透射式电子显微镜实验

合集下载

透射电镜实验报告

透射电镜实验报告

透射电镜实验报告透射电子显微镜透射电子显微镜简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。

散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。

通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2µm、光学显微镜下无法看清的结构,又称“亚显微结构”。

成像原理透射电子显微镜的成像原理可分为三种情况:吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。

样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。

早期的透射电子显微镜都是基于这种原理。

衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射钵的振幅分布不均匀,反映出晶体缺陷的分布。

相位像:当样品薄至100Å以下时,电子可以传过样品,波的振幅变化可以忽略,成像来自于相位的变化。

组件电子枪:发射电子,由阴极、栅极、阳极组成。

阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速、加压的作用。

聚光镜:将电子束聚集,可用已控制照明强度和孔径角。

样品室:放置待观察的样品,并装有倾转台,用以改变试样的角度,还有装配加热、冷却等设备。

物镜:为放大率很高的短距透镜,作用是放大电子像。

物镜是决定透射电子显微镜分辨能力和成像质量的关键。

中间镜:为可变倍的弱透镜,作用是对电子像进行二次放大。

通过调节中间镜的电流,可选择物体的像或电子衍射图来进行放大。

透射镜:为高倍的强透镜,用来放大中间像后在荧光屏上成像。

此外还有二级真空泵来对样品室抽真空、照相装置用以记录影像。

透射电子显微镜结构包括两大部分:主体部分为照明系统、成像系统和观察照相室;辅助部分为真空系统和电气系统。

透射电镜析出相统计

透射电镜析出相统计

透射电镜析出相统计
透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种高性能的微观观察仪器,主要用于观察纳米至原子尺度的物体结构。

在材料科学、生物学、化学等领域具有广泛的应用。

在析出相统计方面,透射电镜可以提供高分辨率的相分布和晶体取向信息,为研究析出相的形成机制、相变过程等提供重要依据。

透射电镜析出相统计的主要步骤如下:
1. 样品制备:首先需要从实验材料中制备出适合透射电镜观察的薄片样品。

通常采用冷冻切片、聚焦离子束(FIB)切割等方法获取。

2. 透射电镜观察:将制备好的样品放置在透射电镜样品杆上,调整透射电镜的参数,如加速电压、电流等,获取清晰的透射图像。

3. 数据分析:利用图像处理软件对透射图像进行处理,提取相界、相区等信息。

通过定量分析,可以得到不同相的面积百分比、相分布规律等统计数据。

4. 相变研究:结合原子力显微镜(AFM)、X射线衍射(XRD)等实验手段,进一步研究析出相的形成机制、相变过程等。

透射电镜析出相统计的优点:
1. 高分辨率:透射电镜可以清晰地观察到纳米甚至原子尺度的析出相,为统计分析提供精确的数据。

2. 定量分析:通过图像处理软件,可以实现对不同相的定量分析,得到相分布、相界等关键数据。

3. 样品制备相对简单:相较于其他微观观察手段,透射电镜样品制备相对简单,易于获取高质量的薄片样品。

4. 多种实验手段结合:可以与其他实验手段如原子力显微镜、X射线衍射等相结合,全面研究析出相的相关问题。

总之,透射电镜在析出相统计方面具有显著优势,为材料科学、生物学等领域的研究提供了有力支持。

TEM原理实验范文

TEM原理实验范文

TEM原理实验范文TEM(Transmission Electron Microscope,透射电子显微镜)原理实验是一种利用电子束对物质进行高分辨率成像的技术。

TEM原理实验可以用于观察材料的微观结构、获得元素成分、确定晶体结构等。

TEM原理实验需要的主要设备包括透射电子显微镜、样品准备设备和探测仪器等。

实验开始前需要先准备样品,将待观察的样品切割成极薄的截面,通常要求样品的厚度在几十纳米至几百纳米之间。

然后将样品安装在透明的载玻片或网格上,以便电子束的穿透。

实验开始时,将样品放置在透射电子显微镜的样品台上,并调整显微镜的参数使得电子束聚焦并垂直穿过样品。

通常实验者需要通过衍射图样或直接观察来确定电子束是否正确地穿过样品。

在实验中,电子束通过样品后,会与样品中的原子与电子发生相互作用。

根据不同的相互作用机制,我们可以获得不同的信息。

例如,透射电子显微镜可以通过对透射电子的弹性散射进行观察,获得材料的晶体结构信息;同时,通过对透射电子的能量散射进行分析,可以获得材料的元素成分信息。

透射电子显微镜的分辨率一般可以达到0.1纳米以下,因此可以观察到非常细微的结构细节。

然而,透射电子显微镜的实验操作对实验者的技术要求也非常高,因为束电子非常容易因各种因素而散射或被吸收,从而影响实验结果。

因此,在进行TEM原理实验时,实验者必须掌握基本的透射电子显微镜操作技巧,并且具备对样品的处理和分析能力。

总结起来,TEM原理实验通过透射电子束对样品进行观察和分析,可以获得材料的微观结构、元素成分等信息。

TEM技术在材料科学、生物医学等领域具有重要的应用价值,但也需要实验者具备一定的技术和分析能力。

水的透射电子显微镜观察实验

水的透射电子显微镜观察实验

实验的局限性和改进方向
01
实验设备:透射电子显微镜的局限性,如分辨
率、放大倍数等
02
实验方法:实验方法的局限性,如样品制备、
观察角度等
03
数据分析:数据分析的局限性,如数据准确性、
数据处理方法等
04
实验结果:实验结果的局限性,如观察结果、
实验结论等
05
改进方向:针对实验局限性的改进方向,如提
高设备性能、改进实验方法、优化数据分析等
靠性。
实验结果对水分子研究的贡献
揭示了水分子的 结构:实验结果 揭示了水分子的 结构,包括氢原 子和氧原子的排 列方式,以及水 分子的电荷分布。
证明了水分子的极 性:实验结果证明 了水分子的极性, 即水分子中的氢原 子和氧原子之间的 电荷分布不均匀, 导致水分子具有极
性。
添加标题 添加标题
揭示了水分子的热 力学性质:实验结 果揭示了水分子的 热力学性质,包括 水分子的热导率、 比热容等,这些性 质对于理解水的物 理化学性质非常重
样品标记:在样品容器 上标记样品名称、处理 方法等信息,便于实验 操作和结果分析
透射电子显微镜的操作
开机预热:仪 器在使用前应 预热30分钟。
波长校准:通 过标准试样对 电子波长进行 校准。
样品准备:将 待测样品切成 薄片,并固定 在铜网上。
样品安装:将 铜网放入透射 电子显微镜的 样品室中。
观察调整:调 整显微镜的焦 距和亮度,观 察样品的透射 电子显微图像。
04
探索水分子在生物体内的作用和功能
分析水分子间的相互作用
02
对水分子结构的影响:
氢键的存在使得水分子
01
在固态和液态时呈现出
特殊的结构和性质。

实验5 透射电子显微镜观察聚合物的微相分离结构

实验5 透射电子显微镜观察聚合物的微相分离结构

实验27透射电子显微镜观察聚合物的微相分离结构一、实验目的1.熟悉透射电子显微镜的基本结构,理解透射电镜的工作原理及像反差的形成原理。

2.初步掌握聚合物(如胶乳)的制样技术和观察记录方法。

二、透射电镜的结构三大部分:1.电子光学系统(镜体):照明源(电子枪聚光镜)、成像系统(样品室物镜中间镜投影镜)观察与记录系统;2.真空系统(机械泵油扩散泵);3.电子学系统(即电路系统)。

镜体是透射电镜最基本的重要的部分,真空系统和电路系统是其辅助系统。

三、实验基本原理1.透射电镜的工作原理1.1由电子枪发射电子流,在阳极的加速下,电子束(100um)射向镜筒。

1.2聚光镜将电子束进一步会聚,形成1-2um电子束斑,并投射在样品上。

1.3物镜将穿过样品并带有样品结构信息的电子束放大聚焦形成第一放大像。

1.4中间镜以物镜放大像为物,形成第二级放大像。

1.5投影镜以中间镜的放大像为物,形成第二级放大像。

1.6第三级放大像被投射在荧光屏上。

M(总)=Mo(物)×Mi(中)×Mp(投)2.像反差的形成原理当透射电镜的照明源中插入了样品的膜之后,原来均匀的电子束就变得不均匀了。

样品膜中质量厚度大的区域因散射电子多而出现电子数的不足,这样的区域经放大后就成了暗区,而样品膜中质量厚度小的区域因透过电子较多,散射电子较少而成为亮区。

通过样品后的这种不均匀的电子束被荧光屏截获后,即成为反映样品信息的透射电镜黑白图像。

对于那些质量厚度差别不大的样品,常常需要用电子染色的方法来加强样品本身或样品四周(背景)或样品的某些部分的电子密度,从而使不同区域散射电子的数量差别增大,进而改善图像的明暗差别即增强反差。

四、实验条件1.仪器:JEM-100SX透射电镜,DM220高真空镀膜台,超声波清洗器2.试剂:1.5%火棉胶 1.5%磷钨酸水溶液2%乙酸铀水溶液3.试样:乳胶或其它液状或粉末状聚合物样品4.器皿:青霉素小瓶玻棒铜镍网弯头镊子培养皿滤纸φ3mm碳棒等五、实验步骤及方法1.制作复膜铜网(火棉胶膜加碳膜)1.1复火棉胶膜在一直径约为10cm的培养皿中装适量双蒸水,滴一滴1.5%火棉胶液于水面上,一段时间后,水面上即成有一层火棉胶膜。

透射电子显微镜的实验技巧与使用方法

透射电子显微镜的实验技巧与使用方法

透射电子显微镜的实验技巧与使用方法透射电子显微镜(Transmission Electron Microscope,简称TEM)作为一种重要的材料科学与纳米科学研究工具,广泛应用于物质的微观结构分析。

然而,使用TEM进行观察和分析需要一些实验技巧和操作方法,以确保获得高质量的显微图像和可靠的实验结果。

本文将介绍透射电子显微镜的实验技巧和使用方法,以帮助读者更好地掌握这一强大工具。

第一部分:样品制备在进行TEM观察前,样品制备是至关重要的一步。

以下是一些常用的样品制备技巧:1. 薄片制备:将待观察的材料制备成足够薄的薄片,常用的方法有机械切割、离子蚀刻和离心旋涂等。

制备薄片时需注意避免产生裂纹和杂质。

2. 薄片转移到网格:将薄片转移到透射电子显微镜网格上,通常使用细钳和转移介质(如水和乙醇)进行操作。

转移过程需要小心以避免薄片折叠或粘附杂质。

第二部分:透射电子显微镜操作1. 启动与预热:在开始使用TEM之前,需要对其进行启动和预热。

启动过程包括电源接通、真空泵抽取空气以及透射电子显微镜主机预热。

预热时间可根据设备型号和要求进行设定。

2. 对准和聚焦:必须对TEM进行准确的样品对准和聚焦。

首先,通过观察屏幕上的光学显微镜图像,调整样品位置,使其准确对应TEM光学通道。

然后,通过微调操纵仪或操作面板上的聚焦控制旋钮对样品进行聚焦。

3. 选择倍率和放大:根据需要选择适当的倍率和放大倍数。

通常,低倍率可以提供较大的视野和全局信息,高倍率则可以提供更高分辨率和详细信息。

倍率过高可能导致图像模糊,倍率过低则可能丧失微观细节。

4. 稳定电流和时间控制:在TEM操作过程中,保持稳定的电流和时间控制至关重要。

电流的稳定性直接影响到图像质量和分辨率。

合理选择电流和控制时间以避免样品损伤。

第三部分:图像采集和分析1. 图像采集:在获得良好对准和聚焦的样品后,可以开始进行图像采集。

根据需求选择适当的图像模式,如亮场、暗场、选区电子衍射等。

电子显微镜实验报告

电子显微镜实验报告

电子显微镜实验报告电子显微镜实验报告引言:电子显微镜(Electron Microscope,简称EM)是一种利用电子束来观察物质微观结构的仪器。

与光学显微镜相比,电子显微镜具有更高的分辨率和放大倍数,能够观察到更小的细微结构。

本实验旨在通过使用电子显微镜,观察和分析不同样本的微观结构,以及了解电子显微镜的工作原理和操作技巧。

实验材料和仪器:本次实验使用的材料包括金属样品、植物细胞样品和昆虫组织样品。

实验所使用的仪器为电子显微镜,包括扫描电子显微镜(Scanning Electron Microscope,简称SEM)和透射电子显微镜(Transmission Electron Microscope,简称TEM)。

实验步骤:1. 样品制备:将金属样品切割成薄片,植物细胞样品进行固定和切片,昆虫组织样品进行化学处理和切片。

2. SEM观察:将样品放置在SEM的样品台上,通过控制电子束的扫描范围和电子束的强度,观察样品表面的微观结构。

3. TEM观察:将样品制备成透明薄片,放置在TEM的样品台上,通过控制电子束的透射范围和电子束的强度,观察样品内部的微观结构。

4. 结果分析:根据观察到的图像,分析样品的微观结构、形态和组成。

实验结果:1. 金属样品观察:通过SEM观察,我们可以清晰地看到金属表面的晶粒结构和纹理。

不同金属的晶粒大小和排列方式也可以通过SEM图像进行比较分析。

2. 植物细胞样品观察:通过TEM观察,我们可以观察到植物细胞的细胞壁、细胞质、细胞核和细胞器等微观结构。

通过比较不同类型的细胞样品,我们可以了解不同细胞的结构和功能差异。

3. 昆虫组织样品观察:通过SEM和TEM观察,我们可以观察到昆虫组织的外部形态和内部结构。

例如,昆虫的触角、翅膀和腿部等结构可以通过SEM观察到其表面形态,而昆虫的神经系统和内脏器官可以通过TEM观察到其内部结构。

讨论与总结:通过本次实验,我们深入了解了电子显微镜的工作原理和操作技巧,并成功观察到不同样品的微观结构。

物理实验中透射电子显微镜的使用指南

物理实验中透射电子显微镜的使用指南

物理实验中透射电子显微镜的使用指南透射电子显微镜(Transmission Electron Microscopy,简称TEM)是现代物理实验中一种非常重要的工具,它能够提供高分辨率的观测和分析样品的微观结构和成分。

本文将为您介绍透射电子显微镜的使用指南。

一、透射电子显微镜的原理与构造透射电子显微镜利用电子束通过样品并形成细致的图像,它的原理是基于电子的波粒二象性以及电子与样品相互作用的特性。

透射电子显微镜通常由电子源、透镜系统、样品台和显像系统等组成。

电子源是透射电子显微镜的核心部件,常用的电子源包括热阴极和场发射阴极。

透镜系统负责控制和聚焦电子束,它由透镜、磁透镜和计数器等组成。

样品台用于固定和转动样品,使得电子束可以满足不同角度的入射条件。

显像系统则负责收集电子束通过样品后的信息,并将其转化成可见图像。

二、透射电子显微镜的样品制备透射电子显微镜对样品制备要求极高,首先需要将样品制备成薄片,以保证电子束能够穿透样品并形成可观测的图像。

常用的样品制备方法有机械切割、电子束刻蚀和离子薄化等。

在样品制备过程中,还需要注意避免样品表面的污染和氧化。

在制备过程中,可以采用真空环境、惰性气体保护或氮气氛等方法来防止样品受到污染。

同时,也要注意避免样品上的含水气泡,可以通过超声震荡或去离子水清洗等方法去除。

三、透射电子显微镜的操作指南在使用透射电子显微镜时,需要注意以下几点:1. 系统预热:在使用透射电子显微镜之前,需要进行系统预热以达到稳定的工作状态。

预热时间通常为数小时,具体时间取决于仪器和操作要求。

2. 加热和冷却样品:透射电子显微镜可以在不同温度下观察样品。

在进行加热或冷却样品之前,需要确保样品和样品台可以承受相应的温度,并根据需要选择正确的加热或冷却装置。

3. 对溶液样品的观察:如果需要观察溶液样品,可以将样品制备在薄碳膜或其他透明基底上,并在观察前进行干燥。

同时,还应注意避免样品在高真空下蒸发或结晶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理仿真实验报告项目名称:透射式电子显微镜实验
院系名称:
专业班级:
姓名:
学号:
透射式电子显微镜实验
一、实验目的
在软件虚拟的环境中,了解对透射电子显微镜的基础操作流程;结合原理的介绍,了解它们的意义。

二、实验原理
图1
图1表示:透射电子显微镜由电子枪(照明源、接地阳极、光阑等)、双聚光镜、物镜、中间镜、投影镜等组成. 电子显微镜的热发射电子枪由高温的钨丝尖端发射电子,高级的场发射电子枪在高电场驱动下通过隧道效应发射电子. 场发射电子束的亮度显著提高,同时能量分散度(色差)显著减少,使电子束直径会聚到1nm以下仍有相当的束流.双聚光镜将电子枪发出的电子会聚到样品,经过样品后在下表面形成电子的物波,物波经过物镜、中间镜、投影镜在荧光屏或照相底片上形成放大象.
图2
为了获得更高的性能,目前生产的新型TEM的结构更为复杂(图2),如透镜有:聚光镜两个,会聚小透镜,物镜,物镜小透镜,三个中间镜,投影镜等. 这样的结构可以在很大范围内改变像的放大倍数,并被用来实现扫描透射成像(STEM,需要利用偏转线圈)、微衍射和微分析(加上X射线能谱仪).
图3
图3是透射电子显微镜阿贝成像原理光路图. 物波在物镜的焦平面上形成衍射图样,各个衍射波经过透镜汇聚成第一中间像。

改变中间镜、投影镜电流(即改变它们的焦距),将试样下表面的物波聚焦到荧光屏或底片上得到的是显微像(左). 当中间镜、投影镜改变焦距将焦平面的衍射图样聚焦到荧光屏或底片上得到的是衍射图样(右). 透射电子显微镜的一大优点是:可以同时提供试样的放大像和对应的衍射图样。

得到显微像后在第一中间象处放置选区光阑选出需要的局部图象,再次得到的衍射图样就是和选区(最小选区为几百nm)图像对应的电子衍射图样.
图4
图4(动画)分别演示显微象和衍射图样的形成过程.
先用闪烁的红色箭头表示试样、第一中间象、第二中间象和显微象的形成过程.接着用闪烁的三个圆斑表示物镜焦平面上的衍射图样经过中间镜和投影镜形成衍射图样的过程.
三、实验仪器
透射电子显微镜主要部件
电子枪
电子枪有四种:热发射W电子枪,热发射LaB6电子枪,热场发射W (100)电子枪和冷场发射W(310)电子枪. 前两种利用高温下电子获得足够能量逸出灯丝,后两种利用高场下电子的隧道效应逸出灯丝,它们的性能及使用条件见下表.
热发射LaB6灯丝比热发射W亮度高,束斑小,能量发散度小,使用温度低,但真空度需提高. 产品更先进的场发射电子枪性能更好,但真空度需更高,并且价格昂贵. 利用场发射枪,可以获得半高宽为的电子束。

在TEM中,电子枪发出的电子经过100-200kV的加速管形成能量为100-200keV的电子束(电子的波长是在SEM中电子枪发出的电子经过加速形成能量为1-30keV的电子束。

图6表示聚光镜系统的三种模式:(a)成像(TEM),(b)微分析(EDS能谱分析)和(c)纳米束衍射(NBD). 在(a)中会聚小透镜将电子束会聚到物镜前方磁场的前焦点后,电子束平行照射试样的大范围上, 这是一种成像的模式. (b)中小透镜关闭,电子束以大的会聚角集中在试样的微区, 可进行高分辨的EDS成分分析. (c)中使用很小的聚光镜光阑使电子束以很小的会聚角照明试样的小区成像和获得纳米束电子衍射图.
聚光镜系统内的两组偏转线圈可以偏转入射电子束得到明场像或暗场像, 利用它们还可以移动纳米电子束得到扫描透射电子像(STEM).
物镜由线圈、铁壳和极靴(图7)组成, 由精密软磁材料加工而成的极靴将轴对称强磁场集中在试样上,强磁场使透镜焦距很小,从而减小物镜的球差到mm量级. 这是提高电子显微镜分辨率的关键因素.提高电子束能量(减小其波长)可以降低物镜的衍射像差.
减小物镜电流和加速电压的涨落,利用场发射枪减小灯丝发射电子的能量发散度,减小电子束经过试样时的能量损失和滤去损失能量的电子等措施可以降低物镜的色差。

此外还需要消除像散(不同方位角上聚焦能力的差异).
经过多年的努力, 200kV透射电镜的点分辨率已经达到原子级, 即.
在物镜后焦面上放置物镜光阑, 选择透射束或衍射束形成明场像或暗场像, 或选多束形成高分辨像.
图8是可以绕X轴和y轴转动的双倾斜样品台. 样品放在直径为3mm的多孔铜网上.分别绕X和Y轴倾转样品可以得到电子束沿低密勒指数方向的样品取向, 以便得到高分辨像(HREM). 还可以倾转样品得到双束(只有强的透射束和一支强衍射束)条件,以便得到观察晶体缺陷的明场像(透射束通过物镜光阑)和暗场像(衍射束通过物镜光阑).
样品台有顶插式和侧插式两种. 前者从物镜上方将样品下放到物镜之中, 这是以获得HREM 为主的TEM采用的方式. 后者从横向插入物镜上下极靴之间, 这将有利于配置X射线能谱EDS 进行微区成分分析. 这样的电镜常被称为分析电镜.
图9(a)和(b)分别是低倍和高倍成像模式, 前者不用物镜和第一中间镜, 只用OM透镜、两个中间镜和投影镜使物在底片上成像, 后者则用物镜(不用OM透镜)、三个中间镜和投影镜使物在底片上成像. 这样的配置可以使放大倍数从50倍扩展到100万倍.
图9(c)的透镜配置和(b)相同, 但通过改变中间镜电流使物镜光阑处的电子衍射图样在底片上成像.
显微像和衍射图样一般用专门的底片记录.底片的分辨率为10mm, 在1000,000放大倍数下可以分辨细节. 底片能显示的黑度动态范围是两个数量级, 黑度和电子辐照量之间的关系远远偏离线性.
最近发展起来的慢扫描电荷耦合器件(CCD)摄像机的动态范围达到四个数量级, 信号的线性也好. 它的像素尺寸为24mm, 像素数为1020×1024. 它可以在几秒内将一幅图采集记录到计算机内成为数值图像, 十分方便. 它的构成见图10.
由图可见, 电子束在钇铝石榴石(YAG)闪烁器中转换成光, 经纤维光导板到达CCD并被转换为与光强正比的电量. CCD下面的冷却元件可以降低其噪声, 提高信号/噪声比.
四、实验内容及步骤
本仿真实验的主要目的是使您在软件虚拟的环境中,了解对透射电子显微镜的基础操作流程;结合原理的介绍,了解它们的意义。

同时软件可以作为使用真实仪器之前的练习工具,因为鉴于成本考虑,真实仪器的操作流程相当严格,允许的尝试性操作非常有限。

实验的操作内容:
开机
A1.开总电源后,开冷却水电源,并确认其工作正常
A2.按下电镜主机上power方框内的EVAC键,可在20~30分钟达到高真空
加高压
B1.确认仪器处于高真空状态后,按一下power方框内的COL键
B2.置BIAS钮于适当的位置,按一下READY/OFF键,再按一下所选的高压键,高压将逐步达到所选值,从HV/BEAM表上可确认高压已加上。

B3.顺时针缓慢转动FILAMENT控制钮,同时观察HV/BEAM表,至速流饱和值并锁住。

(对于不同的灯丝,仪器管理人员已调整好一定的BIAS和FILAMENT钮的位置,故第2,3步不应作大的更动)
照明系统对中
C1.将观察模式调整到SA
C2.将所有的光阑移除
C3.用MAG键将放大倍数设定在5000倍。

C4.将束斑直径调整到3~5微米,用BRIGHTNESS控制钮将光斑调整到清晰
C5.逆时针方向旋转FILAMENT控制钮少许,可在荧光屏上观察到灯丝像,此时灯丝的激发状态是欠饱和的,调整BRIGHTNESS CENTERING将光点移到屏幕中央。

C6.将束斑直径调整到5微米,用BRIGHTNESS控制钮将光斑调整到清晰
C7.用BRIGHTNESS CENTERING将光点移到屏幕中央
C8.将束斑直径调整到1微米,用BRIGHTNESS控制钮将光斑调整到清晰
C9.用GUN HORIZ将光点移到屏幕中央
C10.重复C6到C9各步,直到光斑总是在屏幕中央
C11.将FILAMENT调回到束流饱和值
更换样品
D1.将样品台插入镜筒,注意插入过程中不要转动样品台
D2.将样品台的真空泵开关扳到EVAC档
D3.大约15秒钟后,SPEC EVAC指示灯(绿灯)会亮
常规型貌的观察
E1.切换到SCAN状态
E2.用BRIGHTNESS CENTERING钮将样品中感兴趣的部分移动到荧光屏中心
E3.切换到ZOOM状态
E4.用BRIGHTNESS CENTERING钮移动样品作常规型貌的观察
五、实验过程截图、数据记录与处理
六、思考题
1.为什么对照明系统的对中操作中,需要频繁地改变束斑的大小
答:由阿贝的观点来看,许多成像光学仪器就是一个低通滤波器,物平面包含从低频到高频的信息,透镜口径限制了高频信息通过,只许一定的低频通过,因此改变束斑的大小可使图像图像清晰.
2.对照明系统的对中操作中,为什么在束斑大的时候用BRIGHTNESS CENTERING调整,而在束斑小的时候用GUN HORIZ调整反过来会有什么效果
答:答:因为用 BRIGHTNESS CENTERING 调节时移动的幅度比较小,GUN HORIZ 调节时幅度较大,若反过来不容易调准。

相关文档
最新文档