第二十届华罗庚金杯少年数学邀请赛(小学高年级组)-决赛试题B
第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组b卷)

2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组B卷)一、填空题(每小题10分,共80分)1.(10分)计算:3752÷(39×2)+5030÷(39×10)=.2.(10分)如图中,∠A+∠B+∠C+∠D+∠F+∠G 等于度.3.(10分)商店以每张2角1分的价格进了一批贺年卡,共卖14.57元.若每张的售价相同,且不超过买入价格的两倍,则商店赚了角.4.(10分)两个班植树,一班每人植3棵,二班每人植5棵,共植树115棵.两班人数之和最多为.5.(10分)某商店第一天卖出一些笔,第二天每支笔降价1元后多卖出100支,第三天每支笔比前一天涨价3元后比前一天少卖出200支.如果这三天每天卖得的钱相同,那么第一天每支笔售价是元.6.(10分)一条河上有A,B两个码头,A在上游,B在下游.甲、乙两人分别从A,B同时出发,划船相向而行,4小时后相遇.如果甲、乙两人分别从A,B同时出发,划船同向而行,乙16小时后追上甲.已知甲在静水中划船的速度为每小时6千米,则乙在静水中划船每小时行驶千米.7.(10分)某个两位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,那么这个两位数是.8.(10分)在三个给词语“尽心尽力”、“力可拔山”和“山穷水尽”中,每个汉字代表1至8之间的数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字,如果每个词语的汉字所代表的数字之和都是19,且“尽”>“山”>“力”,则“水”最大等于.二、简答题(每小题15分,共60分,要求写出简要过程)9.(15分)有一批作业,王老师原计划每小时批改6本,批改了2小时后,他决定每小时批改8本,结果提前3小时批改完,那么这批作业有多少本?10.(15分)用五种不同的颜色涂正方体的六个面.如果相邻的两个面不能涂同种颜色,则共有多少种不同的涂色方法?(将正方体任意翻转后仍然不同的涂色方法才被认为是不同的)11.(15分)如图所示,有一个圆圈填了数字1.请在空白圆圈内填上2,3,4,5,6中的一个数字,要求无重复数字,且相邻圆圈内的数字的差至少为2.问共有几种不同的填法?12.(15分)边长分别为8cm和6cm的两个正方形ABCD与BEFG如图并排放在一起.连接DE交BG于P,则图中阴影部分APEG的面积是多少?2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小中组B卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)计算:3752÷(39×2)+5030÷(39×10)=61 .【分析】根据除法的性质,原式=3752÷2÷39+5030÷10÷39=1876÷39+503÷39=(1876+503)÷39=2379÷39=61,据此解答即可.【解答】解:3752÷(39×2)+5030÷(39×10)=3752÷2÷39+5030÷10÷39=1876÷39+503÷39=(1876+503)÷39=2379÷39=61;故答案为:61.2.(10分)如图中,∠A+∠B+∠C+∠D+∠F+∠G 等于360 度.【分析】连接CD,有∠G+∠F=∠EDC+∠ECD,这样就转化成四边形的内角和了,四边形的内角和是360度.【解答】解:连接CD,有∠G+∠F=∠EDC+∠ECD,所以,∠A+∠B+∠C+∠D+∠F+∠G=∠A+∠B+∠C+∠D+∠EDC+∠ECD=四边形ABCD的内角和,180×(4﹣2)=180×2=360(度)答:∠A+∠B+∠C+∠D+∠F+∠G 等于 360度.故答案为:360.3.(10分)商店以每张2角1分的价格进了一批贺年卡,共卖14.57元.若每张的售价相同,且不超过买入价格的两倍,则商店赚了47 角.【分析】将14.57元化为整数是1457分,售价应是不超过42的奇数,容易试出答案.【解答】1457分解质因数是1457=31×47,47超过了21的2倍,31符合条件,所以售价是31分,进而数量是47张,47×(31﹣21)=470分=47角故答案为:47.4.(10分)两个班植树,一班每人植3棵,二班每人植5棵,共植树115棵.两班人数之和最多为37 .【分析】设一班a人,二班b人,则有3a+5b=115,求两班人数最多,算式转化成:3(a+b)+2b=115,a+b最大,b尽可能的小,b=2时,a+b =37.【解答】解:设一班a人,二班b人,则3a+5b=115,3(a+b)+2b=115,a+b最大,b尽可能的小,b=1时,得出a不是整数,b=2时,3(a+2)+2×2=1153a+6+4=1153a=105a=35a+b=35+2=37(人)答:两班人数之和最多的是37人.故答案为:37.5.(10分)某商店第一天卖出一些笔,第二天每支笔降价1元后多卖出100支,第三天每支笔比前一天涨价3元后比前一天少卖出200支.如果这三天每天卖得的钱相同,那么第一天每支笔售价是 4 元.【分析】设第一天每支笔售价x元,卖出y支,那么根据总价=单价×数量可知:第一天卖出的钱数就是xy元,第二天的单价就是x﹣1元,卖出的支数是y+100支,第二天卖出的总价就是(x﹣1)(y+100);同理得出第三天卖出的总价,再分别根据第一天卖出的钱数与第二天和第三天卖出的钱数分别相等列出方程组,再化简求解.【解答】解:设第一天的单价为x元,数量为y只,那么有:化简得:解得:答:第一天每支笔售价是 4元.故答案为:4.6.(10分)一条河上有A,B两个码头,A在上游,B在下游.甲、乙两人分别从A,B同时出发,划船相向而行,4小时后相遇.如果甲、乙两人分别从A,B同时出发,划船同向而行,乙16小时后追上甲.已知甲在静水中划船的速度为每小时6千米,则乙在静水中划船每小时行驶10 千米.【分析】在流水行船问题中,两船相遇的速度即两船的速度和,两船追及速度即两船的速度差.相向而行两船所行的路程是A、B两个码头之间的距离,同向而行两船的距离差也为A、B两个码头之间的距离,因此根据路程相等,设乙船的速度是x千米/小时,列出方程(x+6)×4=(x﹣6)×16,解决问题.【解答】解:设乙船的速度是每小时x千米,(x+6)×4=(x﹣6)×164x+24=16x﹣9612x=120x=10答:乙在静水中划船每小时行驶10千米.故答案为:10.7.(10分)某个两位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,那么这个两位数是62 .【分析】根据2、3、5的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数;各位上的数字之和是3的倍数,这个数一定是3的倍数;个位上是0或5的数都是5的倍数;据此解答即可.【解答】解:2、3、4、5的最小公倍数是:2×3×2×5=60,已知这个两位数是偶数,在60~70之间5的倍数是65,又知这个两位数加上3是5的倍数,所以这个两位数是65﹣3=62,答:这个两位数是62.故答案为:62.8.(10分)在三个给词语“尽心尽力”、“力可拔山”和“山穷水尽”中,每个汉字代表1至8之间的数字,相同的汉字代表相同的数字,不同的汉字代表不同的数字,如果每个词语的汉字所代表的数字之和都是19,且“尽”>“山”>“力”,则“水”最大等于7 .【分析】通过分析可知:由“尽心尽力”、“力可拔山”和“山穷水尽”三个词语中每个词语的汉字所代表的数字之和都是19,可得方程:可得3尽+心+2力+可+拔+2山+穷+水=19×3=57而1~8的和是36,则有2尽+1力+1山=57﹣36=21,与(1)比较得山﹣心=2.“尽”>“山”>“力”,“力”尽可能大,“尽”才最小,假定“力”、“山”、“尽”是连续自然数,有2(力+2)+力+1+力=21 “力”为4,此时山=5,心=3,尽=6;(1)式满足:6+3+6+4=19;(3)式:5+穷+水+6=19穷水,水此时最大为7,穷为1,来推倒2式:(2)式:4+可+拔+5=19可拔,而现在只剩下2和8了,满足条件.此时水最大为7若水最大取8时,有但此时6(尽)、4(山)、5(力),不满足“尽”>“山”>“力”,所以不符合要求.故水最大为7.据此解答即可.【解答】解:由“尽心尽力”、“力可拔山”和“山穷水尽”三个词语中每个词语的汉字所代表的数字之和都是19,可得方程:(1)+(2)+(3)可得:3尽+心+2力+可+拔+2山+穷+水=19×3=57而1~8的和是36,则有2尽+1力+1山=57﹣36=21,与(1)比较得山﹣心=2.“尽”>“山”>“力”,“力”尽可能大,“尽”才最小,假定“力”、“山”、“尽”是连续自然数,有2(力+2)+力+1+力=21 “力”为4,此时山=5,心=3,尽=6;(1)式满足:6+3+6+4=19;(3)式:5+穷+水+6=19穷水,水此时最大为7,穷为1,来推倒2式:(2)式:4+可+拔+5=19可拔,而现在只剩下2和8了,满足条件.此时水最大为7若水最大取8时,有但此时6(尽)、4(山)、5(力),不满足“尽”>“山”>“力”,所以不符合要求.故水最大为7.故答案为:7.二、简答题(每小题15分,共60分,要求写出简要过程)9.(15分)有一批作业,王老师原计划每小时批改6本,批改了2小时后,他决定每小时批改8本,结果提前3小时批改完,那么这批作业有多少本?【分析】根据题意知道,这批作业的总数本变,即工作总量一定,那么计划与实际的工作效率与工作时间成反比例,据此设出原计划x小时批改完,列出方程先求出原计划用的小时数,再根据工作效率×工作时间=工作量进而得解.【解答】解:设原计划x小时批改完,由题意得:6×2+8(x﹣3﹣2)=6x12+8x﹣40=6x8x﹣6x=282x=28x=14.6×14=84(本);答:这批作业有84本.10.(15分)用五种不同的颜色涂正方体的六个面.如果相邻的两个面不能涂同种颜色,则共有多少种不同的涂色方法?(将正方体任意翻转后仍然不同的涂色方法才被认为是不同的)【分析】用五种不同的颜色涂正方体的六个面.先确定1种颜色染一组对面,剩下的4种颜色(用a、b、c、d表示)有abcd、acdb、acbd,3种染色方法,有•3=15种;据此解答即可.【解答】解:根据分析可得,•3=5×3=15(种);答:共有15种不同的涂色方法.11.(15分)如图所示,有一个圆圈填了数字1.请在空白圆圈内填上2,3,4,5,6中的一个数字,要求无重复数字,且相邻圆圈内的数字的差至少为2.问共有几种不同的填法?【分析】可以按照数字找位置来分析,数字2不能在1附近,数字3有不在2附近,可以根据数字的位置枚举出来进行分析即可.【解答】解:相邻两个圆圈内的数字的差至少为2,设如图所示字母为a,b,c,d,e所以2只能填在d和e.(1)d处填2,2的周围不能有3.所以3只能填在a处.3的周围不能填4,4只能填在c和e.,5、6不能在一起,所以5填在b.6和4可以在c 和e交换,此时2种填法;(见中图)(2)e处填2,3填a或者b处.3填a处,4、5、6必有两个相邻,没有满足条件的填法;3填b处,4只能填入c处,5只能填入a处,6填入d处.1种填法;(见右图)故共2+1=3种填法.答:共有3种不同的方法.12.(15分)边长分别为8cm和6cm的两个正方形ABCD与BEFG如图并排放在一起.连接DE交BG于P,则图中阴影部分APEG的面积是多少?【分析】首先需要将阴影部分和已知的正方形的边长的关系找到,可根据△APG转换成同底等高的△DPG,然后再根据等积变形的原理与边长为6的正方形联系起来即可解决.【解答】解:依题意可知:将△APG移到△DPG(如上面中图),连接DB,DB与GE平行.△DGE等于△BGE的面积(如上面右图).S阴=6×6÷2=18cm2.答:影部分APEG的面积是18cm2.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 11:00:15;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
第20届华杯赛小高组答案详解

3
二、填空题 (每小题 10 分,共 40 分)
1 1 1 29 41 55 7. 计算: 481 + 265 + 904 − 184 − 160 − 703 =________. 6 12 20 30 42 56
【答案】 600
3 8
【题型】凑整、分数裂项 【解析】
1 1 1 1 1 1 + + − (1 − ) − (1 − ) − (1 − ) 6 12 20 30 42 56 1 1 1 1 1 1 + + + ) = (481 + 265 + 904 − 184 − 160 − 703 − 1 − 1 − 1) + ( + + 6 12 20 30 42 56 1 1 1 1 1 1 1 1 1 1 1 1 = 600 + ( − ) + ( − ) + ( − ) + ( − ) + ( − ) + ( − ) 2 3 3 4 4 5 5 6 6 7 7 8 1 1 = 600 + − 2 8 3 = 600 8 = 481 + 265 + 904 − 184 − 160 − 703 +
4.
足球友谊比赛的票价是 50 元,赛前一小时还有余票,于是决定降价.结果售出的票 增加了三分之一,而票房收入增加了四分之一,那么每张票售价降了( )元. 25 50 (A)10 (B) (C) (D)25 2 3
【答案】B 【题型】方程 【解析】设共有 x 张票,赛前一小时的余票降价 y 元. 1 25 1 由题意得: × ( x × 50) = × [ x × (50 − y)], y = 3 2 4
第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组c卷)

2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)一、填空题(每小题10分,共80分)1.(10分)计算:+=.2.(10分)将自然数1至8分为两组,使两组的自然数各自之和的差等于16,共有种不同的分法.3.(10分)将2015的十位、百位和千位的数字相加,得到的和写在2015个位数字之后,得到一个自然数20153;将新数的十位、百位和千位数字相加,得到的和写在20153个位数字之后,得到201536;再次操作2次,得到201536914,如此继续下去,共操作了2015次,得到一个很大的自然数,这个自然数所有数字的和等于.4.(10分)如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是边长为 9 厘米的正方形,H在AB上,∠EDH是直角,三角形EDH的面积是平方厘米.5.(10分)如图是网格为3×4的长方形纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形.沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出种不同类型的卡片.6.(10分)一个长方体,棱长都是整数厘米,所有棱长之和是 88 厘米,问这个长方体总的侧面积最大是平方厘米.7.(10分)[x﹣]=3x﹣5,这里[x]表示不超过x的最大整数,则x =.8.(10分)右边是一个算式,9个汉字代表数字1至9,不同的汉字代表不同的数字,则该算式可能的最大值是.二、解答下列各题(每小题10分,共40分,要求写出简要过程)9.(10分)已知C地为A,B两地的中点.上午7点整,甲车从A出发向B 行进,乙车和丙车分别从B和C出发向A行进.甲车和丙车相遇时,乙车恰好走完全程的,上午10点丙车到达A地,10点30分当乙车走到A 地时,甲车距离B地还有84千米,那么A和B两地距离是多少千米?10.(10分)将2015个分数,,…,,化成小数,共有多少个有限小数?11.(10分)a,b 为正整数,小数点后第3位经四舍五入后,式子+=1.51,求a+b=?12.(10分)已知算式abcd=aad×e,式中不同字母代表不同的数码,问四位数abcd最大值是多少?三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)在图中,ABCD是平行四边形,F在AD上,△AEF的面积=8cm2,△DEF的面积=12cm2,四边形BCDF的面积=72cm2,求出△CDE的面积?14.(15分)将530本书分给48名学生,至少有几名学生分到的数量相同?2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)计算:+= 1 .【分析】把繁分数的分子分母中的算式分别化简,然后根据分数的基本性质解答即可.【解答】解:+=+=+=1;故答案为:1.2.(10分)将自然数1至8分为两组,使两组的自然数各自之和的差等于16,共有8 种不同的分法.【分析】根据题意,分成的两组之和为(1+8)×8÷2=36,因为两组的自然数各自之和的差等于16,因此和较大的一组等于(36+16)÷2=26,较小的一组是36﹣26=10,由此即可解答.【解答】解:分成的两组之和为:(1+8)×8÷2=9×8÷2=36和较大的一组等于:(36+16)÷2=52÷2=26较小的一组是:36﹣26=10因为10=2+8=3+7=4+6=1+2+7=1+3+6=1+4+5=2+3+5=1+2+3+4相应地26=1+3+4+5+6+7=1+2+4+5+6+8=1+2+3+5+7+8=3+4+5+6+8=2+4+5+7+8=2+3+6+7+8=1+4+6+7+8=5+6+7+8所以共有8种不同的分法故答案为:8.3.(10分)将2015的十位、百位和千位的数字相加,得到的和写在2015个位数字之后,得到一个自然数20153;将新数的十位、百位和千位数字相加,得到的和写在20153个位数字之后,得到201536;再次操作2次,得到201536914,如此继续下去,共操作了2015次,得到一个很大的自然数,这个自然数所有数字的和等于8479 .【分析】按题设条件,操作16次后,如上图,发现数字的规律为:从7次开始数字为11、3、3、5、7,从第12次开始为11、3、3、5、7,这5个数字重复出现.根据整个规律,推出操作了2015次,得到的数,再求和即可.【解答】解:按题设条件,操作16次后,如下:数字的规律为:从7次开始数字为11、3、3、5、7,从第12次开始为11、3、3、5、7,这5个数字重复出现,则操作2015次:(2015﹣6)÷5=401…4,则2015次操作的对应的数字是5;则所有自然数和为:前4位:2+0+1+5=8,后6为:3+6+9+1+4+1+6+6=36,重复的数字和为:1+1+1+3+3+5+7=21,重复401次后,和为401×21=8421,余数4,对应数字的和为:1+1+1+3+3+5=14,以上数字相加即为所有自然数和=8+36+8421+14=8479.故:应该填:8479.4.(10分)如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是边长为 9 厘米的正方形,H在AB上,∠EDH是直角,三角形EDH的面积是101 平方厘米.【分析】1、延长EF、AD交于点K;2、将△DEK和△ADH面积相等,所以,HB=2;3、S阴影=S ABEK﹣S DEK﹣S ADH﹣S BHE【解答】根据上述分析故答案是:S阴影=S ABEK﹣S DEK﹣S ADH﹣S BHE=11×(11+9)﹣0.5×9×11﹣0.5×9×11﹣0.5×2×(11+9)=1015.(10分)如图是网格为3×4的长方形纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形.沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出8 种不同类型的卡片.【分析】可首先分析向左的减法,然后根据左右对称情况得出向右的剪法,减去重合的剪法,从而得出总的不同剪法.【解答】解:先考虑从正面剪,中间那条粗线是一定要剪开的,剪开后,从点1有三种选择,向上向左向右;1、向上:,属于第1种类型;2、向左:剪至点3,又有3种选择,向上向左向下,(1)向上(黑线):,红线是和黑线对称的情况,但按红线剪出的图形旋转后和黑线相同,属于第2种类型;(2)向左:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第3、4种类型;(3)向下:向下剪至点6,有两种选择,向左,向下,①向左:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第5、6种类型;②向下:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第7、8种类型;综上可得,总共有8种类型.故答案是:8.6.(10分)一个长方体,棱长都是整数厘米,所有棱长之和是 88 厘米,问这个长方体总的侧面积最大是224 平方厘米.【分析】长宽高的和是:88÷4=22厘米,长方体的总侧面积最大,长宽高的长度必须最接近,即22=8+7+7,然后再利用长方体的侧面积公式,也就是用底面周长乘高,据此解答即可.【解答】解:长宽高的和是:88÷4=22(厘米),长方体的总侧面积最大,长宽高的长度必须最接近,即22=8+7+7,(7+7)×2×8=28×8=224(平方厘米);答:这个长方体的总侧面积最大是224平方厘米.故答案为:224.7.(10分)[x﹣]=3x﹣5,这里[x]表示不超过x的最大整数,则x=2 .【分析】按题意,要使原式成立,则[x﹣]≤x﹣,⇒3x﹣5≤x﹣,而3x﹣5为整数,不难求得x=2.【解答】解:根据分析,要使原式成立,则[x﹣]≤x﹣,⇒3x﹣5≤x﹣,⇒x≤,∵3x﹣5≥0∴x=2而3x﹣5为整数,不难求得x=2.故答案是:28.(10分)右边是一个算式,9个汉字代表数字1至9,不同的汉字代表不同的数字,则该算式可能的最大值是8569 .【分析】观察这个算式,要使这个算式的值最大,那么两位数与两位数的乘积就要尽可能的大,所以天空=96,则湛蓝=87;同理,两位数与一位数的乘积也要尽可能的大,所以翠绿=43,则树=5;那么盼=1,望=2;据此解答即可.【解答】解:根据分析可得,1×2+43×5+96×87=2+215+8352=8569;故答案为:8569.二、解答下列各题(每小题10分,共40分,要求写出简要过程)9.(10分)已知C地为A,B两地的中点.上午7点整,甲车从A出发向B 行进,乙车和丙车分别从B和C出发向A行进.甲车和丙车相遇时,乙车恰好走完全程的,上午10点丙车到达A地,10点30分当乙车走到A 地时,甲车距离B地还有84千米,那么A和B两地距离是多少千米?【分析】首先根据甲丙相遇走完全程的一半,乙走完全程的即可列出一组甲乙丙速度的关系式,再根据丙3小时走一半路程,乙3.5小时走完全程可以列出乙丙的速度关系式.重点求出甲乙的速度比,根据甲车距离B 地84千米,求得对应的份数,即可求出所求.【解答】解:根据题意可知,当甲丙相遇时走完全程的一半,乙走完全程的,即(V甲+V丙)=V乙.①再根据丙3小时走了全程的一半,乙3.5小时走完全程,即6V丙=3.5V乙.②根据①②得:V甲:V乙=3:4.所以甲乙路程之比就是3:4.一份量是:84÷(4﹣3)=84千米.全程是:84×4=336千米.故答案为:336千米.10.(10分)将2015个分数,,…,,化成小数,共有多少个有限小数?【分析】先找出分母中只有因数2,5,同时有2和5的数的个数,即可得出结论.【解答】解:在2015个分数,,…,,的分母中,只有因数2的数有2,4,8,16,32,64,128,256,512,1024共10个数,只有因数5的数有5,25,125,625共4个数,既有因数2,也有因数5的数有10,20,40,50,80,100,160,200,250,320,400,500,640,800,1000,1250,1280,1600,2000共19个数,所以总有10+4+19=33个有限小数,答:共有33个有限小数.11.(10分)a,b 为正整数,小数点后第3位经四舍五入后,式子+=1.51,求a+b=?【分析】根据条件,代入验证,求出a,b,即可得出结论.【解答】解:由题意,a=7,则取b=1,+=1.4+0.143≈1.54,不符合题意;a=6,则取b=3,+=1.2+0.429≈1.63,不符合题意;a=5,则取b=4,+=1+0.571≈1.57,不符合题意;a=4,则取b=5,+=0.8+0.714≈1.51,符合题意;∴a+b=9.12.(10分)已知算式abcd=aad×e,式中不同字母代表不同的数码,问四位数abcd最大值是多少?【分析】aad×e=abcd中,d×e的个位数仍为d(1~9)×1=(1~9)(2、4、6、8)×6=(12、24、36、48)5×(3、5、7、9)=(15、25、35、45)【解答】解:从上面的分析可以看出e可能为1、6、(3、5、7、9)设:e为9,希望得最大值,则d为5从a=(1~9)检测,得115×9=1035225×9=2025335×9=3015…通过检测,∴abcd的最大值为3015答:这个四位数最大是3015.三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)在图中,ABCD是平行四边形,F在AD上,△AEF的面积=8cm2,△DEF的面积=12cm2,四边形BCDF的面积=72cm2,求出△CDE的面积?【分析】连接BD(如下图),若△AEF以AF为底、△EFD以FD为底,他们的高相等,则底边比等于面积比,可以求出AF:DF=2:3;若△ABF、△BFD分别以AF、FD为底,他们高相同,则S△ABF=0.2×S▱ABCD、而S△BDF=0.6×S△ABD=0.3×S▱ABCD;S△BCDF=S△BFD+S△BCD,求出S▱ABCD;由S△ABF=0.2×S▱ABCD,求出S△ABF;,根据S△AEB=S△ABF﹣S△AEF,可以S△AEB;S△AEB与S△ECD之和为平行四边形面积的一半,可以求出S△ECD.【解答】解:连接BD(如上图),根据△AEF的面积=8cm2,△DEF的面积=12cm2,求出AF:DF=8:12=2:3;S△BCDF=S△BFD+S△BCD=0.5S▱ABCD+0.3S▱ABCD=0.8S▱ABCD=72,所以:S▱ABCD=90;S△ABF=0.2S▱ABCD=18,S△ABE=S△ABF﹣S△AEF=10;S△ABE+S△ECD=0.5×S▱ABCD=45;故S△ECD=45.答:S△ECD的面积为45cm2.14.(15分)将530本书分给48名学生,至少有几名学生分到的数量相同?【分析】①若48名学生分到的数量互不相同,则至少要:0+1+2+3+…+47=1128>530,不满足条件;②若只有2名学生分到的书数量相同,则至少要:(0+1+2+3+…+23)×2=552>530,不满足条件;③若只有3名学生分到的书数量相同,则至少要:(0+1+2+3+…+15)×3=360<530,满足条件;所以至少3名学生分到的书数量相同,据此解答即可.【解答】解:①若48名学生分到的数量互不相同,则至少要:0+1+2+3+…+47=1128>530,不满足条件;②若只有2名学生分到的书数量相同,则至少要:(0+1+2+3+…+23)×2=552>530,不满足条件;③若只有3名学生分到的书数量相同,则至少要:(0+1+2+3+…+15)×3=360<530,满足条件;所以至少3名学生分到的书数量相同.答:至少3名学生分到的书数量相同.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:59:44;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)

2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)一、填空题(每题10分,共80分)1.(10分)计算:(﹣)×÷﹣2.4=.2.(10分)如图,有30个棱长为1米的正方体堆成一个四层的立体图形.请问:这个立体图形的表面积等于多少?3.(10分)有一片草场,10头牛8天可以吃完草场上的草;15头牛,如果从第二天开始每天少一头,可以5天吃完.那么草场上每天长出来的草够头牛吃一天.4.(10分)如图所示,将一个三角形纸片ABC折叠,使得点C落在三角形ABC 所在平面上,折痕为DE.已知∠ABE=74°,∠DAB=70°,∠CEB=20°,那么CDA 等于.5.(10分)甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟.如果在出发后第45分钟甲、乙二人相遇,那么乙走一圈的时间是分钟.6.(10分)如图,正方形ABCD的边长为5,E,F为正方形外两点,满足AE=CF=4,BE=DF=3,那么EF2=.7.(10分)如果2×38能表示成k个连续正整数的和,则k的最大值为.8.(10分)现有算式:甲数□乙数○1,其中□,○是符号+,﹣,×,÷中的某两个.李雷对四组甲数、乙数进行了计算,结果见表格,那么,A○B=.二、解答下列各题(每题10分,共40分)9.(10分)计算:(++…+)+(++…+)+(++…+)+…+(+)+.10.(10分)商店春节促销,顾客每次购物支付现金时,每100元可得一张价值50元的代金券.这些代金券不能兑成现金,但可以用来购买商品,规则是:当次购物得到的代金券不能当次使用;每次购物支付的现金不少于购买商品价值的一半.李阿姨只有不超过1550元的现金,她能买到价值2300元的商品吗?如果能,给她设计一个购物方案;如果不能,说明理由.11.(10分)如图,等腰直角三角形ABC与等腰直角三角形DEF之间的面积为20,BD=2,EC=4,求三角形ABC的面积.12.(10分)试找出这样的最大的五位正整数,它不是11的倍数,通过划去它的若干数字也不能得到可被11整除的数.三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)如图,正方形ABCD的面积为1,M是CD边的中点,E,F是BC 边上的两点,且BE═EF=FC.连接AE,DF分别交BM分别于H,G.求四边形EFGH的面积.14.(15分)现有如图左边所示的“四连方”纸片五种,每种的数量足够多.要在如图右边所示的5×5方格网上,放“四连方”,“四连方”可以翻转,“四连方”的每个小方格都要与方格网的某个小方格重合,任意两个“四连方”不能有重叠部分.那么最少放几个“四连方”就不能再放了?2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)参考答案与试题解析一、填空题(每题10分,共80分)1.(10分)计算:(﹣)×÷﹣2.4= 4.1.【分析】先从括号里算起,先化简,将原式进行巧算,最后求得原式结果.【解答】解:根据分析,原式=(﹣)×÷﹣2.4=()×﹣2.4=()×11×=()×﹣2.4=﹣2.4=﹣2.4==﹣2.4=﹣2.4=﹣2.4=6.5﹣2.4=4.1故答案是:4.1.【点评】本题考查了分数的巧算,突破点是:利用分数的巧算,将分数化简,最后求得结果.2.(10分)如图,有30个棱长为1米的正方体堆成一个四层的立体图形.请问:这个立体图形的表面积等于多少?【分析】这个几何体的表面积就是露出小正方体的面的面积之和,从上面看有16个面;从下面看有16个面;从前面看有10个面;从后面看有10个面;从左面看有10个面;从右面看有10个面.由此即可解决问题.【解答】解:图中几何体露出的面有:10×4+16×2=72(个)所以这个几何体的表面积是:1×1×72=72(平方米)答:这个立体图形的表面积等于72平方米.【点评】此题考查了观察几何体的方法的灵活应用;应抓住这个几何体的表面积是露出的小正方体的面的面积之和是解决此类问题的关键.3.(10分)有一片草场,10头牛8天可以吃完草场上的草;15头牛,如果从第二天开始每天少一头,可以5天吃完.那么草场上每天长出来的草够5头牛吃一天.【分析】转换思想,将15头牛,如果从第二天开始每天少一头,可以5天吃完转换成13头牛吃5天即可解决问题.【解答】解:依题意可知:10×8﹣(15+14+13+12+11)=15(份).15头牛,如果从第二天开始每天少一头,可以5天吃完可以转换成13头牛吃5天.15÷(8﹣5)=5(份)故答案为:5【点评】本题考查对牛吃草问题的理解和运用,关键问题是找到转换过程,问题解决.4.(10分)如图所示,将一个三角形纸片ABC折叠,使得点C落在三角形ABC 所在平面上,折痕为DE.已知∠ABE=74°,∠DAB=70°,∠CEB=20°,那么CDA 等于92°.【分析】在折叠前,可利用三角形内角和,求得∠C的度数,折叠后,利用三角形外角和以及四边形的内角和求得∠CDA.【解答】解:根据分析,折叠前,由三角形内角和,∠C=180°﹣74°﹣70°=36°,折叠后,∠EOD=∠C+∠CEO=36°+20°=56°;∠BOD=180°﹣∠DOE=180°﹣56°=124°,∠CDA=360°﹣∠ABE﹣∠BAE﹣∠BOD=360°﹣70°﹣74°﹣124°=92°.故答案是:92°.【点评】本题考查了剪切和拼接,突破点是:利用折叠前三角形内角和,求得∠C的度数,折叠后,利用三角形外角和以及四边形的内角和求得∠CDA5.(10分)甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟.如果在出发后第45分钟甲、乙二人相遇,那么乙走一圈的时间是126分钟.【分析】甲剩下的路程就是乙已走的路程,那么甲走25分钟路程与乙走45分钟的路程相同,两者的速度与时间成反比例;行完全程时,再根据速度比,求出乙行完全程的时间.【解答】解:70﹣45=25(分钟),甲走25分钟路程与乙走45分钟的路程相同,那么甲的速度:乙的速度=45:25,行完全程两者所用的时间比就是:25:45;乙走一圈用的时间是:70÷25×45=126(分).答:乙走一圈的时间是126分钟.故答案为:126.【点评】本题的关键是根据两者的行走的路程相同,找出速度的比和时间的比,再根据甲的时间和时间的比求解.6.(10分)如图,正方形ABCD的边长为5,E,F为正方形外两点,满足AE=CF=4,BE=DF=3,那么EF2=98.【分析】可以将EA、FD、FC、EB分别延长这样就把图形扩展成一个大的正方形,再利用勾股定理,不难求得EF2.【解答】解:根据分析,如图:将EA、FD、FC、EB分别延长,这样就把图形扩展成一个大的正方形,∵AE=CF=4,BE=DF=3,∴CM=OA=DF=EB=3,BM=OD=CF=AE=4又∵DF2+CF2=CD2,AE2+EB2=AB2,OA2+OD2=AD2,CM2+BM2=BC2∴∠AEB=∠DFC=∠AOD=∠BMC=90°,∴EO=FO=3+4=7∴EF2=OE2+OF2=72+72=98故答案是:98【点评】本题考查了勾股定理,突破点是:利用正方形的边长和勾股定理,求得EF27.(10分)如果2×38能表示成k个连续正整数的和,则k的最大值为108.【分析】首先可将k个连续的正整数设出来,求其和,抓住k取最大进行求解.【解答】解:设k的连续整数分别是n+1,n+2,n+3,…,n+k,则和==,由于k最大,则n最小,且k<2n+k+1,=2×38,即k×(2n+k+1)=22×38=(22×34)×34=35×(22×33),因此k的最大值为34=108.故答案为:108.【点评】本题的突破口在于能根据题目要求正确地将和的式子进行分解.8.(10分)现有算式:甲数□乙数○1,其中□,○是符号+,﹣,×,÷中的某两个.李雷对四组甲数、乙数进行了计算,结果见表格,那么,A○B=.【分析】可以根据已知,先根据表格中的数字规律求得□,○是哪个运算符号,然后再算A○B的结果.【解答】解:根据分析,由表格中的数字可得:□○1=13;2□2○1=5,⇒□○1=13;由2□2○1=5,可知2+2+1=5,2×2+1=5,若2+2+1=5,则++1=13不成立,故排除,所以2×2+1=5;综上,□为“×”,○为“+”,由表可知,A=2□○1=2×+1=;B=□2○1==,A○B=A+B=+=.故答案是:.【点评】本题考查了定义新运算,本题突破点是:根据表格中的数字规律,求得□和○的符号,再求A○B.二、解答下列各题(每题10分,共40分)9.(10分)计算:(++…+)+(++…+)+(++…+)+…+(+)+.【分析】先根据算式找规律,把同分母的分数合成一组,然后根据高斯求和公式解答即可.【解答】解:(++…+)+(++…+)+(++…+)+…+(+)+=+(+)+(++)+…+(++…+)+(++…+)=+1++…++=+++…++==1015560【点评】本题考查了分数的巧算,关键是把分数分组,难点是利用高斯求和公式求出分子.10.(10分)商店春节促销,顾客每次购物支付现金时,每100元可得一张价值50元的代金券.这些代金券不能兑成现金,但可以用来购买商品,规则是:当次购物得到的代金券不能当次使用;每次购物支付的现金不少于购买商品价值的一半.李阿姨只有不超过1550元的现金,她能买到价值2300元的商品吗?如果能,给她设计一个购物方案;如果不能,说明理由.【分析】此题首先看一下1550最多能得多少代金券,即1500÷2=750,而2300=1550+750刚好不多不少,也就是说,1550现金必须和所有能得到的750代金券全部消费掉才能买到价值2300的商品.怎样才能把代金券和现金一起消费掉?我们从最后一次消费考虑就不难得出结论了.经过分析,如果最后一次消费是100或150以上均无法买到价值2300的商品,原因是后面所换的代金券不能单独用,题目是要求代金券必须和现金一起用.由此推断,要想买到价值2300的商品,最后一次消费必须是50现金+50代金券(为什么是50代金券,而不是100代金券,也是题意要求,现金不少于支付商品价值的一半)由50元代金券可知上次消费的现金是100,而和同步用的代金券也必须是100,如是推理,请看如下所示:50+50(代金券)100+100(代金券)200+200(代金券)400+400(代金券)800左边是现金800+400+200+100+50=1550元,右边是代金券400+200+100+50=750元,这样能买到的商品价值是1550+750=2300元,故能买到.据此解答即可.【解答】解:根据题意可知:(1)由于最后一次购买东西换的代金券是不能使用的,因为有1500元的钱需要换750元的购物券,到最后一次最多可以用50元现金;(2)为了尽可能多的使用代金券,每次尽量用到一半的代金券,每一次的代金券由上一次购物获得;(3)第一次只能用现金.这样最后一次用50元现金和50元代金券;倒数第二次用100元现金和100元代金券;倒数第三次用200元现金和200元代金券;倒数第四次用400元现金和400元代金券;倒数第五次用800元现金.满足条件的答案为:第一次用800元现金;第二次用400元现金和400元代金券;第三次用200元现金和200元代金券;第四次用100元现金和100元代金券;第五次用50元现金和50元代金券.总共:800+400+400+200+200+100+100+50+50=2300(元)所以用不超过1550元的现金,她能买到价值2300元的商品.【点评】本题为复杂的统筹方法问题,需要全面考虑.11.(10分)如图,等腰直角三角形ABC与等腰直角三角形DEF之间的面积为20,BD=2,EC=4,求三角形ABC的面积.【分析】可以利用等积变形,将△DEF向B点平移,△DEF的形状大小不变,平移后△DEF的DF与AB重合,此时等腰直角三角形ABC与等腰直角三角形DEF 之间的面积仍不变,而此时EC的长从原来的4变成了6,此时不难计算出三角形ABC的面积.【解答】解:根据分析,利用等积变形,将△DEF向B点平移,△DEF的形状大小不变,平移后△DEF的DF与AB重合,此时等腰直角三角形ABC与等腰直角三角形DEF 之间的面积仍不变,而此时EC的长从原来的4变成了6,如图所示:过E作EG⊥AC交AC于G,Rt△EGC中,不难得知,EG=GC=,又∵等腰直角三角形ABC与等腰直角三角形DEF之间的面积为20,即梯形ACEF 的面积为20,∴(EF+AC)×EG×=(EF+AG+GC)×EG×=(2×EF+3)×3×=20⇒EF=,则BF=,△BEF的面积=BF×EF==,三角形ABC的面积=△BEF的面积+20==.故答案是:.【点评】本题考查了三角形的面积,突破点是:利用等积变形,平移后三角形的面积不变,形状不变,再利用面积公式算得三角形ABC的面积.12.(10分)试找出这样的最大的五位正整数,它不是11的倍数,通过划去它的若干数字也不能得到可被11整除的数.【分析】五位数的最大数,根据被11整除的特征,奇数位上的数字和与偶数位数字和的差是11的倍数,因此五位数不能被11整除,可以先确定万位上的数字,再逐个确定其它数字【解答】解:根据分析,设此五位数为,最大的五位数,则a=9,若此五位数为90000,显然不能被11整除,故符合题意的最大的五位数必大于90000,若b=9,则划去后为99,能被11整除,故b≠9,若b=8,则划去后为98,不能被11整除,∴b=8,若c=9或8,则划去8再划去后,为99,不和题意,划去再划去9后为88,不合题意,∴c=7,划去若干数字后不能被11整除,若d=9,8,或7,均不合题意,d=6时划去若干数后不能被11整除,∴d=6若e=9,8,7或6,均不合题意,故e=5,综上所述,此五位数为:98765【点评】本题考查了被11整除的特征,本题突破点是:根据11整除的特征,需要逆向思维算出哪些数不能被11整除,求出最大值三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)如图,正方形ABCD的面积为1,M是CD边的中点,E,F是BC 边上的两点,且BE═EF=FC.连接AE,DF分别交BM分别于H,G.求四边形EFGH的面积.【分析】过M做MQ平行BC交DF于Q,过E作EP平行AB交BM于P,利用线段之间的比例关系,求得三角形之间的面积之比,最后求得阴影部分的面积.【解答】解:根据分析,如图,过M做MQ平行BC交DF于Q,过E作EP平行AB交BM于P,∵M为CD中点,所以QM:PC=1:2,∴QM:BF=1:4,所以GM:GB=1:4,∴BG:BM=4:5;又因为BF:BC=2:3,;∵E为BC边上三等分点,所以EP:CM=1:3,∴EP:AB=1:6,∴BH:HP=6:1,∴BH:HM=6:15=2:5,BH:BG=2:7,又∵GM:GB=1:4,∴BH:BG=5:14,∴,∴.故答案是:.【点评】本题考查了三角形的面积,突破点是:利用比例关系,求得三角形的面积比,从而最后求得阴影部分的面积.14.(15分)现有如图左边所示的“四连方”纸片五种,每种的数量足够多.要在如图右边所示的5×5方格网上,放“四连方”,“四连方”可以翻转,“四连方”的每个小方格都要与方格网的某个小方格重合,任意两个“四连方”不能有重叠部分.那么最少放几个“四连方”就不能再放了?【分析】此题与常规填充题不同的是,本题要求放置几个“四连方”之后,没有空间再放置任何一个“四连方”.【解答】解:本题需要尽可能“不合理”利用空间,使用尽可能少的“四连方”占据空间,使余下的空白方格不能容下任何一个“四连方”,如下图所示,放入3个之后,再没有空间放任何一个“四连方”,而如果只放2个的话,还余下25﹣2×4=17块,必然会存在连续的空间可以放下“四连方”.所以:最少放3个“四连方”就不能再放了.【点评】要尽可能“不合理”利用空间,就使被放置的“四连方”分隔的空白部分尽量大又不能连成4块.。
第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组b卷)

2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)一、填空题(每题10分,共80分)1.(10分)计算:(﹣)×÷﹣2.4=.2.(10分)如图,有30个棱长为1米的正方体堆成一个四层的立体图形.请问:这个立体图形的表面积等于多少?3.(10分)有一片草场,10头牛8天可以吃完草场上的草; 15头牛,如果从第二天开始每天少一头,可以5天吃完.那么草场上每天长出来的草够头牛吃一天.4.(10分)如图所示,将一个三角形纸片ABC折叠,使得点C落在三角形ABC所在平面上,折痕为DE.已知∠ABE=74°,∠DAB=70°,∠CEB=20°,那么CDA等于.5.(10分)甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟.如果在出发后第45分钟甲、乙二人相遇,那么乙走一圈的时间是分钟.6.(10分)如图,正方形ABCD的边长为5,E,F为正方形外两点,满足AE =CF=4,BE=DF=3,那么EF2=.7.(10分)如果2×38能表示成k个连续正整数的和,则k的最大值为.8.(10分)现有算式:甲数□乙数○1,其中□,○是符号+,﹣,×,÷中的某两个.李雷对四组甲数、乙数进行了计算,结果见表格,那么,A○B =.二、解答下列各题(每题10分,共40分)9.(10分)计算:(++…+)+(++…+)+(++…+)+…+(+)+.10.(10分)商店春节促销,顾客每次购物支付现金时,每100元可得一张价值50元的代金券.这些代金券不能兑成现金,但可以用来购买商品,规则是:当次购物得到的代金券不能当次使用;每次购物支付的现金不少于购买商品价值的一半.李阿姨只有不超过1550元的现金,她能买到价值2300元的商品吗?如果能,给她设计一个购物方案;如果不能,说明理由.11.(10分)如图,等腰直角三角形ABC与等腰直角三角形DEF之间的面积为20,BD=2,EC=4,求三角形ABC的面积.12.(10分)试找出这样的最大的五位正整数,它不是11的倍数,通过划去它的若干数字也不能得到可被11整除的数.三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)如图,正方形ABCD的面积为1,M是CD边的中点,E,F是 BC 边上的两点,且BE═EF=FC.连接AE,DF分别交BM分别于H,G.求四边形EFGH的面积.14.(15分)现有如图左边所示的“四连方”纸片五种,每种的数量足够多.要在如图右边所示的5×5方格网上,放“四连方”,“四连方”可以翻转,“四连方”的每个小方格都要与方格网的某个小方格重合,任意两个“四连方”不能有重叠部分.那么最少放几个“四连方”就不能再放了?2016年第二十一届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)参考答案与试题解析一、填空题(每题10分,共80分)1.(10分)计算:(﹣)×÷﹣2.4= 4.1 .【分析】先从括号里算起,先化简,将原式进行巧算,最后求得原式结果.【解答】解:根据分析,原式=(﹣)×÷﹣2.4=()×﹣2.4=()×11×=()×﹣2.4=﹣2.4=﹣2.4==﹣2.4=﹣2.4=﹣2.4=6.5﹣2.4=4.1故答案是:4.1.2.(10分)如图,有30个棱长为1米的正方体堆成一个四层的立体图形.请问:这个立体图形的表面积等于多少?【分析】这个几何体的表面积就是露出小正方体的面的面积之和,从上面看有16个面;从下面看有16个面;从前面看有10个面;从后面看有10个面;从左面看有10个面;从右面看有10个面.由此即可解决问题.【解答】解:图中几何体露出的面有:10×4+16×2=72(个)所以这个几何体的表面积是:1×1×72=72(平方米)答:这个立体图形的表面积等于72平方米.3.(10分)有一片草场,10头牛8天可以吃完草场上的草; 15头牛,如果从第二天开始每天少一头,可以5天吃完.那么草场上每天长出来的草够5 头牛吃一天.【分析】转换思想,将 15头牛,如果从第二天开始每天少一头,可以5天吃完转换成13头牛吃5天即可解决问题.【解答】解:依题意可知:10×8﹣(15+14+13+12+11)=15(份).15头牛,如果从第二天开始每天少一头,可以5天吃完可以转换成13头牛吃5天.15÷(8﹣5)=5(份)故答案为:54.(10分)如图所示,将一个三角形纸片ABC折叠,使得点C落在三角形ABC所在平面上,折痕为DE.已知∠ABE=74°,∠DAB=70°,∠CEB=20°,那么CDA等于92°.【分析】在折叠前,可利用三角形内角和,求得∠C的度数,折叠后,利用三角形外角和以及四边形的内角和求得∠CDA.【解答】解:根据分析,折叠前,由三角形内角和,∠C=180°﹣74°﹣70°=36°,折叠后,∠EOD=∠C+∠CEO=36°+20°=56°;∠BOD=180°﹣∠DOE=180°﹣56°=124°,∠CDA=360°﹣∠ABE﹣∠BAE﹣∠BOD=360°﹣70°﹣74°﹣124°=92°.故答案是:92°.5.(10分)甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟.如果在出发后第45分钟甲、乙二人相遇,那么乙走一圈的时间是126 分钟.【分析】甲剩下的路程就是乙已走的路程,那么甲走25分钟路程与乙走45分钟的路程相同,两者的速度与时间成反比例;行完全程时,再根据速度比,求出乙行完全程的时间.【解答】解:70﹣45=25(分钟),甲走25分钟路程与乙走45分钟的路程相同,那么甲的速度:乙的速度=45:25,行完全程两者所用的时间比就是:25:45;乙走一圈用的时间是:70÷25×45=126(分).答:乙走一圈的时间是126分钟.故答案为:126.6.(10分)如图,正方形ABCD的边长为5,E,F为正方形外两点,满足AE =CF=4,BE=DF=3,那么EF2=98 .【分析】可以将EA、FD、FC、EB分别延长这样就把图形扩展成一个大的正方形,再利用勾股定理,不难求得EF2.【解答】解:根据分析,如图:将EA、FD、FC、EB分别延长,这样就把图形扩展成一个大的正方形,∵AE=CF=4,BE=DF=3,∴CM=OA=DF=EB=3,BM=OD=CF=AE=4又∵DF2+CF2=CD2,AE2+EB2=AB2,OA2+OD2=AD2,CM2+BM2=BC2∴∠AEB=∠DFC=∠AOD=∠BMC=90°,∴EO=FO=3+4=7∴EF2=OE2+OF2=72+72=98故答案是:987.(10分)如果2×38能表示成k个连续正整数的和,则k的最大值为108 .【分析】首先可将k个连续的正整数设出来,求其和,抓住k取最大进行求解.【解答】解:设k的连续整数分别是n+1,n+2,n+3,…,n+k,则和==,由于k最大,则n最小,且k<2n+k+1,=2×38,即k×(2n+k+1)=22×38=(22×34)×34=35×(22×33),因此k的最大值为34=108.故答案为:108.8.(10分)现有算式:甲数□乙数○1,其中□,○是符号+,﹣,×,÷中的某两个.李雷对四组甲数、乙数进行了计算,结果见表格,那么,A○B =.【分析】可以根据已知,先根据表格中的数字规律求得□,○是哪个运算符号,然后再算A○B的结果.【解答】解:根据分析,由表格中的数字可得:□○1=13;2□2○1=5,⇒□○1=13;由2□2○1=5,可知2+2+1=5,2×2+1=5,若2+2+1=5,则++1=13不成立,故排除,所以2×2+1=5;综上,□为“×”,○为“+”,由表可知,A=2□○1=2×+1=;B=□2○1==,A○B=A+B=+=.故答案是:.二、解答下列各题(每题10分,共40分)9.(10分)计算:(++…+)+(++…+)+(++…+)+…+(+)+.【分析】先根据算式找规律,把同分母的分数合成一组,然后根据高斯求和公式解答即可.【解答】解:(++…+)+(++…+)+(++…+)+…+(+)+=+(+)+(++)+…+(++…+)+(++…+)=+1++…++=+++…++==101556010.(10分)商店春节促销,顾客每次购物支付现金时,每100元可得一张价值50元的代金券.这些代金券不能兑成现金,但可以用来购买商品,规则是:当次购物得到的代金券不能当次使用;每次购物支付的现金不少于购买商品价值的一半.李阿姨只有不超过1550元的现金,她能买到价值2300元的商品吗?如果能,给她设计一个购物方案;如果不能,说明理由.【分析】此题首先看一下1550最多能得多少代金券,即1500÷2=750,而2300=1550+750刚好不多不少,也就是说,1550现金必须和所有能得到的750代金券全部消费掉才能买到价值2300的商品.怎样才能把代金券和现金一起消费掉?我们从最后一次消费考虑就不难得出结论了.经过分析,如果最后一次消费是100或150以上均无法买到价值2300的商品,原因是后面所换的代金券不能单独用,题目是要求代金券必须和现金一起用.由此推断,要想买到价值2300的商品,最后一次消费必须是50现金+50代金券(为什么是50代金券,而不是100代金券,也是题意要求,现金不少于支付商品价值的一半)由50元代金券可知上次消费的现金是100,而和同步用的代金券也必须是100,如是推理,请看如下所示:50+50(代金券)100+100(代金券)200+200(代金券)400+400(代金券)800左边是现金800+400+200+100+50=1550元,右边是代金券400+200+100+50=750元,这样能买到的商品价值是1550+750=2300元,故能买到.据此解答即可.【解答】解:根据题意可知:(1)由于最后一次购买东西换的代金券是不能使用的,因为有1500元的钱需要换750元的购物券,到最后一次最多可以用50元现金;(2)为了尽可能多的使用代金券,每次尽量用到一半的代金券,每一次的代金券由上一次购物获得;(3)第一次只能用现金.这样最后一次用50元现金和50元代金券;倒数第二次用100元现金和100元代金券;倒数第三次用200元现金和200元代金券;倒数第四次用400元现金和400元代金券;倒数第五次用800元现金.满足条件的答案为:第一次用800元现金;第二次用400元现金和400元代金券;第三次用200元现金和200元代金券;第四次用100元现金和100元代金券;第五次用50元现金和50元代金券.总共:800+400+400+200+200+100+100+50+50=2300(元)所以用不超过1550元的现金,她能买到价值2300元的商品.11.(10分)如图,等腰直角三角形ABC与等腰直角三角形DEF之间的面积为20,BD=2,EC=4,求三角形ABC的面积.【分析】可以利用等积变形,将△DEF向B点平移,△DEF的形状大小不变,平移后△DEF的DF与AB重合,此时等腰直角三角形ABC与等腰直角三角形DEF之间的面积仍不变,而此时EC的长从原来的4变成了6,此时不难计算出三角形ABC的面积.【解答】解:根据分析,利用等积变形,将△DEF向B点平移,△DEF的形状大小不变,平移后△DEF的DF与AB重合,此时等腰直角三角形ABC与等腰直角三角形DEF之间的面积仍不变,而此时EC的长从原来的4变成了6,如图所示:过E作EG⊥AC交AC于G,Rt△EGC中,不难得知,EG=GC=,又∵等腰直角三角形ABC与等腰直角三角形DEF之间的面积为20,即梯形ACEF的面积为20,∴(EF+AC)×EG×=(EF+AG+GC)×EG×=(2×EF+3)×3×=20⇒EF=,则BF=,△BEF的面积=BF×EF==,三角形ABC的面积=△BEF的面积+20==.故答案是:.12.(10分)试找出这样的最大的五位正整数,它不是11的倍数,通过划去它的若干数字也不能得到可被11整除的数.【分析】五位数的最大数,根据被11整除的特征,奇数位上的数字和与偶数位数字和的差是11的倍数,因此五位数不能被11整除,可以先确定万位上的数字,再逐个确定其它数字【解答】解:根据分析,设此五位数为,最大的五位数,则a=9,若此五位数为90000,显然不能被11整除,故符合题意的最大的五位数必大于90000,若b=9,则划去后为99,能被11整除,故b≠9,若b=8,则划去后为98,不能被11整除,∴b=8,若c=9或8,则划去8再划去后,为99,不和题意,划去再划去9后为88,不合题意,∴c=7,划去若干数字后不能被11整除,若d=9,8,或7,均不合题意,d=6时划去若干数后不能被11整除,∴d=6若e=9,8,7或6,均不合题意,故e=5,综上所述,此五位数为:98765三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)如图,正方形ABCD的面积为1,M是CD边的中点,E,F是 BC 边上的两点,且BE═EF=FC.连接AE,DF分别交BM分别于H,G.求四边形EFGH的面积.【分析】过M做MQ平行BC交DF于Q,过E作EP平行AB交BM于P,利用线段之间的比例关系,求得三角形之间的面积之比,最后求得阴影部分的面积.【解答】解:根据分析,如图,过M做MQ平行BC交DF于Q,过E作EP 平行AB交BM于P,∵M为CD中点,所以QM:PC=1:2,∴QM:BF=1:4,所以GM:GB=1:4,∴BG:BM=4:5;又因为BF:BC=2:3,;∵E为BC边上三等分点,所以EP:CM=1:3,∴EP:AB=1:6,∴BH:HP=6:1,∴BH:HM=6:15=2:5,BH:BG=2:7,又∵GM:GB=1:4,∴BH:BG=5:14,∴,∴.故答案是:.14.(15分)现有如图左边所示的“四连方”纸片五种,每种的数量足够多.要在如图右边所示的5×5方格网上,放“四连方”,“四连方”可以翻转,“四连方”的每个小方格都要与方格网的某个小方格重合,任意两个“四连方”不能有重叠部分.那么最少放几个“四连方”就不能再放了?【分析】此题与常规填充题不同的是,本题要求放置几个“四连方”之后,没有空间再放置任何一个“四连方”.【解答】解:本题需要尽可能“不合理”利用空间,使用尽可能少的“四连方”占据空间,使余下的空白方格不能容下任何一个“四连方”,如下图所示,放入3个之后,再没有空间放任何一个“四连方”,而如果只放2个的话,还余下25﹣2×4=17块,必然会存在连续的空间可以放下“四连方”.所以:最少放3个“四连方”就不能再放了.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 11:02:07;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
第10~21届全国华罗庚金杯少年数学邀请赛试题

第十届“华罗庚金杯”少年数学邀请赛初赛试题1、2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年。
问这两次远洋航行相差多少年?2、从冬至之日起每九天分为一段,依次称之为一九,二九,……,九九,2004年的冬至为12月21日,2005年的立春是2月4日。
问立春之日是几九的第几天?3、右下方是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形。
问这个直三棱柱的体积是多少?4、爸爸、妈妈、客人和我四人围着圆桌喝茶。
若只考虑每人左邻的情况,问共有多少种不同的入座方法?5、在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米。
求三项的总距离。
6、如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。
其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,……问这列数中的第9个是多少?7、一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示。
若用甲容器取水来注满乙容器,问:至少要注水多少次?8、100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组。
问:高、低年级学生各多少人?9、小鸣用48元钱按零售价买了若干练习本。
如果按批发价购买,每本便宜2元,恰好多买4本。
问:零售价每本多少元?10、不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈。
问最多有多少名同学?11、输液100毫升,每分钟输2.5毫升。
请你观察第12分钟时吊瓶图像中的数据,回答整个吊瓶的容积是多少毫升?12、两条直线相交所成的锐角或直角称为两条直线的“夹角”。
现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°。
第二十届“华杯赛”决赛小高组试题A答案解析

此时对应的数是115、552 或 232、435 .
10.酒店有 100 个标准间,房价为 400 元/天,但入住率只有 50%,若每降低 20 元的房价, 则能增加 5 间入住,求合适的房价,使酒店收到的房费最高.
【考点】组合、最值 【难度】☆☆☆ 【答案】22500 【分析】初始状况是:400 元、50 间, 设降价了 x 个 20 元, 房费是: (400 20x)(50 5x) 100(20 x)(10 x)
7.一次数学竞赛有 A、B、C 三题,参赛的 39 个人中,每个至少答对了一道题.在答对 A 的
人中,只答对 A 的比还答对其它题目的多 5 人;在没答对 A 的人中,答对 B 的是答对 C 的
2 倍;又知道只答对 A 的等于只答对 B 的与只答对 C 的人数之和,那么答对 A 的最多有
______________人. 【考点】组合、容斥原理、最值问题 【难度】☆☆☆☆ 【答案】23 【分析】根据题意得,如下图所示:只答对 A 的人数是 3b a ,答对 A 还答对其他题目的人
S D G I F A 84 若从 2 以上开始, S 77 ,不可能,所以这十一个数是 1~11 则 S=66,则 D G I F A 18 8 4 3 2 1 7 5 3 2 1 6 5 4 2 1 分(1)(2)(3)情况讨论: (1) H 12 矛盾 (2) E 7 矛盾 (3)
个数和为 6 a b c d 1111 73326 ,得 a b c d 11 ,此时只有数字 1、2、
3、5. 这些四位数中最大的是 5321.
6.如右图所示,从长、宽、高分别为15cm , 5cm , 4cm 的 长方体中切割走一块长、宽、高分别为 ycm , 5cm , xcm 的
【小中组】第20届华杯赛决赛

第二十届华罗庚金杯少年数学邀请赛决赛(A )卷【小中组】1. 森林里举行比赛,要派出狮子、老虎、豹子和大象中的两个动物去参加,如果派狮子去,那么也要派老虎取;如果不派豹子去,那么也不能派老虎去;要是豹子参加的话,大象可不愿意去,那么,最后能去参加比赛的是( )A. 狮子、老虎B.老虎、豹子C.狮子、豹子D.老虎、大象2. 小明有多张面额为1元,2元和5元的人民币,他想用其中不多于10张的人民币购买一只价格为18元的风筝,要求至少用两种面额的人民币,那么不同的付款方式有( )种. A.3 B.9 C.11 D.83. 如右图,在有1×1的正方形组成的网格中,写有2015四个数字(阴影部分),其边线要么是水平,要么是竖直的直线段,要么是连接1×1正方形相邻两边中点的线段,或者是1×1的正方形的对角线,则图中2015四个数字(阴影部分)的面积是( ) A.47 B.2147C.48D.21484. 新生入校后,合唱队,田径队,舞蹈队共招收学员100人,如果合唱队招收的人数比田径队多一倍,舞蹈队比合唱队多10人,那么舞蹈队招收( )人.(注:每人限加入一个队) A.30 B.42 C.46 D.525.一只旧钟的时针和分针每重合一次,需要经过标准时间66分钟,那么这只旧钟的24小时比标准时间的24小时()A.快12分B.快6分C.慢6分D.慢12分6.一次考试共有6道选择题,评分规则如下:每人先给6分,答对一题加4分,答错一题减一分,不答得0分,现有51名同学参加考试,那么,至少有()人得分相同.A.3B.4C.5D.67.计算:_____(=⨯+314-151000+++.⨯)-+-+)110(15(314360)360201201110)1000(8.角可以用它的两边上的两个大写字母和顶点的字母表示,(如右图的AOB∠表示,∠,也可以用0顶点处只有一个角时),下面的三角形ABC中,οBCO∠ACO=∠AOCABOBAO,则_____CAO∠CBO,,==110∠,∠∠∠=∠CBO.=9.张叔叔和李叔叔的年龄和是56岁,当张叔叔的年龄是李叔叔现在年龄的一半时,李叔叔当时的年龄是张叔叔现在的年龄,那么张叔叔现在有______岁.10.妈妈决定假期带小花驾车去10个城市旅游,小花查完地图后惊奇地发现:10个城市的任意三个城市之间或者都开通了高速公路,或者只有两个城市间没有开通高速路,那么这10个城市间至少开通了______条高速公路.(注:两个城市间最多只有一条高速公路)第二十届华罗庚金杯少年数学邀请赛决赛(A )卷参考答案【小中组】1.解析:【知识点】逻辑推理假设派狮子去,那么老虎也去,那么豹子就不去,这样老虎也不能去,矛盾,A 排除; 假设派狮子去,那么老虎也去,C 排除; 不派豹子去,那么也不能派老虎去,D 排除; 故只能派老虎和豹子去,答案选B 2.解析:【知识点】计数,枚举 付款方式有以下几种:3×5+1×2+1×1=18,3×5+1×3=18,2×5+4×2=18,2×5+3×2+2×1=18,2×5+2×2+4×1=18, 2×5+1×2+6×1=18,2×5+8×1=18,1×5+6×2+1×1=18,1×5+5×2+3×1=18,1×5+4×2+5×1, 8×2+2×1=18;总共11种,答案选C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十届华罗庚金杯少年数学邀请赛
决赛试题B (小学高年级组)
(考试时长:90分钟)
一、填空题(每小题 10分, 共80分)
1. 计算: ⨯+⨯-⨯+=8184157.628.81448010552
. . 2. 甲、乙、丙、丁四人共植树60棵. 已知, 甲植树的棵数是其余三人的二分之一, 乙植树的棵数是其余三人的三分之一, 丙植树的棵数是其余三人的四分之一, 那么丁植树 棵.
3. 当时间为5点8分时, 钟表面上的时针与分针成 度的角.
4. 某个三位数是2的倍数, 加1是3的倍数, 加2是4的倍数, 加3是5的倍数, 加4是6的倍数, 那么这个数最小为 .
5. 贝塔星球有七个国家, 每个国家恰有四个友国和两个敌国, 没有三个国家两两都是敌国.对于一种这样的星球局势, 共可以组成 个两两都是友国的三国联盟.
6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656, 则这些四位数中最大的是 , 最小的是 .
7. 见右图, 三角形ABC 的面积为1, 3:1:=OB DO ,
5:4:=OA EO , 则三角形DOE 的面积为 .
8. 三个大于1000的正整数满足: 其中任意两个数之和的个位数字都等于第三个数的个位数字, 那么这3个数之积的末尾3位数字有 种可能数值.
二、解答下列各题(每题10分, 共40分, 要求写出简要过程)
9. 将 1234567891011的某两位的数字交换能否得到一个完全平方数? 请说明理由.
10. 如右图所示, 从长、宽、高为15, 5, 4的长方体中切
割走一块长、宽、高为y , 5, x 的长方体(x , y 为整数),
余下部分的体积为120, 求x 和 y .
11. 圆形跑道上等距插着2015面旗子, 甲与乙同时同向从某个旗子出发, 当甲与
乙再次同时回到出发点时, 甲跑了23圈, 乙跑了13圈. 不算起始点旗子位置, 则甲正好在旗子位置追上乙多少次?
12. 两人进行乒乓球比赛, 三局两胜制, 每局比赛中, 先得11 分且对方少于10分者胜; 10平后多得2分者胜. 两人的得分总和都是31分, 一人赢了第一局并且赢得了比赛, 那么第二局的比分共有多少种可能?
三、解答下列各题(每小题 15分,共30分,要求写出详细过程)
13. 如右图所示, 点M 是平行四边形ABCD 的边CD 上
的一点, 且2:1: MC DM , 四边形EBFC 为平行
四边形, FM 与BC 交于点G . 若三角形FCG 的面积
与三角形MED 的面积之差为13cm 2, 求平行四边形
ABCD 的面积.
14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个, 相同的汉字代表相同的数, 不同的汉字代表不同的数. 如果每个成语中四个汉字所代表的数之和都是21, 则“行”可以代表的数最大是多少?
试题说明:决赛试题小高B 组,各地第一题数据略有不同。
网站上只是公布了其中的一套试题。
第二十届华罗庚金杯少年数学邀请赛
决赛试题B参考答案
(小学高年级组)
一、填空题(每题10 分, 共80分)
二、解答下列各题(每题10 分, 共40分, 要求写出简要过程)
9.答案: 不能
10.答案: 3, 12
11.答案: 4.
12.答案: 8
三、解答下列各题(每题15 分, 共30分, 要求写出详细过程)
13.答案: 60 cm2
14.答案: 8。