程控通用机械手的结构设计

合集下载

械手结构的设计和分析

械手结构的设计和分析

机械手腕部的结构分析
机器手手腕的自由度数,应根据作业需要来设计。机器手手腕自由度数目愈多,各关节的运动角度愈大,则机器手腕部的灵活性愈高,机器手对对作业的适应能力也愈强。
机器手手腕要与末端执行器相联,因此,要有标准的联接法兰,结构上要便于装卸末端执行器。
机器手的手腕机构要有足够的强度和刚度,以保证力与运动的传递。
为了减轻机器手运动部分的惯量,提高机器手的控制精度,一般腰部回转运动部分的壳体是由比重较小的铝合金材料制成,而不运动的基座是用铸铁或铸钢材料制成。
腰部结构要便于安装、调整。
机械手腰座结构的设计要求分析
机械手腰座结构的具体采用方案
腰座回转的驱动形式要么是电机通过减速机构来实现,要么是通过摆动液压缸或液压马达来实现,目前的趋势是用前者。因为电动方式控制的精度能够很高,而且结构紧凑,不用设计另外的液压系统及其辅助元件。考虑到腰座是机器手的第一个回转关节,对机械手的最终精度影响大,故采用电机驱动来实现腰部的回转运动。一般电机都不能直接驱动,考虑到转速以及扭矩的具体要求,采用大传动比的齿轮传动系统进行减速和扭矩的放大。
直角坐标机器手结构
圆柱坐标机器手的空间运动是用一个回转运动及两个直线运动来实现的,这种机器手构造比较简单,精度还可以,常用于搬运作业。其工作空间是一个圆柱状的空间。
圆柱坐标机器手结构
球坐标机器手的空间运动是由两个回转运动和一个直线运动来实现的,这种机器手结构简单、成本较低,但精度不很高。主要应用于搬运作业。其工作空间是一个类球形的空间。
03
机械手腰座结构的分析
腰部的回转运动要有相应的驱动装置,它包括驱动器。驱动装置一般都带有速度与位置传感器,以及制动器。
腰座要有足够大的安装基面,以保证机器手在工作时整体安装的稳定性。

加工中心机械手结构及控制部分设计概述

加工中心机械手结构及控制部分设计概述

加工中心机械手结构及控制部分设计概述加工中心机械手是当前数控加工设备中非常重要的一种,它可以对工件进行多维度、多角度、高效、精确的加工。

本文将从机械手结构和控制部分两个方面进行设计概述。

一、机械手结构设计1. 机械手基座设计机械手基座承载整个机械手,并起到机械手安装、固定、调整和支撑的作用。

一般由铸铁或焊接结构制成,具有较高的刚性和稳定性,以确保机械手高速、高精度、高刚性的加工。

2. 机械手手臂设计机械手手臂是机械手的关键部分,它决定了机械手可操作的空间范围和精度。

手臂一般由多个铰链机构组成,以便手臂在各个方向可以做到规划的运动轨迹。

3. 机械手末端设计机械手末端是机械手与加工工件直接接触的部分,它的设计需要考虑机械手的安全和加工工件的形状、材质,以及加工的目的。

机械手末端一般配备工具夹持装置,以便能够安装各种形状和规格的工具。

二、控制部分设计机械手的控制部分是关键的电子设备,它的设计不仅需要考虑机械手的动作和执行,同时也需要考虑效率和安全性,控制器的设计一般包括如下几个方面:1. 控制算法设计控制算法是机械手控制部分最为重要的部分,它直接决定了机械手的精准性、稳定性和响应时间。

控制算法可以根据具体的加工要求进行调整,以达到最优的控制效果。

2. 系统硬件设计控制部分的硬件设计需要考虑控制器具有较强的计算和处理能力,同时具有高效、稳定、可靠、开放式的控制接口,方便其它功能模块的整合,并且具有适应各种机械手动作要求的伺服控制技术。

3. 控制软件设计控制软件是机械手控制部分的重要组成部分,其在整个控制体系中具有非常重要的作用,控制软件需要具有丰富的控制功能、复杂的控制逻辑、强大的数据处理和处理能力,并且方便用户进行界面操作和工艺参数设定与修改。

总之,机械手结构和控制部分的设计应该全面考虑机械手的工作环境、工作压力、工作速度、工作精度等一系列因素,并且需要充分考虑机械手的寿命和可靠性等问题,从而为机械手的高效、精确、安全地工作提供最坚实的保障。

毕业设计(论文)-通用上下料机械手结构设计(全套图纸)

毕业设计(论文)-通用上下料机械手结构设计(全套图纸)

目录1 绪论 (1)1.1机械手概述 (1)1.2机械手的组成和分类 (2)1.2.1 机械手的组成 (2)1.2.2 机械手的分类 (4)1.3国内外发展状况 (6)1.4课题的提出及主要任务 (8)1.4.1 课题的提出 (8)1.4.2 课题的主要任务 (9)2 机械手的设计方案 (10)2.1机械手的座标型式与自由度 (10)2.2机械手的手部结构方案设计 (10)2.3机械手的手腕结构方案设计 (10)2.4机械手的手臂结构方案设计 (10)2.5机械手的驱动方案设计 (11)2.6机械手的控制方案设计 (11)2.7机械手的主要参数 (11)2.8机械手的技术参数列表 (11)3 手部结构设计 (14)3.1夹持式手部结构 (14)3.1.1 手指的形状和分类 (14)3.1.2 设计时考虑的几个问题 (14)3.1.3 手部夹紧气缸的设计 (15)3.2气流负压式吸盘 (18)4 手腕结构设计 (21)4.1手腕的自由度 (21)4.2手腕的驱动力矩的计算 (21)4.2.1 手腕转动时所需的驱动力矩 (21)5 手臂结构设计 (25)5.1手臂伸缩与手腕回转部分 (25)5.1.1 结构设计 (25)5.1.2 导向装置 (26)5.1.3 手臂伸缩驱动力的计 (26)5.2手臂升降和回转部分 (27)5.2.1 结构设计 (27)5.3手臂伸缩气缸的设计 (28)5.4手臂伸缩、升降用液压缓冲器 (31)5.5手臂回转用液压缓冲器 (32)第6章控制系统设计 (33)6.1控制系统硬件设计 (33)6.2 PLC梯形图中的编程元件 (33)6.3 PLC的I/O分配 (34)6.4 机械手控制系统的外部接线图 (35)6.5控制系统软件设计 (35)6.6公用程序 (36)6.7 自动操作程序 (37)5.8手动单步操作程序 (38)5.9 回原位程序 (38)6.10本章小结 (51)7 结论 (52)参考文献 (53)致谢 (55)全套图纸加1538937061 绪论1.1 机械手概述工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。

机械手结构设计

机械手结构设计

济源职业技术学院毕业设计题目机械手结构设计系别机电工程系专业机电一体化班级机电0912班姓名潘岳学号 09011244 指导教师赵军日期 2011年9月济源职业技术学院毕业设计设计任务书设计题目:机械手结构设计设计要求:1.总装配图以及部分结构图2.结构设计论文(20页以上)设计进度要求:第一周:选择毕业设计课题第二周第三周:查阅相关资料,了解机械手结构原理及其相关数据第四周:书写设计论文第五周:检查各项数据及论文第六周第七周:画装配图指导教师(签名):济源职业技术学院毕业设计摘要本次设计的液压传动机械手根据规定的动作顺序,综合运用所学的基本理论、基本知识和相关的机械设计专业知识,完成对机械手的设计,机械手的机械结构采用油缸、螺杆、导向筒等机械器件组成,采用液压驱动。

主要结构为:手部结构、腕部结构、臂部结构。

本设计只是机械手的结构部分,拟开发的上料机械手可在空间抓放物体,动作灵活多样,可代替人工在高温和危险的作业区进行作业,可抓取重量较大的工件。

关键词:机械手,臂部结构,腕部结构,手部结构济源职业技术学院毕业设计目录1机械手参数确定--------------------------------------------------------------------------------------- (1)1.1 臂力的确定--------------------------------------------------------------------------------------- (1)1.2工作范围的确定---------------------------------------------------------------------------------- (1)1.3 确定运动速度-------------------------------------------------------- (1)1.4 手臂的配置形式------------------------------------------------------ (2)1.5 位置检测装置的选择-------------------------------------------------- (2)1.6 驱动与控制方式的选择------------------------------------------------ (3)2 手部结构------------------------------------------------------------------------------------------(4)2.1概述-------------------------------------------------------------------------------------------------------(4)2.2 设计时应考虑的几个问题----------------------------------------------------------------------------(4)2.3 驱动力的计算-----------------------------------------------------------------------------------------(5)2.4 两支点回转式钳爪的定位误差的分析------------------------------------------------------------(8)3 腕部的结构---------------------------------------------------------------------------------------(10)3.1 概述------------------------------------------------------------------------------------------------------(10)3.2 腕部的结构形式--------------------------------------------------------------------------------------(10)3.3手腕驱动力矩的计算-----------------------------------------------------(11)4 臂部的结构-------------------------------------------------------------------------------------(14)4.1 概述----------------------------------------------------------------------------------------------------(14)4.2手臂直线运动机构-----------------------------------------------------------------------------------(14)4.2.1手臂伸缩运动------------------------------------------------------------------------------------(15)4.2.2 导向装置---------------------------------------------------------------------------------------(15)4.2.3 手臂的升降运动-------------------------------------------------------------------------------(16)4.3 手臂回转运动----------------------------------------------------------------------------------------(17)4.4 手臂的横向移动-------------------------------------------------------------------------------------(17)4.5 臂部运动驱动力计算------------------------------------------------------------------------------(18)4.5.1 臂水平伸缩运动驱动力的计算------------------------------------------------------------(18)4.5.2 臂垂直升降运动驱动力的计算------------------------------------------------------------(19)4.5.3 臂部回转运动驱动力矩的计算---------------------------------------(19)5 致谢-----------------------------------------------------------------------------------------------------(21)6参考文献--------------------------------------------------------------------------------------------------(22济源职业技术学院毕业设计1.机械手参数确定1.1 臂力的确定目前使用的机械手的臂力范围较大,国内现有的机械手的臂力最小为0.15N,最大为8000N。

数控机床上下料机械手设计

数控机床上下料机械手设计

数控机床上下料机械手设计前言随着工业的不断发展和升级,机械制造产业已经成为了各国经济发展不可或缺的重要组成部分。

数控机床则是机械制造产业中的重要设备之一。

而数控机床上下料机械手,作为数控机床的附属设备,它的功能是在机床的输入、输出端之间自动输送加工件,减少了人力,提高了加工效率,为制造行业带来了极大的便利和效益。

本文将介绍数控机床上下料机械手的设计过程。

设计思路首先,在设计机械手之前,我们需要了解机械手的结构和工作原理。

1.机械手结构数控机床上下料机械手的结构一般分为机械手臂、机械手控制系统、夹手器、传感器和运动轴等主要部分。

其中,机械手臂是机械手的核心部件,它的结构一般采用铝合金或者碳纤维材料制作,具有较高的强度和刚度,能够承受较大的载荷;机械手控制系统则是机械手的智能核心,能够根据预设的程序进行自动化控制;夹手器则是机械手的末端执行器,用于夹持加工件;传感器则可以对加工件的位置、形状等进行检测和反馈;而运动轴则是机械手的实际运动部分,能够实现机械手的动作。

2.机械手工作原理数控机床上下料机械手的工作原理是通过控制机械手臂的运动轴和夹手器的打开、关闭,来实现机械手夹取、放置加工件的过程。

在机械手的控制系统中,我们可以预设机械手的运动轨迹和夹手器的运动规律,当接收到工艺指令后,机械手会按照预设的程序自动地执行加工件的夹取和放置操作。

在了解了机械手的结构和工作原理之后,我们可以开始设计机械手的具体实现方案。

设计方案1.机械手臂结构设计机械手臂的结构设计是机械手整体设计中的核心环节之一。

在设计机械手臂时,我们需要考虑以下几个方面:•材料的选择。

由于机械手臂需要具备较强的承载能力和刚度,因此在材料的选择上,我们可以考虑采用铝合金或者碳纤维等高强度材料,来满足机械手的结构要求。

•结构的设计。

机械手臂的结构设计需要采用工程力学理论,考虑机械手的承重和刚度等因素。

在结构设计中,需要确定机械手臂的长度、形状和悬挂方式等关键参数,保证机械手的稳定运行和准确夹取加工件的能力。

程控机械手设计

程控机械手设计

程控机械手设计近年来,“智能制造”成为制造业发展的重要趋势,程控机械手成为现代工业生产中的重要设备之一。

它具有高精度定位、高速度运动、大力矩和高刚性等特点,在工业生产中有着广泛的应用。

本文将从程控机械手的概念、应用、设计和发展趋势四个方面来进行阐述。

一、程控机械手的概念程控机械手是指基于程序控制,在工业生产线上完成对产品和零部件的各种操作的机械手。

它主要由机械结构、控制系统和传感器组成。

程控机械手已成为电子、汽车、机床、仪器仪表、食品包装等工业领域中不可缺少的设备之一。

二、程控机械手的应用1、汽车生产:程控机械手可以完成汽车制造中的喷涂、焊接、搬运等工作,大大提高了生产效率和产品质量。

2、电子制造:在电子产品的生产中,程控机械手可以进行印刷电路板的贴装、插件等操作,提高了生产效率,并降低了人为操作的失误率。

3、食品包装:程控机械手可以完成食品包装的封口、成型、配料等任务,保证食品品质和卫生安全。

4、医疗设备生产:程控机械手可以用于医疗设备的装配和维护,提高了设备的质量和安全性。

5、军事工业:程控机械手应用于军事装备的生产和维护,提高了生产效率和产品质量,同时减少了人为操作带来的风险。

三、程控机械手的设计1、机械结构:机械结构是程控机械手设计的基础。

根据任务要求、运动轨迹和工作负荷等因素,选择合适的材料和工艺,确定机械结构的尺寸和形状,保证机械手的运动精度和稳定性。

2、控制系统:控制系统是程控机械手设计的核心。

采用现代的计算机控制技术,编制控制程序,控制机械手的各个部分进行协调动作,实现精准的操作。

3、传感器:传感器是程控机械手设计的重要组成部分。

通过对机械手运动状态的实时监测,使机械手的动作更加精准和可控。

四、程控机械手的发展趋势1、新技术的应用:随着科技的发展,新材料、新工艺、新技术的应用将极大地推动程控机械手的发展,改善机械手的性能和效率。

2、高可靠性和智能化:在未来几年中,程控机械手将向高可靠性和智能化方向发展。

机械手的手腕结构与手臂结构设(CAD图)

机械手的手腕结构与手臂结构设(CAD图)

题目1、机械手的手腕结构与手臂结构设(CAD图)机械手的手腕结构方案设计考虑机械手的通用性,同时由于被抓取工件是水平放置,因此手腕必须设有回转运动才可满足工作的要求。

因此,手腕设计成回转结构,实现手腕回转运动的机构为回转气缸。

机械手的手臂结构方案设计按照抓取工件的要求,本机械手的手臂有三个自由度,即手臂的伸缩、左右回转和升降(或俯仰)运动。

手臂的回转和升降运动是通过立柱来实现的,立柱的横向移动即为手臂的横移。

机械手的主要参数1、主参数机械手的最大抓重是其规格的主参数,目前机械手最大抓重以10公斤左右的为数最多。

故该机械手主参数定为10公斤,高速动作时抓重减半。

使用吸盘式手部时可吸附5公斤的重物。

2、基本参数运动速度是机械手主要的基本参数。

操作节拍对机械手速度提出了要求,设计速度过低限制了它的使用范围。

而影响机械手动作快慢的主要因素是手臂伸缩及回转的速度。

该机械手最大移动速度设计为1.2m/s,最大回转速度设计为1200°/s,平均移动速度为lm/s,平均回转速度为900°/s。

机械手动作时有启动、停止过程的加、减速度存在,用速度一行程曲线来说明速度特性较为全面,因为平均速度与行程有关,故用平均速度表示速度的快慢更为符合速度特性。

除了运动速度以外,手臂设计的基本参数还有伸缩行程和工作半径。

大部分机械手设计成相当于人工坐着或站着且略有走动操作的空间。

过大的伸缩行程和工作半径,必然带来偏重力矩增大而刚性降低。

在这种情况下宜采用自动传送装置为好。

根据统计和比较,该机械手手臂的伸缩行程定为600mm,最大工作半径约为1500mm,手臂安装前后可调200mm。

手臂回转行程范围定为2400(应大于180否则需安装多只手臂),又由于该机械手设计成手臂安装范围可调,从而扩大了它的使用范围。

手臂升降行程定为150mm。

定位精度也是基本参数之一。

该机械手的定位精度为土0.5~±lmm机械手的技术参数列表一、用途:用于 100 吨以上冲床上下料。

数控车床自动上下料机械手结构设计

数控车床自动上下料机械手结构设计

数控车床自动上下料机械手结构设计首先,在设计机械手的结构时,需要考虑机械手的运动自由度。

通常情况下,机械手需要具备至少4个自由度,包括水平滑台运动、垂直滑台运动、夹具旋转和夹具开合等运动。

这样可以保证机械手可以在不同方向上进行运动,以满足不同工件的上下料需求。

其次,机械手的运动方式也需要进行合理的设计。

常见的机械手运动方式有直线运动和旋转运动。

在数控车床自动上下料机械手中,通常选择导轨和丝杠组合的方式实现机械手的水平滑台和垂直滑台运动,以保证稳定性和精度。

夹具的旋转可以通过电机和减速机组合实现,使夹具可以在水平方向上进行旋转。

夹具的开合则可以通过气动或液压系统来实现,以提高开合速度和准确度。

再次,机械手的控制系统需要具备高效、稳定和智能化的特点。

控制系统需要能够准确地控制机械手的运动,以达到预定的上下料速度和精度。

同时,控制系统还需要具备自动化和智能化的功能,可以根据生产需求进行灵活的调整和优化。

使用传感器和编码器等设备对机械手的运动状态进行实时监测和反馈,以实现闭环控制,提高机械手的稳定性和精度。

最后,机械手的安全性也是设计中需要考虑的重要因素。

机械手在工作过程中需要与操作人员和其他设备进行安全隔离,防止意外伤害的发生。

同时,机械手还需要具备急停、紧急停机和故障诊断等安全保护功能,以保障操作人员和设备的安全。

综上所述,数控车床自动上下料机械手的结构设计需要兼顾高效、稳定、安全和智能化的要求。

只有具备合理的运动自由度和方式、高效稳定的控制系统以及安全可靠的保护措施,才能有效提高生产效率和产品质量,满足企业的生产需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录中文摘要IAbstract (II)1 绪论 (1)1.1前言 (1)1.2 工业机械手的简史 (1)1.3工业机械手在生产中的应用 (3)1.3.1 建造旋转零件(转轴、盘类、环类)自动线 (3)1.3.2 在实现单机自动化方面 (3)1.3.3 铸、锻、焊热处理等热加工方面 (4)1.4 机械手的组成 (4)1.4.1 执行机构 (4)1.4.2 驱动机构 (5)1.4.3 控制系统分类 (5)1.5工业机械手的发展趋势 (5)1.6 本文主要研究内容 (6)1.7 本章小结 (6)2 机械手的总体设计方案 (7)2.1 机械手基本形式的选择 (7)2.2机械手的主要部件及运动 (7)2.3驱动机构的选择 (8)2.4 机械手的技术参数列表 (8)2.5 本章小结 (8)3 机械手手部的设计计算 (10)3.1 手部设计基本要求 (10)3.2 典型的手部结构 (10)3.3机械手手抓的设计计算 (10)3.3.1选择手抓的类型及夹紧装置 (10)3.3.2 手抓的力学分析 (11)3.3.3 夹紧力及驱动力的计算 (12)3.4 机械手手抓夹持精度的分析计算 (13)3.5 本章小结 (16)4 臂部的结构及有关计算 (17)4.1 概述 (17)4.2 手部直线运动机构 (17)4.2.1 手臂伸缩运动 (18)4.2.2手臂的升降运动 (18)4.3臂部运动驱动力计算 (19)4.3.1 臂部垂直升降运动驱动力的计算 (19)4.3.2 臂部水平伸缩运动驱动力的计算 (26)4.4 本章小结 (35)5 Pro/ENGINEER三维设计 (36)5.1 Pro/ENGINEER建模Pro/ENGINEER简介 (36)5.2典型零件的建模 (37)5.3机械手建模图片 (37)结论 (36)参考文献 (38)致谢 (38)摘要本次设计的程控通用机械手根据规定的动作顺序,综合运用所学的基本理论、基本知识和相关的机械设计专业知识,完成对机械手的设计,对机械手的工作原理,结构使用范围,特点参数选择等方面进行了阐述。

其中机械手的机械结构采用油缸、螺杆、导向筒等机械器件组成;采用圆柱坐标,四个自由度,为X轴的移动和转动,Z轴的转动和移动;机械手的抓重30Kg;此程控通用机械手主要是在几台机器间进行搬运和装卸工件机械手的动作主要采用液压系统;机械手的手臂伸缩采用伸缩油缸;本设计主要对手部进行了设计和计算,手腕回转采用回转油缸,手臂的后部采用了滚轮,这样可以承受较大的偏重,立柱也采用了油缸,机械手的升降采用升降油缸,可抓取重量较大的工件。

还有一个特点是:可根据生产的需要改变机械手的动作程序;关键词:机械手;液压传动;液压缸;AbstractThe design of program control manipulator movements under the provisions of the order ,use the basic theory, basic knowledge and related mechanical design expertise comprehensively to complete the design,and drawing the necessary assembly30Kg, hydraulic system map, PLC control system diagram . Manipulator mechanical structure using tanks, screw ,guide tubes and other mechanical device component ;In the hydraulic drive bodies,manipulator arm stretching using telescopic tank,rotating column of tanks used rack ,manipulator movements using tank movements ;The PLC control circuit use the type of FX2N PLC .When pressed for commencement ,can replace the artificial heat and dangerous operation conducted operations,and can grasp the larger workpieces .KeyWords: manipulati r;fluid driv e;hydraulic cylinde r;1绪论1.1前言用于再现人手的的功能的技术装置称为机械手。

机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。

在工业生产中应用机械手。

的机械手被称为工业]1[工业机械手是近代自动控制领域中出现的一项新技术,并已成为现代机械制造生产系统中的一个重要组成部分,这种新技术发展很快,逐渐成为一门新兴的学科——机械手工程。

机械手涉及到力学、机械学、电器液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。

工业机械手是近几十年发展起来的一种高科技自动生产设备。

工业机械手也是工业机器人的一个重要分支。

他的特点是可以通过编程来完成各种预期的作业,在构造和性能上兼有人和机器各自的优点,尤其体现在人的智能和适应性。

机械手作业的准确性和环境中完成作业的能力,在国民经济领域有着广泛的发展空间。

机械手的发展是由于它的积极作用正日益为人们所认识:其一、它能部分的代替人工操作;其二、它能按照生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;其三、它能操作必要的机具进行焊接和装配,从而大大的改善了工人的劳动条件,显著的提高了劳动生产率,加快实现工业生产机械化和自动化的步伐。

因而,受到很多国家的重视,投入大量的人力物力来研究和应用。

尤其是在高温、高压、粉尘、噪音以及带有放射性和污染的场合,应用的更为广泛。

在我国近几年也有较快的发展,并且取得一定的效果,受到机械工业的重视。

机械手是一种能自动控制并可从新编程以变动的多功能机器,他有多个自由度,可以搬运物体以完成在不同环境中的工作。

机械手的结构形式开始比较简单,专用性较强。

随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。

由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。

简史1.2工业机械手的]2[现代工业机械手起源于20世纪50年代初,是基于示教再现和主从控制方式、能适应产品种类变更,具有多自由度动作功能的柔性自动化产品。

机械手首先是从美国开始研制的。

1958年美国联合控制公司研制出第一台机械手。

他的结构是:机体上安装一回转长臂,端部装有电磁铁的工件抓放机构,控制系统是示教型的。

1962年,美国机械铸造公司在上述方案的基础之上又试制成一台数控示教再现型机械手。

商名为Unimate(即万能自动)。

运动系统仿造坦克炮塔,臂回转、俯仰,用液压驱动;控制系统用磁鼓最存储装置。

不少球坐标式通用机械手就是在这个基础上发展起来的。

同年该公司和普鲁曼公司合并成立万能自动公司(Unimaton),专门生产工业机械手。

1962年美国机械铸造公司也试验成功一种叫Versatran机械手,原意是灵活搬运。

该机械手的中央立柱可以回转,臂可以回转、升降、伸缩、采用液压驱动,控制系统也是示教再现型。

虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。

1978年美国Unimate公司和斯坦福大学、麻省理工学院联合研制一种Unimate-Vic-arm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差可小于±1毫米。

美国还十分注意提高机械手的可靠性,改进结构,降低成本。

如Unimate公司建立了8年机械手试验台,进行各种性能的试验。

准备把故障前平均时间(注:故障前平均时间是指一台设备可靠性的一种量度。

它给出在第一次故障前的平均运行时间),由400小时提高到1500小时,精度可提高到±0.1毫米。

德国机器制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业。

德国KnKa公司还生产一种点焊机械手,采用关节式结构和程序控制。

瑞士RETAB公司生产一种涂漆机械手,采用示教方法编制程序。

瑞典安莎公司采用机械手清理铸铝齿轮箱毛刺等。

日本是工业机械手发展最快、应用最多的国家。

自1969年从美国引进二种典型机械手后,大力研究机械手的研究。

据报道,1979年从事机械手的研究工作的大专院校、研究单位多达50多个。

1976年个大学和国家研究部门用在机械手的研究费用42%。

1979年日本机械手的产值达443亿日元,产量为14535台。

其中固定程序和可变程序约占一半,达222亿日元,是1978年的二倍。

具有记忆功能的机械手产值约为67亿日元,比1978年增长50%。

智能机械手约为17亿日元,为1978年的6倍。

截止1979年,机械手累计产量达56900台。

在数量上已占世界首位,约占70%,并以每年50%~60%的速度增长。

使用机械手最多的是汽车工业,其次是电机、电器。

预计到1990年将有55万机器人在工作。

第二代机械手正在加紧研制。

它设有微型电子计算机控制系统,具有视觉、触觉能力,甚至听、想的能力。

研究安装各种传感器,把感觉到的信息反馈,使机械手具有感觉机械手。

机能。

目前国外已经出现了触觉和视觉]3[第三代机械手(机械人)则能独立地完成工作过程中的任务。

它与电子计算机和电视设备保持联系。

并逐步发展成为柔性制造系统FMS(Flexible Manufacturing system)和柔性制造单元(Flexible Manufacturing Cell)中重要一环。

随着工业机器手(机械人)研究制造和应用的扩大,国际性学术交流活动十分活跃,欧美各国和其他国家学术交流活动开展很多。

1.3工业机械手在生产中的应用机械手是工业自动控制领域中经常遇到的一种控制对象。

机械手可以完成许多广泛。

工作,如搬物、装配、切割、喷染等等,应用非常]4[在现代工业中,生产过程中的自动化已成为突出的主题。

各行各业的自动化水平越来越高,现代化加工车间,常配有机械手,以提高生产效率,完成工人难以完成的或者危险的工作。

可在机械工业中,加工、装配等生产很大程度上不是连续的。

据资料介绍,美国生产的全部工业零件中,有75%是小批量生产;金属加工生产批量中有四分之三在50件以下,零件真正在机床上加工的时间仅占零件生产时间的5%。

相关文档
最新文档