念: 对于一个随机试验,我们将每个基本事件理解为从某个特定的可以几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则可以理解为恰好取到上述区域内的某个指定区域中的点。
这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型。
2、几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等。
3、几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率()d P A D的测度的测度。
说明:(1)D 的测度不为0;(2)其中“测度”的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的“测度”分别是长度,面积和体积。
(3)区域为“开区域”;(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关。
4、模拟计算几何概型的步骤: (1)构造图形(作图);(2)模拟投点,计算落在阴影部分的点的频率m n; (3)利用()m d P A n D ≈=的测度的测度算出相应的量。
高二文科数学下学期知识点

高二文科数学下学期知识点高二文科数学下学期的知识点主要包括以下几个方面:概率与统计、三角函数与向量、导数与微积分、平面向量与曲线及椭圆、双曲线与抛物线、数列、排列与组合。
下面将逐一介绍这些知识点。
一、概率与统计概率与统计是数学中的一个重要分支,它主要研究随机事件的发生规律及其数值特征。
在高二文科数学下学期里,我们将学习以下几个内容:1. 随机事件概率的计算方法:包括频率定义、古典概型、几何概型等。
2. 条件概率与独立性:介绍条件概率的概念和计算方法,同时学习独立事件的性质与计算。
3. 随机变量与概率分布:引入随机变量的概念,学习离散型随机变量和连续型随机变量的概率分布。
4. 数理统计:介绍样本及其抽样方法,学习样本均值、样本方差等统计量的计算以及统计推断的概念。
二、三角函数与向量三角函数与向量是高中数学的重要内容之一,在高二下学期的文科数学中将重点学习以下几个知识点:1. 三角函数的性质与图像:学习正弦函数、余弦函数和正切函数的定义、性质及其图像特征。
2. 三角函数的基本关系式:学习正弦函数、余弦函数和正切函数之间的基本关系式,如诱导公式、和差化积等。
3. 平面向量的基本概念:引入平面向量的概念和表示方法,学习向量的加法、减法、数量积和向量积等运算。
4. 向量的数量积与几何应用:学习向量的数量积的定义、性质及其在几何问题中的应用,如向量的夹角、向量垂直平分等。
三、导数与微积分导数与微积分是高中数学中一门重要的数学工具,它们广泛应用于其他学科中。
在高二下学期的文科数学中,我们将学习以下内容:1. 函数与极限:学习函数的概念、函数的极限概念及其计算方法,了解函数的连续性。
2. 导数与导数的计算:介绍导数的概念和计算方法,学习常见函数的导数,如幂函数、指数函数、对数函数等。
3. 导数的应用:学习导数在函数图像的绘制、函数的最值问题、函数的单调性及极值等问题中的应用。
四、平面向量与曲线在高二下学期的文科数学中,我们将进一步学习关于平面向量与曲线的知识:1. 平面向量的叉积与混合积:学习向量的叉积和混合积的定义、性质及其在几何问题中的应用。
苏教版高二数学必修三知识点清单

苏教版高二数学必修三知识点清单不管他人是否告知我们,我们都不能舍弃任何知识,不只是学习他人告知自己的知识,还要在学习中增加自己的想法,在学习中不断创新。
以下是作者整理的有关高考考生必看的知识点的梳理,期望对您有所帮助,望各位考生能够爱好。
苏教版高二数学必修三知识点11.几何概型的定义:如果每个事件产生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。
2.几何概型的概率公式:P(A)=构成事件A的区域长度(面积或体积);实验的全部结果所构成的区域长度(面积或体积)3.几何概型的特点:1)实验中所有可能显现的结果(基本事件)有无穷多个;2)每个基本事件显现的可能性相等.4.几何概型与古典概型的比较:一方面,古典概型具有有限性,即实验结果是可数的;而几何概型则是在实验中显现无穷多个结果,且与事件的区域长度(或面积、体积等)有关,即实验结果具有无穷性,是不可数的。
这是二者的不同之处;另一方面,古典概型与几何概型的实验结果都具有等可能性,这是二者的共性。
通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无穷性和等可能性两个特点,无穷性是指在一次实验中,基本事件的个数可以是无穷的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件产生的可能性是均等的,这是解题的基本条件。
因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件A的概率可以用“事件A包含的基本事件所占的图形的长度、面积(体积)和角度等”与“实验的基本事件所占总长度、面积(体积)和角度等”之比来表示。
下面就几何概型常见类型题作一归纳梳理。
苏教版高二数学必修三知识点2一、随机事件主要掌控好(三四五)(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
2020年新人教版高二数学必修第一章重点解析整理

2020年新人教版高二数学必修3第一章重点解析整理【篇一:几何概型】【考点分析】在段考中,多以选择题和填空题的形式考查几何概型的计算公式等知识点,也会以解答题的形式考查。
在高考中有时会以选择题和填空题的形式考查几何概型的计算公式,有时也不考,一般属于中档题。
【知识点误区】求几何概型时,注意首先寻找到一些重要的临界位置,再解答。
一般与线性规划知识有联系。
【同步练习题】1.已知函数f(x)=log2x,若在[1,8]上任取一个实数x0,则不等式1≤f(x0)≤2成立的概率是.解析:区间[1,8]的长度为7,满足不等式1≤f(x0)≤2即不等式1≤log2x0≤2,解答2≤x0≤4,对应区间[2,4]长度为2,由几何概型公式可得使不等式1≤f(x0)≤2成立的概率是27.点评:本题考查了几何概型问题,其与线段上的区间长度及函数被不等式的解法问题相交汇,使此类问题具有一定的灵活性,关键是明确集合测度,本题利用区间长度的比求几何概型的概率.2.在区间[-3,5]上随机取一个数a,则使函数f(x)=x2+2ax+4无零点的概率是.解析:由已知区间[-3,5]长度为8,使函数f(x)=x2+2ax+4无零点即判别式Δ=4a2-16<0,解得-2点评:本题属于几何概型,只要求出区间长度以及满足条件的区间长度,由几何概型公式解答.【篇二:古典概型】古典概型的基本概念1.基本事件:在一次试验中可能出现的每一个基本结果称为基本事件;2.等可能基本事件:若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件;3.古典概型:满足以下两个条件的随机试验的概率模型称为古典概型①所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等;4.古典概型的概率:如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是1,如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为nP(A)?m.n知识点一:古典概型的基本概念例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?思路分析:题意分析:本试题考查一次试验中用列举法列出所有基本事件的结果,而画树状图是列举法的基本方法.解题思路:为了了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来.或者利用树状图将它们之间的关系列出来.解答过程:解法一:所求的基本事件共有6个:A?{a,b},B?{a,c},C?{a,d}D?{b,c},E?{b,d},F?{c,d}解法二:树状图解题后的思考:用树状图求解一次试验中的基本事件数比较直观、形象,可做到不重不漏.掌握列举法,学会用数形结合、分类讨论的思想解决概率的计算问题.例2:(1)向一个圆面内随机地投射一个点,如该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?(2)如图,某同学随机地向一靶心射击,这一试验的结果只有有限个:命中10环、命中9环??命中5环和不中环.你认为这是古典概型吗?为什么?思路分析:题意分析:本题考查古典概型的概念.应明确什么是古典概型及其应具备什么样的条件.解题思路:结合古典概型的两个基本特征可进行判定解决.解答过程:答:(1)不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.(2)不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环??命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.解题后的思考:判定是不是古典概型,主要看两个方面,一是实验结果是不是有限的;另一个就是每个事件是不是等可能的.例3:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择正确的答案.假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?思路分析:题意分析:本题考查古典概型概率的求解运算.解题思路:解本题的关键,即讨论这个问题什么情况下可以看成古典概型.如果考生掌握了全部或部分考查内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才可将此问题看作古典概型.解答过程:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考生随机地选择一个答案是选择A,B,C,D的可能性是相等的.从而由古典概型的概率计算公式得:P(答对\答对所包含的基本事件的个数1==0.25基本事件的总数4解题后的思考:运用古典概型的概率公式求概率时,一定要先判定该试题是不是古典概型,然后明确试验的总的基本事件数,和事件A发生的基本事件数,再借助于概率公式运算.小结:本知识点的例题主要考查对古典概型及其概率概念的基本理解.把握古典概型的两个特征是解决概率问题的第一个关键点;理解一次试验中的所有基本事件数,和事件A发生的基本事件数,是解决概率问题的第二个关键点.知识点二:古典概型的运用例4:同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?(4)为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?思路分析:题意分析:本题考查了古典概型的基本运算问题.解题思路:先分析“同时掷两个骰子的所有事件数”,然后分析事件A:向上的点数之和为5的基本事件数,最后结合概率公式运算.同时可以运用举一反三的思想自行设问、解答.解答过程:解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可与2号骰子的任意一个结果配对,我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示掷1号骰子的结果,第二个数表示掷2号骰子的结果.(可由列表法得到)1号骰子2号骰子1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)123456由表中可知同时掷两个骰子的结果共有36种.(2)在上面的结果中,向上的点数之和为5的结果有4种,分别为:(1,4),(2,3),(3,2),(4,1)(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得P(A)=A所包含的基本事件的个数41==基本事件的总数369(4)如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别.这时,所有可能的结果将是:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),则所求的概率为P(A)=A所包含的基本事件的个数2=基本事件的总数21这就需要我们考察两种解法是否满足古典概型的要求了.可以通过展示两个不同的骰子所抛掷出来的点,感受第二种方法构造的基本事件不是等可能事件.解题后的思考:考查同学们运用古典概型的概率计算公式时应注意验证所构造的基本事件是否满足古典概型的第二个条件.对于同时抛掷的问题,我们要将骰子编号,因为这样就能反映出所有的情况,不至于把(1,2)和(2,1)看作相同的情况,保证基本事件的等可能性.我们也可将此试验通过先后抛掷来解决,这样就有顺序了,则基本事件的出现也是等可能的.例5:从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.思路分析:题意分析:本题考查的是不放回抽样的古典概型概率的运用解题思路:首先注意到该题中取出的过程是有顺序的.同时明白一次试验指的是“不放回的,连续的取两次”.先列举出试验中的所有基本事件数,然后求事件A的基本事件数,利用概率公式求解.解答过程:解法1:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.用A表示“取出的两件中,恰好有一件次品”这一事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]事件A由4个基本事件组成,因而P(A)=42=63解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y)记录结果,则x有3种可能,y有2种可能,但(x,y),(y,x)是相同的,所以试验的所有结果有3×2÷2=3种,按同样的方法,事件B包含的基本事件个数为2×1÷1=2,因此P(B)=23解题后的思考:关于不放回抽样,计算基本事件的个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但无论选择哪一种方式,观察的角度必须一致,否则会导致错误.例6:从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后放回,连续取两次,求取出的两件产品中恰有一件次品的概率.思路分析:题意分析:本题考查放回抽样的概率问题.解题思路:首先注意到该题中取出的过程是有顺序的.同时明白一次试验指的是“有放回的,连续的取两次”.解答过程:每次取出一个后放回,连续取两次,其一切可能的结果组成的基本事件有9个,即(a1,a1),(a1,a2)和(a1,b1)(a2,a1),(a2,b1)和(a2,a2)(b1,a1),(b1,a2)和(b1,b1)其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.用A表示“取出的两件中,恰好有一件次品”这一事件,则A=[(b1,a1),(b1,a2),(a2,b1),(a1,b1)]事件A由4个基本事件组成,因此P(A)=4.9解题后的思考:对于有放回抽样的概率问题我们要理解每次取的时候,总数是不变的,且同一个体可被重复抽取,同时,在求基本事件数时,要做到不重不漏.小结:(1)古典概型概率的计算公式是非常重要的一个公式,要深刻体会古典概型的概念及其概率公式的运用,为我们学好概率奠定基础.(2)体会求解不放回和有放回概率的题型.知识点三:随机数产生的方法及随机模拟试验的步骤例7:某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?思路分析:题意分析:本题考查的是近似计算非古典概型的概率.解题思路:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能用古典概型的概率公式计算,我们用计算机或计算器做模拟试验可以模拟投篮命中的概率为40%.解答过程:我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以生产0到9之间的取整数值的随机数.我们用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,这样可以体现投中的概率是40%.因为是投篮三次,所以每三个随机数作为一组.例如:产生20组随机数:812,932,569,683,271,989,730,537,925,488907,113,966,191,431,257,393,027,556,458这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表示恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为解题后的思考:(1)利用计算机或计算器做随机模拟试验,可以解决非古典概型的概率的求解问题.(2)对于上述试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间.(3)随机函数(RANDBETWEEN)(a,b)产生从整数a到整数b的取整数值的随机数.小结:能够简单的体会模拟试验求解非古典概型概率的方法和步骤.高考对这部分内容不作更多的要求,了解即可.5=25%.20【篇三:随机事件】一、确定事件必然发生的事件:当A是必然发生的事件时,P(A)=1不可能发生的事件:当A是不可能发生的事件时,P(A)=0二、随机事件:当A是可能发生的事件时,发生的频率mn 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。