机械手结构设计

合集下载

圆柱坐标式机械手结构设计

圆柱坐标式机械手结构设计

圆柱坐标式机械手结构设计引言圆柱坐标式机械手广泛应用于工业自动化领域,具有较高的灵活性和精度。

本文将对圆柱坐标式机械手的结构设计进行详细分析与探讨。

结构设计方案圆柱坐标式机械手的结构设计包括机械结构和控制系统两个方面。

机械结构设计1. 基座:机械手的基座是安装机械手关节的支撑结构,通常采用坚固的钢板焊接而成,以确保机械手在工作中的稳定性和刚性。

2. 旋转关节:旋转关节是机械手的第一关节,它负责控制机械手在水平面内的旋转运动。

通常采用电机驱动的齿轮传动机构实现旋转运动,并通过编码器测量旋转角度,以提供反馈控制。

3. 升降臂:升降臂是机械手的第二关节,它负责控制机械手的垂直运动。

升降臂通常由伸缩式气缸或电动升降装置实现,通过伸缩运动来控制机械手的升降。

4. 伸缩臂:伸缩臂是机械手的第三关节,它负责控制机械手在水平方向的伸缩运动。

伸缩臂通常采用液压缸或气缸驱动,通过伸缩运动来控制机械手的伸缩距离。

5. 夹爪:夹爪是机械手的末端执行器,用于抓取和放置工件。

夹爪通常采用气动或电动夹持机构,以实现对工件的抓取和释放操作。

控制系统设计1. 运动控制:机械手的运动控制系统通常由计算机或嵌入式控制器控制。

控制系统接收传感器反馈的位置信息和运动目标,通过控制算法计算出适当的控制信号,并驱动相应的执行机构,实现机械手的运动控制。

2. 位置检测:位置检测是机械手控制系统的关键环节,通过编码器、光电开关或激光测距传感器等设备,实时检测机械手各关节的位置,并将位置信息反馈给控制系统,以实现精确的位置控制。

3. 安全保护:机械手在工作中需要与人类共同操作,在设计控制系统时需要考虑安全保护措施。

例如,设置急停开关、防止碰撞传感器和安全光栅等设备,以确保机械手在意外情况下能够停止运动并保护操作人员的安全。

结论圆柱坐标式机械手的结构设计是实现其高精度、高效率工作的基础。

合理的机械结构和控制系统设计可以提高机械手的运动灵活性和精度,从而满足各种工业生产需求。

圆柱坐标机械手结构设计概述

圆柱坐标机械手结构设计概述

圆柱坐标机械手结构设计概述随着工业自动化技术的不断发展,机器人应用的范围越来越广泛。

其中,机器人的结构设计是机器人性能的重要保障。

圆柱坐标机械手是一种常见的机器人结构,其结构特点是工作空间呈现为一个圆柱体,机器人工作的方向沿z轴方向。

在本文中,我们将对圆柱坐标机械手的结构设计进行概述。

一、机械手的基本结构圆柱坐标机械手主要由机械结构、执行机构、传感器等几部分组成。

其中,机械结构包含底座、竖杆、横臂、前倾臂、手腕等几部分。

整个机械臂的结构呈现为一条圆柱体,机械手的工作方向沿z轴方向。

执行机构包括电机、减速器、传动系统等部分。

传感器主要用于监测机器人的位置和运动状态。

二、机械手的结构设计1、底座设计底座是机械手的支撑结构,需要具有足够的稳定性和承载能力。

在圆柱坐标机械手中,底座为圆形或者方形,对底座的设计需要考虑到整个机械臂的重心和稳定性。

2、竖杆设计竖杆支撑着整个机械臂的横向移动,需要具有足够的强度和刚度。

在竖杆的设计中需要考虑到挠度和加工精度,并确保竖杆能够承受机械手在工作时的负载和震动。

3、横臂设计横臂是圆柱坐标机械手的重要组成部分,需要具有足够的强度和刚度。

在横臂的设计中需要考虑到挠度和加工精度,并确保横臂能够承受机械手在工作时的负载和震动。

4、前倾臂设计前倾臂能够在xz平面内移动,其结构需要具有足够的强度和刚度。

在前倾臂的设计中需要考虑到挠度和加工精度,并确保前倾臂能够承受机械手在工作时的负载和震动。

5、手腕设计手腕是机械手的末端执行机构,需要具有很高的精度和稳定性。

在手腕的设计中需要考虑到机械手的负载和精度要求,并采用适当的传动系统和控制算法来保证机械手的运动精度。

三、结论圆柱坐标机械手是一种常见的机器人结构,其结构特点是工作空间呈现为一个圆柱体,机器人工作的方向沿z轴方向。

机械手的结构设计对机器人性能具有非常重要的影响,需要考虑到机械臂的稳定性、强度、刚度和精度等因素。

因此,在机械手的设计中需要采用适当的设计方法和工艺流程,以确保机械手的质量和性能。

机械手的手腕结构与手臂结构设(CAD图)

机械手的手腕结构与手臂结构设(CAD图)

题目1、机械手的手腕结构与手臂结构设(CAD图)机械手的手腕结构方案设计考虑机械手的通用性,同时由于被抓取工件是水平放置,因此手腕必须设有回转运动才可满足工作的要求。

因此,手腕设计成回转结构,实现手腕回转运动的机构为回转气缸。

机械手的手臂结构方案设计按照抓取工件的要求,本机械手的手臂有三个自由度,即手臂的伸缩、左右回转和升降(或俯仰)运动。

手臂的回转和升降运动是通过立柱来实现的,立柱的横向移动即为手臂的横移。

机械手的主要参数1、主参数机械手的最大抓重是其规格的主参数,目前机械手最大抓重以10公斤左右的为数最多。

故该机械手主参数定为10公斤,高速动作时抓重减半。

使用吸盘式手部时可吸附5公斤的重物。

2、基本参数运动速度是机械手主要的基本参数。

操作节拍对机械手速度提出了要求,设计速度过低限制了它的使用范围。

而影响机械手动作快慢的主要因素是手臂伸缩及回转的速度。

该机械手最大移动速度设计为1.2m/s,最大回转速度设计为1200°/s,平均移动速度为lm/s,平均回转速度为900°/s。

机械手动作时有启动、停止过程的加、减速度存在,用速度一行程曲线来说明速度特性较为全面,因为平均速度与行程有关,故用平均速度表示速度的快慢更为符合速度特性。

除了运动速度以外,手臂设计的基本参数还有伸缩行程和工作半径。

大部分机械手设计成相当于人工坐着或站着且略有走动操作的空间。

过大的伸缩行程和工作半径,必然带来偏重力矩增大而刚性降低。

在这种情况下宜采用自动传送装置为好。

根据统计和比较,该机械手手臂的伸缩行程定为600mm,最大工作半径约为1500mm,手臂安装前后可调200mm。

手臂回转行程范围定为2400(应大于180否则需安装多只手臂),又由于该机械手设计成手臂安装范围可调,从而扩大了它的使用范围。

手臂升降行程定为150mm。

定位精度也是基本参数之一。

该机械手的定位精度为土0.5~±lmm机械手的技术参数列表一、用途:用于 100 吨以上冲床上下料。

电动式关节型机器人机械手的结构设计

电动式关节型机器人机械手的结构设计

电动式关节型机器人机械手的结构设计电动式关节型机器人机械手的结构设计考虑到了机器人的运动能力、精度和稳定性,以下是该结构设计的一般要点:1.关节布局:电动关节机械手由多个关节连接组成,每个关节可以实现自由度的运动。

关节的布局应根据机械手的工作空间和运动需求来确定。

通常,机械手具有旋转关节和直线关节,旋转关节用于实现绕轴的旋转,而直线关节则用于实现沿直线的平移运动。

2.传动系统:机械手关节的运动通常由电机和传动系统驱动。

传动系统可能采用齿轮传动、带传动、蜗轮蜗杆传动等不同的机构形式。

在设计传动系统时,需要考虑到运动范围、速度要求、负载能力和精度要求。

3.传感器与反馈控制:为了保证机械手运动的准确性和稳定性,通常需使用传感器来获取关节位置、力矩和速度等反馈信息。

这些传感器可以包括编码器、力传感器、陀螺仪等。

反馈信息可以用于控制算法中,以校正位置误差、维持力平衡和实现闭环控制。

4.结构材料与强度:机械手在运动过程中要承受各种力和负载,因此需要采用足够强度和刚度的结构材料。

常见的材料包括铝合金、碳纤维复合材料和钢等。

在结构设计中,还应考虑到材料的质量与性能要求的平衡,以及机械手的重量和成本等因素。

5.控制系统:电动关节机械手还需要配备一个控制系统,用于运动规划和控制。

该控制系统可以包括传感器接口、运动控制器、通信模块等。

它可以接收来自传感器的反馈信息,根据预设的任务要求制定运动规划,并通过控制算法控制各个关节的运动。

总而言之,电动式关节型机器人机械手的结构设计需要综合考虑机械手的运动能力、精度和稳定性等因素。

从关节布局、传动系统、传感器与反馈控制、结构材料和强度、控制系统等多个方面进行设计,以满足具体应用的要求。

简述机械手结构的设计和分析

简述机械手结构的设计和分析
5.腰部结构要便于安装、调整。 6.为了减轻机器手运动部分的惯量,提高机器手的控制精度,一般腰部
回转运动部分的壳体是由比重较小的铝合金材料制成,而不运动的基 座是用铸铁或铸钢材料制成。
机械手腰座结构的具ຫໍສະໝຸດ 采用方案腰座回转的驱动形式要么是 电机通过减速机构来实现,要 么是通过摆动液压缸或液压马 达来实现,目前的趋势是用前 者。因为电动方式控制的精度 能够很高,而且结构紧凑,不 用设计另外的液压系统及其辅 助元件。考虑到腰座是机器手 的第一个回转关节,对机械手 的最终精度影响大,故采用电 机驱动来实现腰部的回转运动。 一般电机都不能直接驱动,考 虑到转速以及扭矩的具体要求, 采用大传动比的齿轮传动系统 进行减速和扭矩的放大。
• A.直角坐标机器手结构
直角坐标机器手的空间运动是用三个相互垂直的直线运动来实现的。由于直 线运动易于实现全闭环的位置控制,所以,直角坐标机器手有可能达到很高 的位置精度(μm级)。但是,这种直角坐标机器手的运动空间相对机器手的 结构尺寸来讲,是比较小的。因此,为了实现一定的运动空间,直角坐标机 器手的结构尺寸要比其他类型的机器手的结构尺寸大得多。
• 3.要设有可靠的传动间隙调整机构,以减小空回 间隙,提高传动精度。
机械手腕部具体采用方案
考虑数控机床加工的具
体形式及对机械手上下料 作业时的具体要求,在满 足系统工艺要求的前提下 提高安全和可靠性,为使 机械手的结构尽量简单, 降低控制的难度,本设计 手腕不增加自由度,实践 证明这是完全能满足作业 要求的,3个自由度来实 现机床的上下料完全足够。
机械手手爪具体采用方案
结合具体的工作情 况,本设计采用连杆 杠杆式的手爪。驱动 活塞往复移动,通过 活塞杆端部齿条,中 间齿条及扇形齿条使 手指张开或闭合。手 指的最小开度由加工 工件的直径来调定。 本设计按照工件的直 径为50mm来设计。

液压传动自动上料机械手结构设计

液压传动自动上料机械手结构设计

液压传动自动上料机械手结构设计液压传动自动上料机械手是一种用于工业生产线的自动化机器人,用于将原材料或零件从一个位置移动到另一个位置。

液压传动自动上料机械手具有强大的承载能力、高速运动和高精度定位的优点,适用于重型工件的搬运和装配。

下面将分析液压传动自动上料机械手的结构设计。

1.机械手的框架结构:2.液压系统:液压传动是液压传动自动上料机械手的核心部分。

液压系统由液压泵、液压缸、液压阀门等组成。

通过液压泵提供的压力,液压缸可以实现各种动作,例如伸缩、旋转、举升等。

液压阀门控制液压传动系统的流量和压力,实现机械手的各种动作和操作。

3.机械手臂的设计:机械手臂是液压传动自动上料机械手的关键组成部分。

机械手臂通常由多个关节连接而成,可以实现多自由度的运动。

机械手臂的关节通过液压缸驱动,使机械手能够完成各种复杂的动作和任务。

机械手臂材质需要具有足够的强度和刚度,同时要求尽量轻量化,以减少能量消耗和摩擦损失。

4.末端执行器的设计:末端执行器是液压传动自动上料机械手的末端装置,用于抓取、搬运或装配工件。

末端执行器通常由夹具、卡盘或吸盘等组成,具有可调节的抓取力和灵活的动作。

末端执行器需要与机械手臂的关节连接,同时能够快速、稳定地完成工件的抓取和释放。

5.控制系统:液压传动自动上料机械手的控制系统由电气控制和液压控制两部分组成。

电气控制系统包含传感器、电机、编码器和控制器等,用于实时监测和控制机械手的运动和状态。

液压控制系统包含液压泵、液压缸、液压阀门等,用于控制机械手的动作和操作。

综上所述,液压传动自动上料机械手的结构设计涉及框架结构、液压系统、机械手臂、末端执行器和控制系统等多个方面。

合理的结构设计可以提高机械手的稳定性、精度和可靠性,从而提高生产效率和产品质量。

机械手设计涉及知识点

机械手设计涉及知识点

机械手设计涉及知识点机械手设计是现代工程领域中一个重要的课题,它涉及到多个学科和领域的知识。

在机械手设计中,我们需要考虑到机械结构设计、控制系统设计、传感器技术以及人机交互等多个方面的知识点。

下面将对机械手设计涉及的主要知识点进行阐述。

一、机械结构设计机械结构设计是机械手设计中的核心内容之一。

它涉及到机械手的外形尺寸、关节布局、运动链设计等方面。

在机械手结构设计中,我们需要考虑到机械手的稳定性、刚度和精度等因素。

此外,还需注意机械手的负载能力和工作空间大小的设计,以满足实际工作场景的需求。

二、控制系统设计控制系统设计是机械手设计中的另一个重要方面。

它包括机械手的运动控制和力/力矩传感器的反馈控制。

在机械手的运动控制中,我们需要考虑到机械手的位置控制、速度控制和力控制。

在力/力矩传感器的反馈控制中,我们需要采集机械手工作时的实时力/力矩数据,并对其进行处理和控制。

三、传感器技术传感器技术在机械手设计中起到了至关重要的作用。

通过传感器,可以采集到机械手内外部环境信息,如位置、速度、力、温度等。

在机械手设计中,我们需要选择合适的传感器,并设计相应的信号采集电路和处理算法。

传感器的选型和布置对机械手的性能和可靠性有着至关重要的影响。

四、人机交互在机械手设计中,人机交互也是一个不可忽视的方面。

机械手的操作界面应该简洁、直观,并提供友好的交互方式。

同时,还需要考虑到人机之间的信息交流和反馈。

可以通过触摸屏、语音交互和手势识别等方式来实现人机交互。

五、其他相关知识点除了以上主要的知识点外,机械手设计还涉及到力学、电子、控制理论等多个学科的知识。

力学知识用于分析机械手的静力学和动力学特性,电子知识用于设计控制电路和信号处理算法,控制理论知识用于设计机械手的运动控制算法。

综上所述,机械手设计涉及到机械结构设计、控制系统设计、传感器技术以及人机交互等多个知识点。

在机械手设计过程中,我们需要综合运用这些知识点,以满足机械手在实际工作中的要求。

机械手的结构设计概述

机械手的结构设计概述

机械手的结构设计概述机械手是一个具有机器运动能力的智能机器人。

它的结构设计不仅决定了它的灵活性和精度,还影响了它的可靠性、自适应性、生产效率等方面。

因此,机械手的结构设计是机械手研究的重点之一。

当前,机械手的结构设计种类繁多,但通常把它们分为以下几类:1. 串联结构机械手串联结构机械手是由一系列连接在一起的关节和杆件组成的。

它们通过各自的旋转或移动来实现运动,并在工作时组成某种形状。

串联结构机械手通常使用电机或液压装置来驱动,可以控制单个关节的角度或运动轨迹。

这种机械手结构具有自由度高、定位精度高、稳定性好的优点,在装配、搬运等方面应用非常广泛。

2.并联结构机械手并联结构机械手是由多个平行的连接在一起的链接和关节组成的,它们通过联动运动来实现工作。

并联结构机械手通常具有良好的稳定性和负载能力,并且可以同时控制多个连杆的位置和轨迹,使其在流水线、精密装配等领域的应用非常广泛。

3.混合结构机械手混合结构机械手是以上两种结构的组合,使用串联和并联结构相结合。

混合结构机械手的优缺点都与以上两种结构相尤显著。

在机械手设计过程中,各种结构的选择取决于需求和工作环境,以及对各种性能和特性的优化要求。

除了结构方面的设计,机械手还需要考虑其他因素,例如:1. 电气控制系统的设计,包括输入和输出控制信号的方式、传感器和执行器的适配,以及数据采集和处理;2. 结构材料的选择和成型方法的优化,以实现更高的刚性和韧性。

3. 负载和导向机构的设计优化,以确保精度被维持在一个最佳的范围内。

总之,机械手的结构设计是一个十分复杂的问题,需要综合考虑机械学、控制理论各方面的知识。

不同的应用环境和场合,对其要求有所不同。

因此,机械手的研究团队需要根据具体需求进行深入的研究,并合理地调整和改进机械手的各个部分,以实现更好地应用效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械手结构设计Newly compiled on November 23, 2020轻型平动搬运机械手的设计及运动仿真摘要随着工业自动化发展的需要,机械手在工业应用中越来越重要。

文章主要叙述了机械手的设计计算过程。

首先,本文介绍机械手的作用,机械手的组成和分类,说明了自由度和机械手整体座标的形式。

同时,本文给出了这台机械手的主要性能规格参量。

文章中介绍了搬运机械手的设计理论与方法。

全面详尽的讨论了搬运机械手的手部、腕部、手臂以及机身等主要部件的结构设计。

最后使用软件对机械手的手部实现运动仿真。

关键词:机械手;运动仿真;液压传动;液压缸;目录中文摘要 (1)英文摘要 (2)主要符号表 (5)1 绪论 (1)前言 (1)工业机械手的简史 (1)工业机械手在生产中的应用 (3)建造旋转零件(转轴、盘类、环类)自动线 (3)在实现单机自动化方面 (3)铸、锻、焊热处理等热加工方面 (3)机械手的组成 (4)执行机构 (4)驱动机构 (4)控制系统分类 (5)工业机械手的发展趋势 (5)本文主要研究内容 (6)本章小结 (6)2机械手的总体设计方案 (7)机械手基本形式的选择 (7)机械手的主要部件及运动 (7)驱动机构的选择 (8)机械手的技术参数列表 (8)本章小结 (8)3 机械手手部的设计计算 (9)手部设计基本要求 (9)典型的手部结构 (9)机械手手抓的设计计算 (9)选择手抓的类型及夹紧装置 (9)手抓的力学分析 (10)夹紧力及驱动力的计算 (11)手抓夹持范围计算 (12)机械手手抓夹持精度的分析计算 (13)弹簧的设计计算 (14)本章小结 (16)4 腕部的设计计算 (17)腕部设计的基本要求 (17)腕部的结构以及选择 (17)典型的腕部结构 (17)腕部结构和驱动机构的选择 (18)腕部的设计计算 (18)腕部设计考虑的参数 (18)腕部的驱动力矩计算 (18)腕部驱动力的计算 (19)液压缸盖螺钉的计算 (20)动片和输出轴间的连接螺钉 (21)本章小结 (22)5 臂部的设计及有关计算 (23)臂部设计的基本要求 (23)手臂的典型机构以及结构的选择 (24)手臂的典型运动机构 (24)手臂运动选择机构的 (24)手臂直线运动的驱动力计算 (24)手臂摩擦力的分析与计算 (24)手臂惯性力的计算 (26)密封装置的摩擦阻力 (26)液压缸工作压力和结构的确定 (26)本章小结 (28)6 机身的设计计算 (29)机身的整体设计 (29)机身回转机构的设计计算 (30)机身升降机构的计算 (34)手臂偏重力矩的计算 (34)升降不自锁条件分析计算 (35)手臂做升降运动的液压缸驱动力的计算 (36)轴承的选择方案 (36)本章小结 (37)7ADAMS 模型的建立与仿真 (38)虚拟样机技术 (38)ADAMS 软件 (38)手部模型的建立 (40)本章小结 (44)8 结论 (45)主要符号表N F 手指夹紧力 ND 弹簧中径 mm1D 弹簧内径 mm2D 弹簧外径 mmC 弹簧旋绕比n 弹簧有效圈数M 转动缸的回转力矩 N m ⋅ρ 偏重力臂 mmM 偏 偏重力矩 N m ⋅t 螺钉间距 mm0Q F 螺钉承受的拉力 NQ F 工作载荷 N1 绪论前言机械手。

机械手是模仿着人手的部分动作,用于再现人手的的功能的技术装置称为[]1按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。

在工业生产中应用工业机械手。

的机械手被称为[]2工业机械手是近代自动控制领域中出现的一项新技术,并已成为现代机械制造生产系统中的一个重要组成部分,这种新技术发展很快,逐渐成为一门新兴的学科——机械手工程。

机械手涉及到力学、机械学、电器液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。

工业机械手是近几十年发展起来的一种高科技自动生产设备。

工业机械手也是工业机器人的一个重要分支。

他的特点是可以通过编程来完成各种预期的作业,在构造和性能上兼有人和机器各自的优点,尤其体现在人的智能和适应性。

机械手作业的准确性和环境中完成作业的能力,在国民经济领域有着广泛的发展空间。

机械手的发展是由于它的积极作用正日益为人们所认识:其一、它能部分的代替人工操作;其二、它能按照生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;其三、它能操作必要的机具进行焊接和装配,从而大大的改善了工人的劳动条件,显着的提高了劳动生产率,加快实现工业生产机械化和自动化的步伐。

因而,受到很多国家的重视,投入大量的人力物力来研究和应用。

尤其是在高温、高压、粉尘、噪音以及带有放射性和污染的场合,应用的更为广泛。

在我国近几年也有较快的发展,并且取得重视。

一定的效果,受到机械工业的[]3机械手是一种能自动控制并可从新编程以变动的多功能机器,他有多个自由度,可以搬运物体以完成在不同环境中的工作。

机械手的结构形式开始比较简单,专用性较强。

随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。

由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。

工业机械手的简史现代工业机械手起源于20世纪50年代初,是基于示教再现和主从控制方式、能适应产品。

产品种类变更,具有多自由度动作功能的柔性自动化[]4机械手首先是从美国开始研制的。

1958年美国联合控制公司研制出第一台机械手。

他的结构是:机体上安装一回转长臂,端部装有电磁铁的工件抓放机构,控制系统是示教型的。

1962年,美国机械铸造公司在上述方案的基础之上又试制成一台数控示教再现型机械手。

商名为Unimate(即万能自动)。

运动系统仿造坦克炮塔,臂回转、俯仰,用液压驱动;控制系统用磁鼓最存储装置。

不少球坐标式通用机械手就是在这个基础上发展起来的。

同年该公司和普鲁曼公司合并成立万能自动公司(Unimaton),专门生产工业机械手。

1962年美国机械铸造公司也试验成功一种叫Versatran机械手,原意是灵活搬运。

该机械手的中央立柱可以回转,臂可以回转、升降、伸缩、采用液压驱动,控制系统也是示教再现型。

虽然这两种机械手出现在六十年代初,但都是国外工业机械手发展的基础。

1978年美国Unimate公司和斯坦福大学、麻省理工学院联合研制一种Unimate-Vic-arm型工业机械手,装有小型电子计算机进行控制,用于装配作业,定位误差可小于±1毫米。

美国还十分注意提高机械手的可靠性,改进结构,降低成本。

如Unimate公司建立了8年机械手试验台,进行各种性能的试验。

准备把故障前平均时间(注:故障前平均时间是指一台设备可靠性的一种量度。

它给出在第一次故障前的平均运行时间),由400小时提高到1500小时,精度可提高到±0.1毫米。

德国机器制造业是从1970年开始应用机械手,主要用于起重运输、焊接和设备的上下料等作业。

德国KnKa公司还生产一种点焊机械手,采用关节式结构和程序控制。

瑞士RETAB公司生产一种涂漆机械手,采用示教方法编制程序。

瑞典安莎公司采用机械手清理铸铝齿轮箱毛刺等。

日本是工业机械手发展最快、应用最多的国家。

自1969年从美国引进二种典型机械手后,大力研究机械手的研究。

据报道,1979年从事机械手的研究工作的大专院校、研究单位多达50多个。

1976年个大学和国家研究部门用在机械手的研究费用42%。

1979年日本机械手的产值达443亿日元,产量为14535台。

其中固定程序和可变程序约占一半,达222亿日元,是1978年的二倍。

具有记忆功能的机械手产值约为67亿日元,比1978年增长50%。

智能机械手约为17亿日元,为1978年的6倍。

截止1979年,机械手累计产量达56900台。

在数量上已占世界首位,约占70%,并以每年50%~60%的速度增长。

使用机械手最多的是汽车工业,其次是电机、电器。

预计到1990年将有55万机器人在工作。

第二代机械手正在加紧研制。

它设有微型电子计算机控制系统,具有视觉、触觉能力,甚至听、想的能力。

研究安装各种传感器,把感觉到的信息反馈,使机械手具有感觉机能。

目前国外已经出现了触觉和视觉机械手。

第三代机械手(机械人)则能独立地完成工作过程中的任务。

它与电子计算机和电视设备保持联系。

并逐步发展成为柔性制造系统FMS(Flexible Manufacturing system)和柔性制造单元(Flexible Manufacturing Cell)中重要一环。

随着工业机器手(机械人)研究制造和应用的扩大,国际性学术交流活动十分活跃,欧美各国和其他国家学术交流活动开展很多。

工业机械手在生产中的应用机械手是工业自动控制领域中经常遇到的一种控制对象。

机械手可以完成许多工广泛。

作,如搬物、装配、切割、喷染等等,应用非常广泛[]5在现代工业中,生产过程中的自动化已成为突出的主题。

各行各业的自动化水平越来越高,现代化加工车间,常配有机械手,以提高生产效率,完成工人难以完成的或者危险的工作。

可在机械工业中,加工、装配等生产很大程度上不是连续的。

据资料介绍,美国生产的全部工业零件中,有75%是小批量生产;金属加工生产批量中有四分之三在50件以下,零件真正在机床上加工的时间仅占零件生产时间的5%。

从这里可以看出,装卸、搬运等工序机械化的迫切性,工业机械手就是为实现这些工序的自动化而产生的。

目前在我国机械手常用于完成的工作有:注塑工业中从模具中快速抓取制品并将制品传诵到下一个生产工序;机械手加工行业中用于取料、送料;浇铸行业中用于提取高温熔液等等。

本文以能够实现这类工作的搬运机械手为研究对象。

下面具体说明机械手在工业方面的应用。

1.3.1 建造旋转零件(转轴、盘类、环类)自动线一般都采用机械手在机床之间传递零件。

国内这类生产线很多,如沈阳永泵厂的深井泵轴承体加工自动线(环类),大连电机厂的4号和5号电动机加工自动线(轴类),上海拖拉机厂的齿坯自动线(盘类)等。

加工箱体类零件的组合机床自动线,一般采用随行夹具传送工件,也有采用机械手的,如上海动力机厂的气盖加工自动线转位机械手。

1.3.2 在实现单机自动化方面各类半自动车床,有自动加紧、进刀、切削、退刀和松开的功能,单仍需人工上下料;装上机械手,可实现全自动化生产,一人看管多台机床。

目前,机械手在这方面应用很多,如上海柴油机厂的曲拐自动车床和座圈自动车床机械手,大连第二车床厂的自动循环液压仿行车床机械手,沈阳第三机床厂的Y38滚齿机械手,青海第二机床厂的滚铣花键机床机械手等。

由于这方面的使用已有成功的经验,国内一些机床厂已在这类产品出厂是就附上机械手,或为用户安装机械手提供条件。

相关文档
最新文档