传热学实验指导书

合集下载

传热学综合试验指导书

传热学综合试验指导书

传热学综合实验指导书李长仁富丽新编写沈阳航空工业学院动力工程系2004.01实验一空气纵掠平板时参数的测定流体纵掠平板是对流换热中最典型的问题,总是被优先选作教学中对流换热的对象,是可以分析求解的最简单情况,可以籍此阐明对流换热的原理和基本概念。

本实验应用空气纵掠平板对流换热装置完成以下三个实验:1.空气纵掠平板时局部换热系数的测定;2.空气纵掠平板时流动边界层内的速度分布;3.空气纵掠平板时热边界层内的温度分布。

一空气纵掠平板时局部换热系数的测定1.实验目的1)流体纵掠平板是对流换热中最典型的问题之一,通过空气纵掠平板时局部换热系数的测定,加深对对流换热基本概念和规律的理解。

2)通过对实测数据的整理,了解局部换热系数沿平板的变化规律,分析讨论其变化原因。

3)了解实验装置的原理,学习对流换热实验研究方法和测试技术。

2.实验原理恒热流密度下,沿板长局部换热系数改变,联系着壁温沿板长也变化,因此就存在纵向导热。

同时壁温不同向外界辐射散热也不同。

为了确定对流换热系数,必须考虑纵向导热和辐射的影响。

图1微元片热平衡分析对平板上不锈钢片进行热分析,取其微元长度dx,如图1所示,在稳定情况下的热平衡:电流流过微左侧导入右侧导对流传给辐射散对板体元片的发热 + 热量 = 出的热 + 空气的热 + 失的热 + 的散热量Qδ/Q g Q cdin量Q cdout量Q cv量Q R量Q cd各项可分别写为:dx L VI dx b q Q v g ⎪⎭⎫⎝⎛=⋅⋅⋅=2δx s cdin dxdT b Q |⋅⋅⋅-=δλ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⋅⋅-=⋅⋅⋅-=+dx dx dT dx d dx dT b dx dT b Q s dx x s cdout δλδλ| ()bdx T T Q f x cv -=α()bdx T T Q f b R 44-=εσ0=cd Q式中: b ─片宽,m δ─片厚,m L ─平板长度,m V ─不锈片两端电压降,V I ─流过不锈钢片的电流量,Iq v ─电流产生的体积发热值λs ─不锈钢片的导热系数,w/(m •℃)T ─不锈钢片壁温,K T f ─空气来流温度,Kαx ─离板前缘x 处的局部换热系数,w/(m 2•℃) ε─不锈钢片黑度σb ─斯蒂芬波尔兹曼常数=5.67×10-8,w/(m 2·K 4) 代入微元片热平衡式后得出局部换热系数的表达式:()ff b s x T T T T dx Td bL VI ---+=44222εσδλα (1) 上式中V 、I 、T 、T f 均可由测试得到,但由于壁温T 随x 变化,只能用作图法求d 2T /dx 值。

传热学实验指导书

传热学实验指导书

差和热系统中温度差的比例尺度,C= e1 − e2 ( v / °c )。当两个表面均为对流边界条件时, t1 − t2
C=
e∞1 t ∞1
− e∞2 − t∞2
(v/ °c)
,其中
e1, e2
分别为相应于外墙和内墙壁温的电势值,
e∞1, e∞ 2
为相应流体温度的电动势。也就是图中节点上的电动势。在先定比例系数后就可先定加 在电模型最外层两边界上电动势差值。利用系数可以从测得的电动势值换算相应的温度 值。
图 1-2
模拟墙角的几何尺寸为 L1 = 2.2m, L2 = 3.0m, L3 = 2.0m, L4 = 1.2m ;材料的导热系 数为 λ =0.53W\(m.K,).. 等温边界条件时,墙角外壁面温度 t1 = 30°c ,内壁面温度 t2 =0°c ;模拟墙角两端应
维持 2V 的电压差,电压、温度比例系数 c1
相应的电网络节点上的电动势方程为
ei−1, j − ei, j + ei, j−1 − ei, j + ei+1, j − ei, j + ei, j+1 − ei, j = 0 (1-4)
R1
R2
R3
R4
图 1—1
只要满足 R1 = R2 = R3 = R4 = R
的条件,式( 1-3)和式(1-4 )完全类似。
导热现象和导电现象之间的相似之处可以从他们的数学描写式可以看出。 在导热系统中,二维稳定导热微分方程为:
∂ 2t + ∂ 2t = 0 (1-1) ∂x 2 ∂y 2 在导电系统中,二维稳定导电微分方程为:
∂ 2e + ∂ 2e = 0 (1-2) ∂x 2 ∂y 2

《传热学》实验指导书

《传热学》实验指导书

传热学实验指导书XX大学XX学院XX系二〇一X年X月一、导热系数的测量导热系数是反映测量热性能的物理量,导热是热交换三种基本形式之一,是工程热物理、材料科学、固体物理及能源、环保等各研究领域的课题之一。

要认识导热的本质特征,需要了解粒子物理特性,而目前对导热机理的理解大多数来自固体物理实验。

材料的导热机理在很大程度上取决于它的微观结构,热量的传递依靠原子、分子围绕平衡位置的振动以及电子的迁移,在金属中电子流起支配作用,在绝缘体和大部分半导体中则以晶格振动起主导作用。

因此,材料的导热系数不仅与构成材料的物质种类有关,而且与它的微观结构、温度、压力及杂质含量相联系。

在科学实验和工程设计中所采用材料导热系数都需要用实验方法测定。

1882年法国科学家J ·傅里叶奠定了热传导理论,目前各种测量导热系数的方法都是建立在傅里叶热传导定律的基础上,从测量方法来说,可分为两大类:稳态法和动态法,本实验是稳态平板法测量材料的导热系数。

【实验目的】1、了解热传导现象的物理过程2、学习用稳态平板法测量材料的导热系数3、学习用作图法求冷却速率4、掌握一种用热电转换方式进行温度测量的方法【实验仪器】1、YBF-3导热系数测试仪 一台2、冰点补偿装置 一台3、测试样品(硬铝、硅橡胶、胶木板) 一组4、塞尺 一把5、游标卡尺(量程200mm ) 一把6、天平(量程1kg ,分辨率0.1g ) 一台【实验原理】为了测定才材料的导热系数,首先从热导率的定义和它的物理意义入手。

热传导定律指出:如果热量是沿着Z 方向传导,那么在Z 轴上任一位置Z 0,处取一个垂直截面A (如图1)以dt/dz 表示Z 处的温度梯度,以dQ/d τ表示该处的传热速率(单位时间通过截面积A 的热量),那么传导定律可表示为:()0z z dz dt d dQ A =-==Φλτ 1-1式中的负号表示热量从高温向低温区传导(即热传导的方向与温度梯度的方向相反)。

南昌大学传热学实验指导书1

南昌大学传热学实验指导书1

传热学实验指导书南昌大学机电学院热能与动力工程系目录实验一稳态平板法测定绝热材料导系数 (2)实验二自由对流横管管外放热系数的测定 (5)实验三中温法向辐射时物体黑度的测定 (9)实验一 绝热材料稳态平板法导热系数测定一、 测试目的1 巩固和深化稳定导热过程的基本理论,学习用平板法测定绝热材料导热系数的实验方法和技能。

2 测定实验材料的导热系数。

3 确定实验材料导热系数与温度的关系。

二、 测试原理导热系数是表征材料导热能力的物理量。

对于不同的材料,导热系数是各不相同的;对同一材料,导热系数还会随着温度、压力、湿度、物质的结构和重度等因素而变异。

各种材料的导热系数都用实验方法来测定,如果要分别考虑不同因素的影响,就需要针对各种因素加以试验,往往不能只在一种实验设备上进行。

稳态平板法是一种应用一维稳态导热过程的基本原理来测定材料导热系数的方法,可以用来进行导热系数的测定实验,测定材料的导热系数及其和温度的关系。

实验设备是根据在一维稳态情况下通过平板的导热量Q 和平板两面的温差Δt 成正比,和平板的厚度δ成反比,以及和导热系数λ成正比的关系来设计的。

我们知道,通过薄壁平板(壁厚小于十分之一壁长和壁宽)的稳定导热量为:F t Q ⋅∆⋅=δλ[W] 测试时,如果将平板两面的温差Δt =T R -T L 、平板厚度δ、垂直热流方向的导热面积F 和通过平板的Q 测定以后,就可以根据下式得出导热系数: Ft Q ⋅∆=δλ [ W/(m 。

℃)] 需要指出,下式所得的导热系数是在当时的平均温度下材料的导热系数值,此平均温度为: )(21L R t t t +=-[℃] 在不同的温度和温差条件下测出相应的λ值。

然后将λ值标在λ--t 坐标图内,就可以得出λ=f(-t )的关系曲线。

三、 实验装置及测量仪表稳态平板法测定绝热材料的实验装置如图1-1所示。

被实验材料作成二块方形薄壁平板试件,面积为300×300[mm 2],实际导热计算面积F 为 200×200 [mm 2] , 板的厚度δ为20[mm]。

传热学试验参考指导书

传热学试验参考指导书

[实验一]用球体法测定粒状材料导热系数一、实验目1、巩固和深化稳态导热基本理论,学习测定粒状材料热导率办法。

2、拟定热导率和温度之间函数关系。

二、实验原理热导率是表征材料导热能力物理量,其单位为W/(m ·K),对于不同材料,热导率是不同。

对于同一种材料,热导率还取决于它化学纯度,物理状态(温度、压力、成分、容积、重量和吸湿性等)和构造状况。

各种材料热导率都是专门实验测定出来,然后汇成图表,工程计算时,可以直接从图表中查取。

球体法就是应用沿球半径方向一维稳态导热基本原理测定粒状和纤维状材料导热系数实验办法。

设有一空心球体,若内外表面温度各为t 1和t 2并维持不变,依照傅立叶导热定律:drdtr dr dt Aλπλφ24-=-=(1) 边界条件2211t t r r t t r r ====时时(2)1、若λ=常数,则由(1)(2)式求得122121122121)(2)(4d d t t d d r r t t r r --=--=πλπλφ[W])(2)(212112t t d d d d --=πφλ[W/(m ·K)](3)2、若λ≠常数,(1)式变为drdtt r )(42λπφ-=(4) 由(4)式,得dt t r dr tt r r ⎰⎰-=2121)(42λπφ 将上式右侧分子分母同乘以(t 2-t 1),得)()(4121222121t t t t dtt rdr t t r r ---=⎰⎰λπφ(5) 式中1221)(t t dtt t t -⎰λ项显然就是λ在t 1和t 2范畴内积分平均值,用m λ表达即1221)(t t dtt t t m -=⎰λλ,工程计算中,材料热导率对温度依变关系普通按线性关系解决,即)1(0bt +=λλ。

因而,)](21[)1(21012021t t bt t dtbt t t m ++=-+=⎰λλλ。

这时,(5)式变为)(2)(4)(21211222121t t d d d d r drt t r r m --=-=⎰πφπφλ[W/(m ·K)](6) 式中,m λ为实验材料在平均温度)(2121t t t m +=下热导率, φ为稳态时球体壁面导热量,21t t 、分别为内外球壁温度, 21d d 、分别为球壁内外直径。

传热学实验指导书

传热学实验指导书

《传热学》实验指导书热工教研室编目录实验要求 (2)实验一球体法粒状材料的导热系数的测定 (3)实验二平板法导热系数的测定 (7)实验三套管换热器液-液换热实验 (12)实验四中温辐射黑度的测定 (16)附录1 铜-康铜热电偶分度表 (22)附录2 精密数字温度温差仪使用方法 (23)实验要求1.实验前应预习与实验有关的教材内容和实验指导书,了解实验目的、实验原理和实验要求,做到心中有数。

2.在实验室要首先熟悉实验装置的构造特点、性能和使用方法,使用贵重仪器时需得到指导教师的许可,方可动用。

3.实验时应严肃认真、一丝不苟,细致地观察实验中的各种现象,并作好记录,通过实验,训练基本操作技能和培养科学的工作作风。

4.实验结束时,学生先自行检查全部实验记录,再经指导教师审阅后,方可结束实验。

5.学生实验时,如出现实验仪器损坏情况,应及时向指导教师报告。

6.按规定格式认真填写实验报告,并按期交出。

实验一球体法粒状材料的导热系数的测定一、实验目的1.巩固稳定导热的基本理论,学习球体法测定物质的导热系数的实验方法;2.实验测定被测材料的导热系数λ;3. 绘制出材料导热系数λ与温度t的关系曲线。

二、实验原理加热圆球(见图1)由两个壁厚1.2毫米的大小同心圆球(1)组成。

小球内装有电加热器(2)用来产生热量。

大球内壁与小球外壁各设有三对铜-康铜热电偶(4)。

当温度达到稳定状态后,电加热器产生的热量全部通过中间的测试材料(3)传到外气。

1.大小同心球;2.电加热器;3.颗粒状试材;4.铜康铜热电偶;5.专用稳压电源;6.专用测试仪;7.底盘;8.UJ36a电位差计图1 加热圆球示意图测取小球的温度t1,t2,t3, 取其平均温度:T1=(t1+ t2+ t3)/3;测取大球的温度t4,t5, t6,取其平均温度:T2=(t4+ t5+ t6)/3;根据圆球导热公式:λ=[UI(1/ D1-1/D2)]/[2π(T1+ T2)]-----------(1); 式中:U——加热电压;I——加热电流;D1——小球直径;D2——大球直径;三、实验装置及主要技术指标实验装置YQF-1型导热系数测定仪的面板图见图2专用电源的面板图见图3图2 YQF-1型导热系数测定仪的面板图图3 专用电源的面板图1.电源开关;2.电源指示灯;3. 3.5位数显毫伏表;4.毫伏表调零电位器;5.补偿电压调节电位器;6.补偿按键;7.热电偶测量电压输出端;8.热电偶输入选择开关。

传热学实验指导.

传热学实验指导.

实验一 稳态平板法测定绝热材料导热系数一、实验目的1.巩固和深化稳定导热过程的基本理论,学习用平板法测定绝热材料导热系数的实验方法和技能;2.学会如何测定实验材料的导热系数;3.了解确定实验材料导热系数与温度的关系。

二、实验内容1.利用稳态平板法测定绝热材料导热系数;2.确定实验材料导热系数与温度的关系。

三、仪器设备稳态平板法测定绝热材料导热系数的实验装置如图1-1所示。

被实验材料做成二块方形薄壁平板试件,面积为300×300[mm 2],实际导热计算面积A 为200×200[mm 2],板的厚度为δ[mm]。

平板试件分别被夹紧在加热器的上下热面和上下水套的冷面之间。

加热器的上下面和水套与试件的接触面都设有铜板,以使温度均匀。

利用薄膜式加热片实现对上、下试件热面的加热,而上下导热面积水套的冷却面是通过循环冷却水(或通以自来水)来实现。

在中间200×200[mm 2]部位上安设的加热器为主加热器。

为了使主加热器的热量能够全部单向通过上下两个试件,并通过水套的冷水带走,在主加热器四周(即200×200[mm 2]之外的四侧)设有四个辅助加热器(1~4),利用专用的温度跟踪控制器使主加热器以外的四周保持与中间主加热器的温度相一致,以免热流量向傍侧散失。

主加热器的中心温度1t (或2t )和水套冷面的中心温度3t (或4t )用4个热电偶(埋没在铜板上)来测量;辅助加热器1和辅助加热器2的热面也分别设置两个辅热电偶5t 和6t (埋没在铜板的相应位置上),其中一个辅热电偶(5t )(或6t )接到温度跟踪控制器上,与主加热器中心接来的主热电偶2t (或1t )的温度讯号相比较,通过跟踪器使全部辅加热器都跟踪到与主加热器的温度相一致。

而在实验进行时,可以通过热电偶1t (或2t )和热电偶3t (或4t )测量出一个试件的两个表面的中心温度。

也可以再测量一个辅热电偶的温度,以便与主热电偶的温度相比较,从而了解主、辅加热器的控制和跟踪情况。

传热实验指导

传热实验指导

实验一 传热实验一、实验目的1、学习总传热系数及对流传热系数的测定方法;2、利用测定的对流传热系数,检验通用的给热准数关联式;3、应用传热学的概念和原理去分析强化传热过程等问题。

二、实验任务测定空气在圆形光滑直管中作湍流流动时对流传热准数关联式。

三、实验原理1、无相变时,流体在圆形直管中强制对流时的给热系数(亦称对流传热系数)的关联式为(1)λαd Nu =对空气而言,在较大的温度和压力范围内Pr 准数实际上保持不变,取Pr=0.7。

因流体被加热,故取b =0.4,Prb 为一常数,则上式可简化为:() (2)将上式两边取对数得:(3)上式中~作图为一直线。

实验中改变空气的流速以改变值,同时根据牛顿冷却定律求出不同流速下的给热系数a ,得出数Nu 和数Re 之间的函数关系,由式(3)确定出式中的系数A 与指数a 。

2、根据传热速率方程:m t KS Q ∆=当管壁很薄时,可近似当成平壁处理。

且由于管壁材料为黄铜,导热系数大,可以忽略管壁传导热阻。

又因为在该传热实验中,空气走内管,蒸气走外管。

o i 《αα因此, 对流传热系数i α≈K 。

im i S t Q ⨯∆=α (4)式中:i α—管内流体对流传热系数,W/(m 2·℃); Q —管内传热速率,W ; S i —管内换热面积,m 2;m t ∆—内壁面与流体间的温差,℃。

3、在套管换热器中传热达稳定后,根据牛顿冷却定律和热衡算式有如下的关系: )(12t t Cp W Q m m -= (6) 其中质量流量由下式求得:3600m m m V W ρ=式中:Q :传热速率, W ; Vm :空气的体积流量, m3/s ;ρm :空气的密度, kg/m3; :空气的平均比热, J/kg× ℃;t1:空气的进口温度, ℃; t2:空气的出口温度, ℃; Δtm :内管管壁与空气温差的对数平均值(5)式中T 为内管管壁的温度, ℃。

t 1,t 2 —空气的入口、出口温度,℃;管内换热面积: i i L d S π= (7) 式中:d i —内管管内径,m ;L i —传热管测量段的实际长度,m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[实验一]用球体法测定粒状材料的导热系数一、实验目的1、巩固和深化稳态导热的基本理论,学习测定粒状材料的热导率的方法。

2、确定热导率和温度之间的函数关系。

二、实验原理热导率是表征材料导热能力的物理量,其单位为W/(m ·K),对于不同的材料,热导率是不同的。

对于同一种材料,热导率还取决于它的化学纯度,物理状态(温度、压力、成分、容积、重量和吸湿性等)和结构情况。

各种材料的热导率都是专门实验测定出来的,然后汇成图表,工程计算时,可以直接从图表中查取。

球体法就是应用沿球半径方向一维稳态导热的基本原理测定粒状和纤维状材料导热系数的实验方法。

设有一空心球体,若内外表面的温度各为t 1和t 2并维持不变,根据傅立叶导热定律:drdtr dr dt Aλπλφ24-=-= (1) 边界条件2211t t r r t t r r ====时时 (2)1、若λ= 常数,则由(1)(2)式求得122121122121)(2)(4d d t t d d r r t t r r --=--=πλπλφ[W])(2)(212112t t d d d d --=πφλ [W/(m ·K)] (3)2、若λ≠ 常数,(1)式变为drdtt r )(42λπφ-= (4) 由(4)式,得dt t r dr tt r r ⎰⎰-=2121)(42λπφ 将上式右侧分子分母同乘以(t 2-t 1),得)()(4121222121t t t t dtt rdr t t r r ---=⎰⎰λπφ (5)式中1221)(t t dtt t t -⎰λ项显然就是λ在t 1和t 2范围内的积分平均值,用m λ表示即1221)(t t dtt t t m -=⎰λλ,工程计算中,材料的热导率对温度的依变关系一般按线性关系处理,即)1(0bt +=λλ。

因此,)](21[)1(21012021t t bt t dtbt t t m ++=-+=⎰λλλ。

这时,(5)式变为)(2)(4)(21211222121t t d d d d r drt t r r m --=-=⎰πφπφλ [W/(m ·K)] (6)式中,m λ为实验材料在平均温度)(2121t t t m +=下的热导率, φ为稳态时球体壁面的导热量,21t t 、分别为内外球壁的温度, 21d d 、分别为球壁的内外直径。

实验时,应测出21t t 、和φ,并测出21d d 、,然后由(3)或(6)得出m λ。

如果需要求得λ和t 之间的变化关系,则必须测定不同m t 下的m λ值,由)1()1(202101m m m m bt bt +=+=λλλλ (7)可求的b 、0λ值,得出λ和t 之间的关系式)1(0bt +=λλ。

三、实验设备导热仪本体结构和测量系统如图1-1所示。

本体有两个很薄的铜制同心球壳1和2组成。

内球壳外径为d1,外球壳外径为d2,在两球壳之间均匀填满粒状材料(如砂子、珍珠岩、石棉灰等)。

内壳中装有电加热器,它产生的热量将通过粒状材料导至外壳,为使内外球壳同心,两球之间有支撑杆。

由试料导出的热量从外壳表面以自然对流的方式由空气带走,球外商部和下部的空气流动情况不同,外球表面温度分布不均匀,因此在内外球壳的表面上各埋置3~6个对热电偶,用来测量内外球壳的温度,并取其平均值作为球壁的表面温度。

球内试料应力求松紧均匀,填满空间,室温应尽量保持不变,避免日光直射球壳,应防止人员走动、风等对球壳表面空气自由流动的干扰,以便使外球壳的自然对流放热状态稳定,这样才能在试料内建立一维稳态温度场。

四、实验步骤1、将试料烘干,并根据给定的被测材料的容量,算出仪器内所需装填的试料重量,然后均匀的装入球内;2、将所有仪器仪表按图1-1接好,并经指导教师检查;3、接通电源,用调压变压器将电压调到一定的数值并保持不变,观察各项测量数据的变化情况;4、当各项数据基本不随时间变化时,说明系统已达稳定状态,开始测量并记录,每隔5分钟测一次,并测3次;5、整理数据,选取一组数据,代入计算式,计算值m ;图1-1 导热仪本体结构和测量系统1.内球壳 2.外球壳 3.电加热器 4.热电偶 5.转换开关 6.冰点保温瓶 7.电位差计 8.调压变压器 9.电压表 10.电流表6、改变电加热器的电压,即改变热流,使它维持在另一数值上,当达到新的稳态后,重复步骤4和5,得到新的m λ值。

利用两种情况下的m λ值,由(7)式求得b 、0λ值,得出λ和t 之间的关系式)1(0bt +=λλ。

五、实验报告要求1、画出实验装置系统简图;2、实验过程中所测量的原始数据记录3、实验表格和计算结果4、实验结果的误差分析和讨论六、思考题1、试料填充的不均匀所产生的影响是什么?2、内外球壳不同心所产生的影响是什么?3、室内空气不平静会产生什么影响?4、怎样判断、检验球体导热过程已达到稳态?5、怎样按测得的数据,计算圆球表面自然对流换热系数?6、球体导热仪从开始加热到热稳态所需时间取决于哪些因素?[试验二]空气外掠单管管外放热系数的测定一、实验目的1、了解对流放热的实验研究方法。

2、测定空气横向流过单管表面时的平均放热系数h ,并将试验数据整理成准则方程式,加深对相似理论的理解。

3、学习测量风速、温度和热量的基本技能。

二、实验原理根据相似理论,流体受迫外掠物体时的放热系数h 与流速、物体几何形状及尺寸、流体物性间的关系可用下列准则方程式描述:Pr)(Re,f Nu =实验研究表明,流体横掠单管表面时,一般可将上式整理成下列具体的指数形式m n C Nu Pr Re =式中:c 、n 、m 均为常数,由实验确定,audhdNu ννλ===Pr ,Re ,上述各准则中d 为实验管外径,作定性尺寸[m]u 为流体流过实验管外最窄面处流速[m/s] λ为流体的热导率[W/(m ·K)]a 为流体的导温系数[m 2/s] ν为流体运动黏度[m 2/s]定性温度用流体边界层的平均温度)(21f w m t t t +=,鉴于实验中流体为空气,7.0Pr =,故准则式可化为n C Nu Re =本实验的任务在于确定C 与n 的数值,首先使空气流速一定,然后测定有关数据:电流I 、电压V 、管壁温度t w 、空气温度f t 、微压计动压头h 。

至于a 、ω在实验中无法直接测得,可通过计算求得,而物性参数可在有关资料中查得。

得到一组数据后,可得一组Re 、Nu 值,改变空气流速,又得到一组数据,再得到一组Re 、Nu 值,改变几次空气流速,就可得到一系列的实验数据。

三、实验设备本对流实验在一实验风洞中进行。

实验风洞主要由风洞本体、风机、构架、实验管及其加热器、水银温度计、倾斜式微压计、比托管、电位差计、电流表、电压表以及调压变压器组成。

风洞本体如图2-1所示:图2-1 实验风洞简图1.双扭曲线进网口2.蜂窝器3.整流金属网4. 第一测试段5.实验段6.第二测试段7. 收缩段8.测速段9.橡皮连接管 10.风机 11.皮托管由于实验段前有两段整流,可使进入实验段前的气流稳定。

比托管置于测速段,测速段截面较实验段小,以使流速提高,测量准确。

风量由风机出口挡板调节。

实验风洞中安装了一根实验管,管内装有电加热器作为热源,管壁嵌有四对热电偶以侧壁温。

四、实验步骤1.将比托管与微压计连好、校正零点;连接热电偶与电位差计,再将加热器、电流表、电压表以及调压变压器线路连接好,指导老师检查确认无误后,准备启动风机。

2.在关闭风机出口挡板的条件下启动风机,让风机空载启动,然后根据需要开启出口挡板,调节风量。

3.在调压变压器指针位于零位时,合电闸加热实验管,根据需要调整变压器,使其在某一热负荷下加热,并保持不变,使壁温达到稳定(壁温热电偶电势在3分钟内保持读数不变,即可认为已经达到稳定状态)后,开始记录热电势、电流、电压、空气进出口温度及微压计的读数,所加电压不得超过180V 。

4. 在一定热负荷下,通过调整风量来改变e R 数的大小,因此保持调压变压器的输出电压不变,依次调节风机出口挡板,在各个不同的开度下测得其动压头,空气进、出口温度以及电位差计的读数,即为不同风速下,同一负荷的实验数据。

5.不同热负荷条件下的实验,仅需要利用调压器改变电加热器功率,重复上述实验步骤即可。

6.实验完毕,先切断实验管加热电源,待实验管冷却后再停止风机。

五、实验数据的整理计算1.壁面平均放热系数α电加热器所产生的总热量Q ,除以对流方式由管路传给空气外,还有一部分是以 射方式传出去的,对流放热量为c Q 为ττQ IV Q Q Q c -=-=])100()100[(440f w T T F C Q -=ετ Q τ—辐射换热量;ε—试管表面黑度;7.0~6.0=ε0C —绝对黑体辐射系数;67.50=C w T —管壁面的平均绝对温度; f T —流体的平均温度;F —管表面积。

根据牛顿公式,壁面平均对流放热系数为:][)(2C m W Ft t Q f w c-=α2.空气流速的计算采用毕托管在测速截面中心点进行测量,由于实验风洞测速分布均匀,因此不必进行截面速度不均匀的修正。

若采用倾斜式微压计测得的动压头为 h ,则由能量方程式:02221+=+空空γρωγρg 而 h )(空酒γγρρ-=-12 空空酒空酒空)空酒()((ρρργγγρργ-=-=-=gh h ggW 22212式中:酒ρ—微压计酒精的密度;331081.0m kg ⨯=ρ空ρ—空气的密度,根据空气的平均温度,可在有关书中查得;h —动压头,用液柱高表示。

由上式计算所得的流速式测速截面处的流速,而准则式中的流速W 是指流体流过实验管最窄截面的流速,由连续性方程:)(n d L F W F W ⋅⋅-=⋅试试测测⋅⋅-⋅=d L F F W W 试测测试式中:测F 测速处流道截面积;][m 2=测F试F 放试管处流道截面积;][m 2=试FL 实验管有效管长;=L d 实验管外径; =dn 实验管数;=n测W 测速处流体流速;]s m [ 试W 实验管截面处流速;]s m [3.确定准则方程式:将数据代入,得到准则数,即可在um N 为纵坐标,以em R 为横坐标的常用对数坐标图上,得到一些实验点,然后用直线连接起来,因:m g gc m g nI I Nu I Re +=为直线的截距, n 为直线的斜率,取直线上的两点,1212Re Re g g g g I I Nu I Nu I n --=n eR Nu C 1=即可得出具体的准则方程式nC Nu Re =六、实验报告要求1. 实验原理2. 实验原始数据,数据整理; 3. 做出nC Nu Re = 图线 4. 误差分析七、思考题1、 以本实验为例,试讨论相似理论在对流换热实验研究中的应用。

相关文档
最新文档