热力学统计考试卷题库

合集下载

热力考试题库及答案解析

热力考试题库及答案解析

热力考试题库及答案解析一、选择题1. 热力学第一定律的数学表达式是:A. ΔU = Q - WB. ΔH = Q + WC. ΔG = Q - WD. ΔS = Q/T答案:A2. 在绝热条件下,气体膨胀时,其温度将:A. 增加B. 减少C. 保持不变D. 先增加后减少答案:B3. 理想气体状态方程为:A. PV = nRTB. PV = nTC. PV = RTD. PV = nR答案:A二、填空题4. 根据热力学第二定律,不可能制造一个循环动作的机器,其_______全部用来做功而不引起其他变化。

答案:能量5. 热机效率是指热机输出的功与_______之比。

答案:输入的热量三、简答题6. 简述热力学系统与外界交换能量的两种基本方式。

答案:热力学系统与外界交换能量的两种基本方式是做功和热交换。

7. 解释什么是熵,并简述熵增加原理。

答案:熵是热力学系统中无序度的量度,熵增加原理表明,在自发过程中,一个孤立系统的熵总是趋向于增加。

四、计算题8. 已知理想气体的初始状态为P1 = 2 atm,V1 = 3 m³,最终状态为P2 = 1 atm,V2 = 6 m³,求气体经历的功W。

答案:首先应用理想气体状态方程 PV = nRT,由于是理想气体,我们可以忽略温度和摩尔数的影响,直接通过体积和压力的关系来计算功。

根据等温过程的功的公式 W = P1V1 ln(V2/V1),代入数值得到W = 2 * 3 * ln(6/3) = 6 * ln(2)。

9. 一个绝热容器内装有100克的冰,其温度为0°C,求冰完全融化成水后水的温度。

答案:冰的熔化热为334 J/g。

首先计算冰完全融化所需的热量 Q= 334 * 100 = 33400 J。

由于是绝热过程,根据能量守恒,这些热量将转化为水的内能,导致水温度的升高。

设水的比热容为 c,水的质量为 m,最终温度为 T,初始温度为 T0。

热力学及统计物理试题及答案

热力学及统计物理试题及答案
极端低温时系统的熵:S=0
4.对弱简并的非相对论费米气体,求:
(1)粒子数分布的零级近似f0与一级修正项Δf1;
(2)证明:与零级近似相比,粒子数的相对修正量和内能的相对修正量均正比于 。
解:费米气体分布函数为:
(1)

(2)
5.金属中的电子可以视为自由电子气体,电子数密度n,
(1)简述:T=0K时电子气体分布的特点,并说明此时化学势μ0的意义;
解:(1)单粒子的配分函数为:
处于基态的粒子数为:
处于激发态的粒子数为:
温度为T时处于激发态的粒子数与处于基态的粒子数之为:
极端高温时:ε0《kT, , 即处于激发态的粒子数与处于基态的粒子数基本相同;
极端低温时:ε0》kT, , 即粒子几乎全部处于基态。
(2)系统的内能:
热容量:
(3)极端高温时系统的熵:
( klnΩ)。
3.玻色统计与费米统计的区别在于系统中的粒子是否遵从(泡利不相容原理 )原理,其中(费米)系统的分布必须满足0 ≤ fs ≤ 1。
4.玻色系统和费米系统在满足( 经典极限条件(或e-α<<1) 或eα>>1)条件时,可以使用玻尔兹曼统计。
5. 给出内能变化的两个原因,其中( )项描述传热,( )项描述做功。
9.如果系统的分布函数为ρs,系统在量子态s的能量为Es,用ρs和Es表示:系统的平均能量为( ),能量涨落为( )(如写成 也得分)。
10.与宏观平衡态对应的是稳定系综,稳定系综的分布函数ρs具有特点( dρs/ dt=0 或与时间无关等同样的意思也得分 ),同时ρs也满足归一化条件。
二.计算证明题(每题10分,共60分)
能量值: 0,ω,2ω,3ω,…

(完整版)热力学与统计复习题

(完整版)热力学与统计复习题

复习提纲一、填空题:1.特性函数是指在________选择自变量的情况下,能够表达系统_________的函数。

2.能量均分定理说:对于处在温度为T 的平衡状态的经典系统,粒子能量函数中的每一个________的平均值等于___________。

3.自然界的一切实际宏观过程都是_________过程,无摩擦的准静态过程是______ _过程。

4.熵增加原理是说,对于绝热过程,系统的熵_____________。

5.卡诺定理指出:工作于相同的高温热源和相同的低温热源之间的一切可逆机,其效率都____________, 与______________无关。

6.绝对零度时电子的最大能量称为___________________。

7.孤立系统经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。

8.内能是 函数。

9.一般工作于两个一定温度热源之间的热机效率不大于 。

10.TH V P ∂⎛⎫= ⎪∂⎝⎭ 。

11.三维自由粒子的μ空间是 维空间。

12.体积V 内,能量在d εεε-+范围内自由粒子的可能状态数为 。

13.多元单相系的化学反应平衡条件是 。

14.克拉伯龙方程的表达式为 。

15.玻色系统中粒子的最概然分布为 。

二、选择题:1. 假设全同近独立子系统只有2个粒子,3个个体量子态。

那么下面说法错误的是:( )A. 如果该系统是玻尔兹曼系统,那么该系统共有9个系统微观状态。

B. 如果该系统是费米系统,那么该系统共有6个系统微观状态。

C. 如果该系统是费米系统,那么该系统共有3个系统微观状态。

D. 如果该系统是玻色系统,那么该系统共有6个系统微观状态。

2.关于热力学和统计物理平衡态说法错误的是: ( )A. 一个宏观的平衡状态包含了大量的系统的微观状态。

B. 它是一个动态的平衡,宏观量存在涨落,但是热力学理论不能够考虑涨落。

C. 宏观量都有对应的微观量。

D. 虽然系统的宏观量不随时间发生变化,但是它不一定就是一个平衡态。

热力学统计物理练习试题和答案

热力学统计物理练习试题和答案

热力学·统计物理练习题一、填空题. 本大题70个小题,把答案写在横线上。

1.当热力学系统与外界无相互作用时,经过足够长时间,其宏观性质时间改变,其所处的为热力学平衡态。

2.系统,经过足够长时间,其不随时间改变,其所处的状态为热力学平衡态。

3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有是独立的。

4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是。

5.欲描述非平衡系统的状态,需要将系统分成假设干个小局部,使每小局部具有小,但微观上又包含大量粒子,那么每小局部都可视为。

6.描述热力学系统平衡态的独立参量和之间关系的方程式叫物态方程,其一般表达式为。

7.均匀物质系统的独立参量有个,而过程方程独立参量只有个。

8.定压膨胀系数的意义是在不变的条件下系统体积随的相对变化。

9.定容压力系数的意义是在不变条件下系统的压强随的相对变化。

10.等温压缩系数的意义是在不变条件下系统的体积随的相对变化。

11.循环关系的表达式为。

12.在无摩擦准静态过程中存在着几种不同形式的功,那么系统对外界作的功∑-=δi i dy Y W ,其中i y 是 ,i Y 是与i y 相应的 。

13.W Q U U A B +=-,其中W 是 作的功。

14.⎰=+=0W Q dU ,-W 是作的功,且-W 等于 。

15.⎰δ+δ2L 11W Q ⎰δ+δ2L 12W Q 〔1、2均为热力学平衡态,L 1、L 2为准静态过程〕。

16.第一类永动机是指 的永动机。

17.能是 函数,能的改变决定于和。

18.焓是函数,在等压过程中,焓的变化等于 的热量。

19.理想气体能 温度有关,而与体积 。

20.理想气体的焓温度的函数与 无关。

21.热力学第二定律指明了一切与热现象有关的实际过程进展的。

22.为了判断不可逆过程自发进展的方向只须研究和的相互关系就够了。

23.一般工作于两个一定温度热源之间的热机效率不大于。

热力学与统计物理题库

热力学与统计物理题库

(一)热力学基本定律的描述。

1.热力学第0定律:分别与第三个物体达到平衡的两个物体它们彼此也一定互呈热平衡2.热力学第一定律是能量守恒定律。

(能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,在转移和转化的过程中,能量的总量不变。

)内容 一个热力学系统的内能增量等于外界向它传递的热量与外界对它做功的和。

(如果一个系统与环境孤立,那么它的内能将不会发生变化。

)表达式:△E=-W+Q3.热力学第二定律有几种表述方式: 克劳修斯表述热量可以自发地从温度高的物体传递到温度低的物体,但不可能自发地从温度低的物体传递到温度高的物;开尔文-普朗克表述不 可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。

意义:热力学第二定律的每一种表述,揭示了大量分子参与的宏观过程的方向性,使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。

4.热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。

或者绝对零度(T=0K )不可达到。

(二)能量均分定理的证明能量均分定理:温度为T 的热平衡宏观系统,其微观粒子能量(动能和势能)中的每一个平方项的统计平均值,都等于12kT 。

证明:设:系统中粒子的自由度为r ,那么,粒子的能量为:222/11111(q )((q ))222r r l Tl Pl i i i i i j j i i i ja p V a pb q V εεε===+=+=++∑∑∑ 其中任一平方项的平均值为+22112-0......111...22l r r i i i i dq dq dp dp a p a p e N h αβε∞+∞--∞-∞=⎰⎰ 221+()21111222-10.......11 (2)l i i i i a p a p r i i r i i i dq dq dp dp dp dp e a p e dp Z h ββε∞+∞+∞----+∞-∞-∞=⨯⎰⎰⎰ 因为222221122i i i i a p a p i i i i a p e dp e dp βββ+∞+∞---∞-∞=⎰⎰所以上式(11210......11...2l r r dq dq dp dp e Z h βεβ+∞+∞--∞-∞=⎰⎰) 又因为(11120.........l r r dq dq dp dp Z e h βε+∞+∞--∞-∞=⎰⎰) 所以1=2l kT ε 则,能量均分定理得证。

热力学统计物理-基础题库

热力学统计物理-基础题库

Q 一、选择题:(每题 3 分)下列选项正确的是().(热力学系统的平衡状态及其描述)(容易)A . 与外界物体有能量交换但没有物质交换的系统称为绝热系统。

B . 与外界物体既有能量交换又有物质交换的系统称为封闭系统。

C . 与外界物体既没有能量交换又没有物质交换的系统称为孤立系统。

D . 热力学研究的对象是单个的微观粒子。

答案:B.简单系统的物态方程的一般形式为().(物态方程)(容易)A. f ( p ,V ) = 0 ;B. f ( p ,V ,T ) = C ;C. f ( p ,V ,T ) = 0 ;D. f ( p ,V ) = C ;答案:C.下列关于状态函数的定义正确的是().(焓自由能吉布斯函数)(容易)A . 系统的焓是: H = U - pV ;B . 系统的自由能函数是: F = U + TS ;C . 系统的吉布斯函数是: G = U - TS + pV ;D . 系统的熵函数是: S = ;T答案:C.状态函数焓的全微分表达式为dH 为 ( ).(内能焓自由能和吉布斯函数的全微分)(中等)A. TdS - pdV ;B. TdS + Vdp ;C. -SdT - pdV ;D. -SdT + Vdp答案:B.内能函数的全微分表达式为dU 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:A.自由能函数的全微分表达式为dF 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:C.吉布斯函数的全微分表达式为dG 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:D.下列关于状态函数全微分正确的是().(内能焓自由能和吉布斯函数的全微分)(中等)A.内能: dU =TdS -pdV ;B.焓: dH =TdS -Vdp ;C.自由能: dF =-SdT +pdV ;D.吉布斯函数: dG =-SdT -Vdp ;答案:A.下面几个表达式中错误的是( ).(热量和焓)(容易).∂∂p ∂TCp =T∂TA.CVB.CV =∂U; V=∂S; V∂HC. C = ;p∂SD. ;p答案:B.下面关于热力学第零定律的表述错误的是()。

热力学与统计物理试题

热力学与统计物理试题

热力学与统计物理试题一、选择题1. 热力学第一定律表明,一个系统内能的微小改变等于它与周围环境交换的热量与它做的功之和。

若一个气体绝热膨胀,其内能的变化量为:A. 正值B. 负值C. 零D. 无法确定2. 理想气体状态方程为 \( pV = nRT \),其中 \( p \) 代表压力,\( V \) 代表体积,\( n \) 代表物质的量,\( R \) 是气体常数,\( T \) 代表温度。

若温度和物质的量保持不变,而压力增加,则体积的变化为:A. 增加B. 减小C. 不变D. 先增加后减小3. 熵是热力学中用来描述系统无序度的物理量。

在一个孤立系统中,熵的变化趋势是:A. 持续增加B. 持续减少C. 保持不变D. 在特定条件下增加或减少4. 麦克斯韦关系是热力学中描述状态函数之间关系的一组方程。

对于一个理想气体,其等体过程中的温度与熵的关系是:A. 正比B. 反比C. 无关D. 非线性关系5. 统计物理中,微观状态与宏观状态之间的关系是通过什么原理来描述的?A. 能量均分原理B. 等概率原理C. 熵最大原理D. 能量最小原理二、填空题1. 热力学第二定律可以表述为,在一个自发的过程中,熵总是倾向于增加,这个过程是________的。

2. 理想气体的内能只与温度有关,与体积和压力________。

3. 在热力学循环中,卡诺循环的效率是由两个热库的温度决定的,其效率公式为 \( \eta = 1 - \frac{T_{c}}{T_{h}} \),其中 \( T_{c} \) 是________的温度,\( T_{h} \) 是________的温度。

4. 统计物理中,一个系统的宏观状态可以通过多个不同的________来实现。

5. 按照玻尔兹曼熵的定义,一个系统的熵与它的微观状态数目的对数成正比,数学表达式为 \( S = k_B \ln W \),其中 \( k_B \) 是________常数。

统计热力学练习题一

统计热力学练习题一

物理化学试卷班级姓名分数一、选择题( 共10题20分)1. 2 分(1546) NH3分子的平动、转动、振动、自由度分别为:( )(A) 3, 2, 7(B) 3, 2, 6(C) 3, 3, 7(D) 3, 3, 62. 2 分(1369) 近独立定域粒子体系和经典极限下的非定域粒子体系的( )(A) 最概然分布公式不同(B) 最概然分布公式相同(C) 某一能量分布类型的微观状态数相同(D) 以粒子配分函数表示的热力学函数的统计表达示相同3. 2 分(1551) 一个体积为V、粒子质量为m的离域子体系,其最低平动能级和其相邻能级的间隔是:( )(A) h2/(8mV2/3)(B) 3h2/(8mV2/3)(C) 4h2/(8mV2/3)(D) 9h2/(8mV2/3)4. 2 分(1476) 已知I2(g)的基本振动频率ν=21 420 m-1, k B=1.38×10-23 J⋅K-1, h=6.627×10-34 J⋅s, c=3×108 m⋅s-1, 则I2(g) 的振动特征温度Θv为:( )(A) 2.13×10-14 K(B) 1.03×10-8 K(C) 308.5 K(D) 3.23×10-3 K5. 2 分(1513) 气体CO和N2有相近的转动惯量和相对分子摩尔质量,在相同温度和压力时,两者平动和转动熵的大小为:( )(A) S t,m(CO)=S t,m(N2), S r,m(CO)>S r,m(N2)(B) S t,m(CO)>S t,m(N2), S r,m(CO)>S r,m(N2)(C) S t,m(CO)=S t,m(N2), S r,m(CO)<S r,m(N2)(D) S t,m(CO)=S t,m(N2), S r,m(CO)=S r,m(N2)6. 2 分(1433)假定某原子的电子态有两个主要能级,即基态和第一激发态,能级差为1.38 10-21 J,其余能级可以忽略,基态是二重简并的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【1】试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

【2】证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得【3】 满足n pV C =的过程称为多方过程,其中常数n 名为多方指数。

试证明:【4】 试证明:理想气体在某一过程中的热容量n C 如果是常数,该过程一定是多方过程,【5】假设理想气体的p V C C γ和之比是温度的函数,试求在准静态绝热过程中T V 和的关系,【6】利用上题的结果证明:当γ为温度的函数时,理想气体卡诺循环的效率 【7】试根据热力学第二定律证明两条绝热线不能相交。

【8】 温度为0C 的1kg 水与温度为100C 的恒温热源接触后,水温达到100C 。

试分别【9】均匀杆的温度一端为1T 另一端为2T 计算到均匀温度()1212T T +后的熵增。

【10】 物体的初温1T ,高于热源的温度2T ,有一热机在此物体与热源之间工作,直到将【11】有两个相同的物体,热容量为常数,初始温度同为i T 。

今令一制冷机在这两个物体【12】 1mol 理想气体,在27C 的恒温下体积发生膨胀,其压强由20n p 准静态地降到1n p ,【13】 在25C 下,压强在0至1000n p 之间,测得水的体积为 36231(18.0660.715100.04610)cm mol V p p ---=-⨯+⨯⋅ 【14】使弹性体在准静态等温过程中长度由0L 压缩为2L , 【15】 在0C 和1n p 下,空气的密度为31.29kg m -⋅,空气的定压比热容-11996J kg K , 1.41p C γ-=⋅⋅=。

今有327m 的空气,【18】设一物质的物态方程具有以下形式(),p f V T =试证明其能与体积无关【19】 求证: ()0;HS a p ⎛⎫∂< ⎪∂⎝⎭ ()0.U Sb V ∂⎛⎫> ⎪∂⎝⎭ 【20】试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程【21】证明氏气体的定容热容量只是温度T 的函数,与比体积无关. 【22】试讨论以平衡辐射为工作物质的卡诺循环,计算其效率.【23】已知顺磁物质遵从居里定律:().CM H T=居里定律若维物质的温度不变,使磁场【24】 温度维持为25C ,压强在0至1000n p 之间,测得水的实验数据如下: 【25】 试证明氏气体的摩尔定压热容量与摩尔定容热容量之差为【26】试将理想弹性体等温可逆地由0L 拉长至02L 时吸收的热量和能变化. 【27】承上题. 试求该弹性体在可逆绝热过程中温度随长度的变化率.【28】 实验测得顺磁介质的磁化率()T χ. 如果忽略其体积变化,试求特性【29】证明下列平衡判据(假设S >0);(a )在,S V 不变的情形下,稳定平衡【30】试由0V C >及0T p V ∂⎛⎫<⎪∂⎝⎭证明0p C >及0.Sp V ∂⎛⎫< ⎪∂⎝⎭【31】 求证:(a ),,;V n T V S T n μ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (b ),,.T p t n V p n μ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ 【32】求证:,,.T V V nU T n T μμ∂∂⎛⎫⎛⎫-=-⎪ ⎪∂∂⎝⎭⎝⎭ 【33】试证明在相变中物质摩尔能的变化为1.m p dT U L T dp ⎛⎫∆=- ⎪⎝⎭如果一相是气【34】蒸气与液相达到平衡. 以mdV dT表示在维持两相平衡的条件下,蒸气体积【35】由δδδδ0T S p V ->导出平衡稳定性()()22δ2δδδ0.p p TC V V T T p p T T p ⎛⎫∂∂⎛⎫--> ⎪ ⎪∂∂⎝⎭⎝⎭ 【36】 若将U 看作独立变量1,,,,k T V n n 的函数,试证明: 【37】证明()1,,,,i k T p n n μ是1,,k n n 的零次齐函数0.i i ii n n μ⎛⎫∂=⎪∂⎝⎭∑ 【38】 理想溶液中各组元的化学势为(),ln .i i i g T p RT x μ=+(a )假设溶质是非挥发性的. 试证明,当溶液与溶剂的蒸气达到平衡时, 【39】(a )试证明,在一定压强下溶剂沸点随溶质浓度的变化率为()2,1pT RT x L x ∂⎛⎫= ⎪∂-⎝⎭其中L 为纯溶剂的汽化热. 【40】绝热容器中有隔板隔开,两边分别装有物质的量为1n 和的理想气体,【41】 试证明,在3NH 分解为2N 和2H 的反应22313N H NH 022+-=中,平衡常量【42】 物质的量为01n v 的气体A 1和物质的量为02n v 的气体A 2的混合物在温度T 和压强p 下体积为0V ,当发生化学变化334411220,v A v A v A v A +--=【43】 隔板将容器分为两半,各装有1mol 的理想气体A 和B. 它们的构成原 【44】 试根据热力学第三定律证明,在0T →时,一级相变两相平衡曲线的【45】 热力学第三定律要求遵从居里-外斯定律CM H T θ=±的顺磁性固体,【46】 试根据热力学第三定律讨论(a ),(b )两图中哪一个图是正确的?图上画出的是顺磁性固体在0H =和i H H =时的S T -曲线.【47】中 试根据式(6.2.13)证明:在体积V ,在ε到d ε+ε的能量围,三维自由粒子的量子态数为()()132232d 2d .VD m hπεεεε=【48】 在极端相对论情形下,粒子的能量动量关系为.cp ε=【49】 设系统含有两种粒子,其粒子数分别为N 和N '. 粒子间的相互作用很弱,可以看作是近独立的. 假设粒子可以分辨,处在一 【50】同上题,如果粒子是玻色子或费米子,结果如何?【51】 试根据公式l l lp a V ε∂=-∂∑证明,对于相对论粒子()122222xyzcp cnn nL πε==++,【52】 试证明,对于遵从玻耳兹曼分布的定域系统,熵函数可以表示为 【54】气体以恒定速度0υ沿z 方向作整体运动,求分子的平均平动能量. 【55】 表面活性物质的分子在液面上作二维自由运动,可以看作二维气体. 试写出二维气体中分子的速度分布和速率分布,并求平均速率υ,【56】根据麦克斯韦速度分布律导出两分子的相对速度21r =-υυυ和相对速率【57】 试证明,单位时间碰到单位面积器壁上,速率介于υ与d υυ+之间的【58】 分子从器壁的小孔射出,求在射出的分子束中,分子的平均速率、方【59】 已知粒子遵从经典玻耳兹曼分布,其能量表达式为()22221,2x y z p p p ax bx mε=++++其中,a b 是常量,求粒子的平均能量. 【60】 试求双原子分子理想气体的振动熵.【61】 对于双原子分子,常温下kT 远大于转动的能级间距. 试求双原子分子理想气体的转动熵.【62】试根据麦克斯韦速度分布律证明,速率和平均能量的涨落【63】 体积为V 的容器保持恒定的温度T ,容器的气体通过面积为A 的小孔缓慢地漏入周围的真空中,求容器中气体压强降到初始【64】 以()11,,;,r r q q p p ε表示玻耳兹曼系统中粒子的能量,试证明 【65】 已知极端相对论粒子的能量-动量关系为()12222.xyzc p p pε=++假设由近独立、极端相对论粒子组成的气体满足经典极限条件,【66】 试证明,对于玻色或费米统计,玻耳兹曼关系成立,即ln .S k Ω= 【67】试证明,理想玻色和费米系统的熵可分别表示为 【68】求弱简并理想费米(玻色)气体的压强和熵.【69】试证明,在热力学极限下均匀的二维理想玻色气体不会发生玻色-受因 【70】计算温度为T 时,在体积V 光子气体的平均总光子数,并据此估算 【71】 室温下某金属中自由电子气体的数密度283610m ,n -=⨯某半导体中导电电子的数密度为28310m n -=,试验证这两种电子气体是否为简并气体 【72】 试求绝对零度下自由电子气体中电子的平均速率. 【73】 金属中的自由电子可以近似看作处在一个恒定势阱中的自由粒子.下图示意地表示0K 时处在势阱中的电子.χ表示势阱的深度,它等于将【1】试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为 ,pV nRT =(1)由此易得11,p V nR V T pV T α∂⎛⎫=== ⎪∂⎝⎭(2)11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭(3)2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4) 【2】证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰ 如果11,T Tpακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为 (),,V V T p = 其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 全式除以V ,有11.p T dV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=-上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰(3)若11,T T p ακ==,式(3)可表11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ 选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p -即000p V pV C T T ==(常量),或.pV CT =(5) 式(5)就是由所给11,T T pακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

【3】 满足n pV C =的过程称为多方过程,其中常数n 名为多方指数。

试证明:理想气体在多方过程中的热容量n C 为1n V n C C n γ-=- 解:根据式(1.6.1),多方过程中的热容量0lim .n T n n n Q U V C p T T T ∆→∆∂∂⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪∆∂∂⎝⎭⎝⎭⎝⎭(1)对于理想气体,能U 只是温度T 的函数,,V n U C T ∂⎛⎫= ⎪∂⎝⎭所以.n V nV C C p T ∂⎛⎫=+ ⎪∂⎝⎭(2)将多方过程的过程方程式npV C =与理想气体的物态方程联立,消去压强p 可得11n TV C -=(常量)。

相关文档
最新文档