用公式法解一元二次方程说课稿+免费+九年级数学

合集下载

公式法解一元二次方程说课稿

公式法解一元二次方程说课稿

《解一元二次方程—公式法》说课稿一、说教材1、教材的地位与作用《一元二次方程》是人教版《义务教育新课程标准实验教科书,数学·九年级(上册)》第22章第1节的内容,共两课时。

本节是第一课时,是一元二次方程的导入课,主要内容是介绍一元二次方程的概念和一般形式,它为进一步学习一元二次方程解法及应用起到了铺垫作用。

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。

通过一元二次方程的学习,可以对已学过的实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习二次函数等知识的基础。

此外,学习一元二次方程对其它学科也有十分重要的作用。

2、教学目标根据本节课的地位、作用及其内容,结合学生实际和学生认知发展水平,确定如下教学目标:[知识目标] 理解一元二次方程求根公式的推导过程,了解公式法的概念,使学生熟练地应用求根公式解一元二次方程。

[能力目标]经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界的有效数学模型,增强学生分折问题和解决问题的能力及应用数学的意识;通过概念教学,培养学生的观察类比、归纳能力。

[情感目标]在探索活动中,培养学生合作交流的意识,体验成功喜悦,增强自信心。

3、教学重点与难点从以上分析可以看出:重点:一元二次方程的概念及一般形式难点:从实际问题中抽象出一元二次方程;正确识别一般式中的“项”及“系数”二、说教法与学法1、学情分析在此之前,学生已经了解和学习过一元一次方程的概念及一般形式,掌握了一些根据实际问题列方程的能力,再者,九年级学生的数学思维已有一定程度的发展,具有一定分析推理能力,同时,在讨论、探索、交流学习等方面有较为丰富的知识和经验,因此,除利用与生活实际有关的问题导出新知识外,应更多地应用探讨、合作交流等方法让学生去求得新知识,加深和扩展学生对数学的理解。

根据教材的特点和学情分析,为了突出重点、突破难点的目的,我采用以下教法与学法:2、教法本节课主要采用引探式教学方法,在活动中教师着眼于“引”尽力激发学生求知的欲望,引导他们解决问题并掌握解决问题的规律和方法,学生着眼于“探”通过探索活动发现规律,解决问题,发展探索能力和创造能力。

九年级上《解一元二次方程—公式法》说课稿

九年级上《解一元二次方程—公式法》说课稿

九年级上《解一元二次方程——公式法》说课稿一、教学目标•知识目标:掌握一元二次方程的基本概念和公式法解法的具体步骤。

•能力目标:培养学生运用公式法解一元二次方程的能力,培养学生运用解方程思维解决实际问题的能力。

•情感目标:激发学生学习数学的兴趣,培养学生的数学思维能力和逻辑推理能力,增强学生对数学的自信心。

二、教学内容本节课的教学内容是《解一元二次方程——公式法》。

- 了解一元二次方程的概念和基本形式。

- 掌握用公式法解一元二次方程的步骤。

- 运用公式法解决一元二次方程的实际问题。

三、教学重点•掌握一元二次方程的基本概念和公式法解法的步骤。

•运用公式法解决一元二次方程的实际问题。

四、教学难点•运用公式法解决一元二次方程的实际问题。

五、教学方法•教师讲授结合示范。

•学生合作探究。

•学生自主解决问题。

六、教学过程1. 导入与热身(5分钟)通过复习上节课的内容,引入本节课的新知识。

复习一元二次方程的基本概念,并提出公式法解一元二次方程的问题。

2. 新知呈现(15分钟)•引入公式法解一元二次方程的基本步骤:观察、计算、判断、解释。

•讲解一元二次方程的基本形式以及解一元二次方程的公式。

3. 教学示范(20分钟)•教师通过具体的例题,示范如何运用公式法解一元二次方程。

•教师指导学生观察方程中的系数,运用公式计算并判断方程是否有解。

4. 学生合作探究(15分钟)•学生分组合作,完成一组习题,互相讨论,解答问题。

•学生互相提问并解答疑惑,加深对公式法解一元二次方程的理解。

5. 实际问题解决(20分钟)•学生通过解决实际问题,应用公式法解决一元二次方程。

•学生分析问题,提取信息,建立方程,并解答问题。

6. 拓展与小结(10分钟)•教师提供拓展问题,引导学生运用公式法解决更复杂的问题。

•小结本节课的重点内容,梳理解题步骤并巩固学生对公式法解一元二次方程的掌握程度。

七、教学反思本节课采用了导入与热身、新知呈现、教学示范、学生合作探究、实际问题解决、拓展与小结的教学过程,为学生提供了多种角度的学习方式。

初中数学《用公式法解一元二次方程》说课稿说课稿及说课稿模板

初中数学《用公式法解一元二次方程》说课稿说课稿及说课稿模板

初中数学《用公式法解一元二次方程》说课稿说课稿及说课稿模板一. 教材分析《用公式法解一元二次方程》是人教版初中数学九年级上册的教学内容。

这部分内容是整个初中数学的重要部分,也是学生首次接触公式法解方程。

在学习这部分内容之前,学生已经学习了代数运算和方程的解法,但对一元二次方程的解法还不太熟悉。

因此,本节课的教学目标是让学生掌握一元二次方程的公式法解法,并能够灵活运用。

二. 学情分析根据我对学生的了解,他们在学习代数运算和方程的解法时,对于概念的理解和运算的熟练程度参差不齐。

因此,在教学过程中,我需要关注那些基础薄弱的学生,确保他们能够跟上教学进度。

同时,我也会引导那些基础较好的学生进行深入思考,提高他们的解题能力。

三. 说教学目标根据教材内容和学情分析,我制定了以下教学目标:1.让学生掌握一元二次方程的公式法解法;2.培养学生运用公式法解一元二次方程的能力;3.引导学生理解公式法解方程的原理,提高他们的数学思维能力。

四. 说教学重难点本节课的教学重难点是让学生掌握一元二次方程的公式法解法,并能够灵活运用。

其中,公式法解法的步骤和原理是教学的重点,而如何将实际问题转化为方程是教学的难点。

五. 说教学方法与手段为了达到教学目标,我将以讲授法为主,结合问答法、讨论法和练习法进行教学。

在教学过程中,我会利用多媒体课件和教学道具,帮助学生直观地理解公式法解方程的原理和步骤。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何解决这类问题,从而引出一元二次方程的公式法解法。

2.讲解:讲解一元二次方程的公式法解法,包括公式推导、解题步骤和注意事项。

3.互动:邀请学生上台演示解题过程,其他学生进行评价和讨论,巩固所学知识。

4.练习:布置一些典型题目,让学生独立完成,检验他们对公式法解法的掌握程度。

5.总结:对本节课的内容进行总结,强调公式法解方程的步骤和原理。

七. 说板书设计板书设计如下:一元二次方程的公式法解法1.公式推导ax^2 + bx + c = 0x = (-b ± √(b^2 - 4ac)) / (2a)2.解题步骤(1)确定a、b、c的值;(2)计算判别式Δ = b^2 - 4ac;(3)判断Δ的符号;(4)根据公式求解x的值。

数学教案-用公式法解一元二次方程优秀

数学教案-用公式法解一元二次方程优秀

数学教案-用公式法解一元二次方程优秀数学《一元二次方程》教案设计篇一一、教学目标1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。

2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。

3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。

二、教学重难点重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。

难点:找对题目中的数量关系从而列出一元二次方程。

三、教学过程(一)导入新课师:同学们我们就要开始学习一元二次方程了,在开始讲新课之前,我们首先来看一看第二十二章的这张图片,图片上有一个铜雕塑,有哪位同学能告诉我这是谁吗?生:老师,这是雷锋叔叔。

师:对,这是辽宁省抚顺市雷锋纪念馆前的雷锋雕像,雷锋叔叔一生乐于助人,奉献了自己方便了他人,所以即使他去世了,也活在人们心中,所以人们才给他做一个雕塑纪念他,同学们是不是也要向雷锋叔叔学习啊?生:是的老师。

师:可是原来纪念馆的工作人员在建造这座雕像的时候曾经遇到了一个问题,也就是图片下面的这个问题,同学们想不想为他们解决这个问题呢?生:想。

师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学习一元二次方程。

(二)新课教学师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用AC来表示上部,BC来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。

(下去巡视)(三)小结作业师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。

四、板书设计五、教学反思《一元二次方程》的优秀教案篇二一、教学目标知识与技能(1)理解一元二次方程的意义。

初中数学_用公式法求解一元二次方程教学设计学情分析教材分析课后反思

初中数学_用公式法求解一元二次方程教学设计学情分析教材分析课后反思

九年级上第二章一元二次方程3.用公式法求解一元二次方程(一)教学活动教学步骤师生活动设计意图活动一:创设情境导入新课【课堂引入】多媒体出示问题:1、我们把__ax2+bx+c=0 (a,b,c为常数,a≠0)称为一元二次方程的一般形式,其中ax2称为二次项,bx称为一次项,c称为常数项,a称为二次项系数,b称为一次项系数.2、把下列方程化为一般形式,并填表方程 a b c处理方式:教师用多媒体出示问题,引导学生阅读后填空,然后让学生说一说用配方法解方程的步骤.针对学生的基本学情,从一元二次方程的基本概念引入,复习abc的取值,并回忆归纳总结配方法解一元二次方程的一般步骤,为下面的学习做好铺垫.活动二:实践探究交流新知活动内容2:(多媒体出示)教师:提出问题:用配方法一元二次方程ax2+bx+c=0(a≠0).学生在演算纸上自主推导,并针对自己推导过程中遇见的问题在小范围内自由研讨.最后由师生共同归纳、总结,得出求根公式.解:移项,得ax2+bx=-c.二次项系数化为1,得x2+ba x=-ca.配方,得x2+ba x+⎝⎛⎭⎫b2a2=-ca+⎝⎛⎭⎫b2a2,即⎝⎛⎭⎫x+b2a2=b2-4ac4a2.(提示:这时能不能开方解方程?为什么?进而引导学生讨论b2-4ac的值对解方程的影响)当b2-4ac>0时,直接开平方,得x+b2a=±b2-4ac2a,即x=-b±b2-4ac2a,∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.当b2-4ac=0时,方程有两个相等的实数根.当b2-4ac<0时,方程没有实数根.处理方式:由学生在练习本上独立完成,对于个别有困难的学生教师指导点拨.然后教师点评并在黑板上展示推导把握求根公式的关键是掌握公式的推导过程,掌握推导过程的关键是掌握配方法.让学生自主探索一元二次方程的求根公式,一方面可以巩固配方法,另一方面对配方后开方需要满足的条件先由学生独立判断,再经过教师引导,学生将会印象深刻,有助于理解求根公式.只有亲身经历公式的推导过程,才能发现问题、汲取教训、总结经验,形成自己的认识.才能在集体交流的时候,有感而发.通过例题的练习和讲解,使学生在使用公式法解一【直击中考】1、(2016•昆明)一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定2、(2016•丽水)下列一元二次方程没有实数根的是()A.x2+2x+1=0 B.x2+x+2=0C.x2﹣1=0D.x2﹣2x﹣1=03、(2016•营口)若关于x的一元二次方程kx2+2x﹣1=0有实数根,则实数k的取值范围是()A.k≥﹣1B.k>﹣1C.k≥﹣1且k≠0D.k>﹣1且k≠0处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.拓展提升,最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,实现教学目标.活动四:课堂总结反思通过这节课的学习,你有哪些收获?1.一元二次方程的求根公式是什么?2.如何判断一元二次方程根的情况3.公式法求解一元二次方程的一般步骤有哪些?学生畅谈自己的收获!师生共同总结公式法求解一元二次方程的一般步骤:(1)把方程化为一般形式,进而确定a,b,c的值;(注意符号)(2)求出b2-4ac的值;(先判别方程是否有根)(3)在b2-4ac≥0的前提下,把a,b,c的值代入求根公式,求出-b±b2-4ac2a的值,最后写出方程的根.当b2-4ac<0时,方程没有实数根.【当堂检测】1.不解方程,判断方程根的情况2.用公式法解方程课堂总结是知识沉淀的过程,使学生对本节课所学知识进行梳理,养成反思与总结的习惯,培养自我反馈、自主发展的意识.当堂检测,及时反馈学习效果.【知识网络】提纲挈领,重点突出.学情分析:1、学生的知识技能基础:学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a ≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程.利用配方法解方程时,有不少题计算起来非常麻烦,已经有学生迫切的想学习更为简洁的解方程的方法。

湘教版数学九年级上册2.2《一元二次方程的解法》说课稿1

湘教版数学九年级上册2.2《一元二次方程的解法》说课稿1

湘教版数学九年级上册2.2《一元二次方程的解法》说课稿1一. 教材分析《一元二次方程的解法》是湘教版数学九年级上册第二章第二节的内容。

这一节主要介绍了一元二次方程的解法,包括因式分解法、公式法等。

通过本节课的学习,学生能够理解一元二次方程的解法,并能够灵活运用各种方法解决问题。

在教材中,首先通过引入一些实际问题,让学生感受一元二次方程的存在。

然后,通过探究一元二次方程的解法,引导学生发现并总结解题规律。

最后,通过巩固练习,让学生进一步掌握解法,并能够解决实际问题。

二. 学情分析九年级的学生已经具备了一定的代数基础,对一元一次方程的解法有一定的了解。

但一元二次方程的解法与一元一次方程的解法有很大的不同,需要学生能够理解和掌握。

在学习过程中,学生可能会对一元二次方程的解法产生困惑,特别是对于因式分解法和公式法的理解。

因此,教师需要引导学生通过实践探究,加深对解法的理解。

三. 说教学目标1.知识与技能目标:学生能够理解一元二次方程的解法,并能够灵活运用各种方法解决问题。

2.过程与方法目标:通过探究一元二次方程的解法,培养学生解决问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心。

四. 说教学重难点1.教学重点:一元二次方程的解法。

2.教学难点:因式分解法和公式法的运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、探究法、讲解法等。

2.教学手段:多媒体课件、黑板、粉笔等。

六. 说教学过程1.引入新课:通过引入一些实际问题,让学生感受一元二次方程的存在,激发学生的学习兴趣。

2.探究解法:引导学生通过实践探究,发现并总结解题规律。

3.讲解解法:讲解因式分解法和公式法的具体步骤和应用。

4.巩固练习:让学生通过练习,进一步掌握解法,并能够解决实际问题。

5.总结提升:总结本节课的学习内容,强调解法的运用。

七. 说板书设计板书设计如下:一元二次方程的解法1.因式分解法–步骤一:将方程化为标准形式–步骤二:因式分解–步骤三:求解–步骤一:确定方程的系数–步骤二:应用求根公式–步骤三:求解八. 说教学评价教学评价主要通过学生的课堂表现、练习情况和作业完成情况进行评价。

湘教版数学九年级上册2.2《一元二次方程的解法》说课稿2

湘教版数学九年级上册2.2《一元二次方程的解法》说课稿2

湘教版数学九年级上册2.2《一元二次方程的解法》说课稿2一. 教材分析湘教版数学九年级上册2.2《一元二次方程的解法》是本节课的主要内容。

一元二次方程是初中数学中的重要知识点,也是九年级数学的重点和难点。

本节课通过介绍一元二次方程的解法,使学生能够熟练掌握求解一元二次方程的方法,并能够运用到实际问题中。

教材从实际例子出发,引导学生探究一元二次方程的解法,符合新课程标准的要求,注重培养学生的探究能力和实践能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对一元一次方程的解法有一定的了解。

但一元二次方程的解法与一元一次方程的解法有很大的不同,需要学生能够理解和掌握。

学生通过前面的学习,已经掌握了因式分解、配方法等基本的数学运算方法,这为学习一元二次方程的解法提供了基础。

但同时,九年级的学生在学习过程中可能会遇到一些困难,如对一元二次方程的定义理解不深,解法步骤不明确等。

三. 说教学目标本节课的教学目标是使学生掌握一元二次方程的解法,能够熟练求解一元二次方程,并能够将一元二次方程的解法应用到实际问题中。

具体包括:1.了解一元二次方程的定义,理解一元二次方程的解法。

2.掌握求解一元二次方程的步骤,能够熟练运用各种方法求解一元二次方程。

3.能够将一元二次方程的解法应用到实际问题中,提高解决问题的能力。

四. 说教学重难点本节课的教学难点是一元二次方程的解法步骤和应用。

学生需要理解一元二次方程的定义,掌握求解一元二次方程的步骤,并能够将一元二次方程的解法应用到实际问题中。

五. 说教学方法与手段本节课采用讲授法、案例分析法、小组合作法等教学方法。

通过教师的讲解,使学生了解一元二次方程的定义和解法;通过案例分析,使学生掌握求解一元二次方程的步骤;通过小组合作,使学生能够将一元二次方程的解法应用到实际问题中。

六. 说教学过程1.导入:通过一个实际问题,引出一元二次方程,激发学生的兴趣。

2.讲解:讲解一元二次方程的定义和解法,引导学生理解一元二次方程的解法步骤。

九年级数学上册《用公式法求解一元二次方程》教案、教学设计

九年级数学上册《用公式法求解一元二次方程》教案、教学设计
2.重点:一元二次方程根的判别式的理解和应用。
难点:判断根的情况,并解释其对应的实际意义。
3.重点:培养学生运用一元二次方程解决实际问题的能力。
难点:将复杂问题简化为一元二次方程,并进行有效求解。
(二)教学设想
1.创设情境,激发兴趣:
结合生活实例,如抛物线运动、面积计算等,引入一元二次方程,激发学生的学习兴趣。
-小组研究题:选取一个话题,小组合作研究一元二次方程在该话题中的应用,并准备课堂分享。
作业布置时,我会强调以下几点:
-作业量适中,确保学生有足够的时间进行思考和练习。
-鼓励学生独立完成作业,遇到困难时可以寻求同学或老师的帮助。
-强调作业的完成质量,要求学生书写规范,步骤清晰。
-鼓励学生在作业中展现自己的思考过程,包括解题思路、遇到的困难和解决方案。
-对作业进行及时反馈,指导学生改正错误,提高解题能力。
-探究题:给定一个开放性问题,要求学生通过建立和求解一元二次方程来探究问题的不同解决方案。
-拓展题:鼓励学生探索一元二次方程在其他学科领域的应用,如经济学、生物学等。
4.小组合作题:这类题目要求学生在课后小组合作完成,旨在培养学生的团队协作能力。
-小组讨论题:小组共同讨论一元二次方程的实际应用案例,并撰写总结报告。
4.巩固练习,提高解题能力:
设计不同难度的习题,让学生在练习中巩固所学知识,提高解题能力。针对学生的个体差异,进行分层指导,使每个学生都能得到提高。
5.课堂小结,强化重点:
通过对本节课内容的总结,强调一元二次方程公式法的求解步骤、根的判别式等关键知识点。
6.拓展延伸,提高素养:
将一元二次方程与实际应用相结合,如几何图形、物理运动等,提高学生运用数学知识解决实际问题的能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用公式法解一元二次方程说课稿
今天我说课的内容是人教版九年级上册第22章《用公式法解一元二次方程》。

我主要从教材分析、教法分析、过程分析、板书设计四个方面对本节课作如下说明。

一、教材分析
(一)教材的地位和作用
“一元二次方程的解法”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程、因式分解、数的开方、以及前三种因式分解法、直接开方法、配方法解一元二次方程的基础上,掌握用求根公式解一元二次方程,是配方法和开平方两个知识的综合运用和升华。

通过本节课的教学使学生明确配方法是解方程的通法,同时会根据题目选择合适的方法解一元二次方程。

一元二次方程的解法也是今后学习二次函数和一元二次不等式的基础。

(二)教学目标
知识技能方面:理解一元二次方程求根公式的推导过程,会用公式法解一元二次方程。

数学思考方面:通过求根公式的推导过程进一步使学生熟练掌握配方法,培养学生数学推理的严密性和逻辑性以及由特殊到一般的数学思想。

解决问题方面:结合用公式法解一元二次方程的练习,培养学生快速准确的运算能力和运用公式解决实际问题的能力。

情感态度方面:让学生体验到所有的方程都可以用公式法解决,感受到公式的对称美、简洁美,渗透分类的思想;公式的引入培养学生寻求简便方法的探索精神和创新意识。

(三)教学重、难点
重点:掌握用公式法解一元二次方程的一般步骤;会熟练用公式法解一元二次方程。

难点:理解求根公式的推导过程和判别式
二、教学法分析
教法:本节课采用引导发现式的自主探究式与交流讨论结合的方法;在教学中由旧知识引导探究一般化问题的形式展开,利用学生已有的知识、多交流、主动参与到教学活动中来。

学法:让学生学会善于观察、分析讨论和分类归纳的方法,提出问题后,鼓励学生通过分析、探索、尝试解决问题的方法,铜锁亲自尝试,使学生的思维能力得到培养。

三、过程分析
本节课的教学设计成以下六个环节:复习导入——呈现问题——例题讲解——巩固练习——课时小结——布置作业。

1、复习引入:
这节课,我首先从旧知问题(1)用配方法解方程22890x x --=的练习引入,问题(2)总结配方法的一般步骤(化一般方程——二次项系数为1——配方使左边为完全平方式——两边开方——求解)。

设计意图:让学生巩固昨天的知识,进一步熟练钥匙并为今天做学的内容解一般形式的一元二次方程做好铺垫,达到“温故而知新”。

2、问题呈现:
你能用配方法解一般形式的一元二次方程吗?2
0(0)ax bx c a ++=≠
此处由一个特殊的旧知引导学生推导出一般的结果,希望学生学会由特殊性到一般化的思想。

为降低推导的难度,化简、移项、配方、变形由我和学生一起探究完成,到2224()24b b ac x a a
-+=这步时,提出 问题:①此时可以直接开平方吗?
②等号右边的值需要满足什么条件?为什么?
③等号右边的值只跟哪个式子有关?
设计意图:师生共同完成前四步,这样与利于减轻学生的思维负担,便于将主要精力放在后边公式的推导上。

通过小组的讨论有利于发挥学生的互帮互助,借助小组的交流完善答案,关键让学生会对
24b ac -进行讨论,
掌握24b ac -与方程有无实数根的关系,这里分类思想也是今后常用的一种数学思想,应加以强化。

最终总结出:
当24b ac -<0时,原方程无实数解。

当24b ac -≥0时,原方程有实数解,
再进一步谈论:24b ac -=0与24b ac +>0时,两个解区别?
(24b ac -=0时,两个相等的实数解,24b ac +>0时,两个不等的实数解)
由此可知,方程有解还是无解是由24b ac -决定,即24b ac -是方程解的判别式。

同时,方程的解是可以将a 、b 、c 的值带入公式2b x a
-±=而得到,这个公式就称为“求根公式”,利用它解一元二次方程叫做公式法。

3、例题讲解
例4:用公式法解下列方程
22530x x -+= 2414x x +=- 2312042
x x --= 总结步骤:1、把方程公成一般形式,并写出a,b,c 的值。

2、求出24b ac -的值
3、代入求根公式:20,40)x a b ac =≠-≥
4、写出方程的解:x 1= ,x 2=
设计意图:规范解题格式,让学生体会数学课中的严谨的逻辑推理;体验并掌握公式法解一元二次方程的步骤,从中让学生领会到由特殊到一般,一般到特殊的辩证思想。

4、巩固练习
解下列一元二次方程:①260x x +-=
②2490x x --=
③2100x +=
设计意图:(1)熟悉公式法,强化解题格式,(2)及时发现错误及时解决。

例5:解方程:21(1)(2)2x x x -=-
化简得213402
x x -+= 强调:①当方程不是一般形式时,应先化成一般形式,再运用求根公式。

②你还能用其他方法解本例方程吗?
设计意图:明确一元二次方程解题方法的多样性,让学生在你观察分析题目后灵活合理的选择解题方法,培养学生的多样化思维,提高解题能力和解题的速度。

5、课时小结
(1)学生作知识总结:本节课通过配方法求解一般形式的一元二次方程的根,推出了一元二次方程的求根公式,并按照公式法的步骤解一元二次方程。

(2)我扩展:(方法归纳)求根公式是一元二次方程的专用公式,只有在确定方程是一元二次方程时才能使用,是常用而重要的一元二次方程的万能求根公式。

6、布置作业:面向全体学生,注重个体差异,加强作业的针对性,分层布置作业,适应新课标,让不同的学生各其所长,因材施教的要求,提高他们的学习的兴趣和自信心。

四、板书设计
教学评价
本节课内容较为单一,通过“层层设疑”、“复习回顾”等环节促进学生的思考和探究。

通过比较合理的问题设计巩固练习、小组讨论等形式给学生提供了充分的展示机会,强化了学生的运算能力,有利于学生掌握基本技能。

教学反思
王兰学校
李娜。

相关文档
最新文档