参数方程与不等式测验与答案

合集下载

初中数学方程与不等式25道典型题(含答案和解析)

初中数学方程与不等式25道典型题(含答案和解析)

初中数学方程与不等式25道典型题(含答案和解析)1. 楠楠老师在解方程2x−13=x +a 2−1去分母时,因为手抖发作,将方程右侧的-1漏乘了,因而求得的方程的解为x =2,请帮助楠楠老师求出正确的解. 答案:x =-3. 解析:漏乘后方程为:2(2X -1)=3(x +a )-1. 4x -2=3x +3a -1. x =3a +1 .∵ x =2.∴ a =13.∴ 原方程去分母后得: 2(2X -1)=3(x +13)-6. 4x -2=3x +1-6. X =-3.考点:方程与不等式—一元一次方程—含字母参数的一元一次方程—错解方程.2. 已知关于x 的方程3[x −2(x −a2)]=4x 与3x +a 12−1−5x 8=1有相同的解,求 a 的值及方程的解.答案:a =2711,方程的解为x =8177.解析:把a 当作常数,方程3[x −2(x −a2)]=4x 的解为x =37a .方程3x +a 12−1−5x 8=1的解为x =27−2a 21.故37a =27−2a 21.解得a =2711,所以x =8177.考点:方程与不等式—一元一次方程—同解方程—同解方程求参数.3. 解方程组.(1){m +n3−n−m4=24m +n 3=14 (2){1−0.3(y −2)=x +15y−14=4x +920−1答案:(1){m =185n =−65.(2){x =4y =2.解析:(1)化简方程组得,{7m +n =2412m +n =42,加减消元可解得答案为{m =185n =−65.(2)化简方程组得,{2x +3y =144x −5y =6,加减消元可解得答案为{x =4y =2.考点:方程与不等式—二元一次方程组—解二元一次方程组.4. 回答下列小题.(1)当k = 时,方程组{4x +3y =1kx +(k −1)y =3的解中,x 与y 的值相等.(2)关于x ,y 的方程组{ax +by =2cx −7y =8,甲正确的解得{x =3y =−2,乙因为把c 看错了,解得{x =−2y =2,求a ,b ,c 的值. (3)若方程组{2x +3y =7ax −by =4与方程组{ax +by =64x −5y =3有相同的解,则a ,b 的值为( ).A.{a =2b =1B. {a =2b =−3C. {a =2.5b =1D. {a =4b =−5 答案:(1)11.(2)a =4,b =5,c =-2. (3)C .解析:(1)因为x 和y 的值相等,所以x =y ,代入1式可得x =y =17,再代入2式可得k =11.(2)乙看错了c ,说明乙的解只满足1式;甲是正确的解,说明甲的解满足两个等式.将解代入方程可得{3a −2b =23c +14=8−2a +2b =2,解得a =4,b =5,c =-2.(3)由题中条件:有相同的解可知,这两个方程组可以联立,即{2x +3y =7ax−by =4ax +by =64x−5y =3,由1式和4式可以解得{x =2y =1,代入2式和3式可得{2a −b =42a +b =6. 解得{a =2.5b =1,故选C.考点:方程与不等式—二元一次方程组—同解方程组.5. 台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.答案:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 解析:设北京故宫博物院约有x 万件藏品,台北故宫博物院约有y 万件藏品.依题意,列方程组得:{x +y =245x =2y +50.解得{x =180y =65.答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 考点:方程与不等式—二元一次方程组—二元一次方程(组)的解.6.如图所示,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为 cm2.答案:400.解析:设一个小长方形的长为x,宽为y,则可列方程组{x+y=50x+4y=2x.解得{x=40y=10.则一个小长方形的面积=40cm×10cm=400cm2.考点:方程与不等式—二元一次方程组—二元一次方程(组)的应用.7.高新区某水果店购进800千克水果,进价每千克7元,售价每千克12元,售出总量一半后,发现剩下的水果己经有5﹪受损(受损部分不可出售),为尽快售完,余下的水果准备打折出售.(1)若余下的水果打6折出售,则这笔水果生意的利润为多少元?(2)为使总利润不低于2506元,在余下的水果的销售中,营业员最多能打几折优惠顾客(限整数折,例如:5折、6折等)?答案:(1)这笔水果生意的利润为1936元.(2)营业员最多能打8折优惠顾客.解析:(1)根据题意得:400×12+(400-400×5﹪)×0.6×12-800×7=1936(元).答:这笔水果生意的利润为1936元.(2)设余下的水果应按原出售价打x折出售,根据题意列方程:400×12+(400-400×5﹪)×0.1x×12-800×7=2506.解方程得:x=7.25.答:营业员最多能打8折优惠顾客.考点:方程与不等式—一元一次方程—一元一次方程的应用.打折销售问题—经济利润问题.8. 二轮自行车的后轮磨损比前轮要大,当轮胎的磨损度(﹪)达到100时,轮胎就报废了,当两个轮的中的一个报废后,自行车就不可以继续骑行了.过去的资料表明:把甲、乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲、乙轮胎的磨损度(﹪)y1、y2与自行车的骑行路程x (百万米)都成正比例关系,如图(1)所示.(1)线段OB 表示的是 (填“甲”或“乙”),它的表达式是 (不必写出自变量的取值范围).(2)求直线OA 的表达式,根据过去的资料,这辆自行车最多可骑行多少百万米. (3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行a百万米后,我们可以交换自行车的前、后轮胎,使得甲、乙两个轮胎在b 百万米处,同时报废,请你确定方案中a 、b 的值. 答案:(1)1.甲.2.y =20x. (2)OA 的解析式是y =1003x ,这辆自行车最多可骑行3百万米.(3){a =158b =154.解析:(1)∵ 线段OB 表示的是甲,设OB 的解析式是y =kx.∴ 1.5k =30. ∴ 解得:k =20. ∴ OB 的表达式是y =20x. ∴ 答案是:甲,y =20x .(2)∵ 设直线OA 的表达式为y =mx.∴ 根据题意得:1.5m =50. ∴ 解得:m =1003.∴ 则OA 的解析式是y =1003x .∵ 当y =100时,100=1003x .∴ 解得:x =3.答:这辆自行车最多可骑行3百万米.(3)∵ 根据题意,得:{1003a +20(b −a )=10020a +1003(b −a )=100. ∴ 解这个方程组,得{a =158b =154.考点:方程与不等式—二元一次方程组—解二元一次方程组.函数—一次函数—待定系数法求正比例函数解析式—一次函数的应用—一次函数应用题.9. 若关于x 的一元二次方程(x +1)2=1-k 无实根,则k 的取值范围为 .答案:k >1.解析:若方程(x +1)2=1-k 无实根,则1-k >0.∴k >1.考点:方程与不等式—一元二次方程—一元二次方程的定义—一元二次方程的相关概念.10. 小明在探索一元二次方程2x2-x -2=0的近似解时作了如下列表计算.观察表中对应的数据,可以估计方程的其中一个解的整数部分是( ).A.4B.3C.2D.1答案:D.解析:根据表格中的数据,可知:方程的一个解x的范围是:1<x<2.所以方程的其中一个解的整数部分是1.考点:方程与不等式—一元二次方程—估算一元二次方程的近似解.11.已知m、n、p分别是Rt△ABC的三边长,且m≤n<p.(1)求证:关于x的一元二次方程mx2+√2px+n=0必有实数根.(2)若x=-1是一元二次方程mx2+√2px+n=0的一个根,且Rt△ABC的周长为√2+2,求Rt△ABC的面积.答案:(1)证明见解析.(2)1.解析:(1)∵ m、n、p分别是Rt△ABC的三边长,且m≤n<p.∴ p2=m2+n2.∴ b2-4ac=2p2-4mn=2(m2+n2)-4mn=2(m-n)2≥0.∴关于x的一元二次方程mx2+√2px+n=0必有实数根.(2)∵ x=-1是一元二次方程mx2+√2px+n=0的一个根.∴ m-√2p+n=0 ①.∵ Rt△ABC的周长为2√2+2.∴ m+n+p=2√2+2②.由①、②得:m+n=2√2,p=2.∴(m+n)2=8.∴ m2+2mn+n2=8.又∵ m2+n2=p2=4.∴ 2mn=4.∴1=mn=1.2∴ Rt△ABC的面积是1.考点:方程与不等式—一元二次方程—根的判别式—判断一元二次方程根的情况.根与系数的关系—韦达定理应用.三角形—三角形基础—三角形面积及等积变换.12.关于x的方程(k-3)x2+2x+1=0有两个不等的实数根,则k的取值范围为.答案:k<4且k≠3.解析:∵关于x的方程(k-3)x2+2x+1=0有两个不等的实数根.∴ {k−3≠0△=4−4(k−3)>0.∴ k<4且k≠3.考点:方程与不等式—一元二次方程—一元二次方程的定义—根据一元二次方程求参数值.根的判别式—已知一元二次方程根的情况,求参数的取值范围.13.设a、b是方程x2+x-9=0的两个实数根,则a2+2a+b的值为.答案:8.解析:∵ a是方程x2+x-9=0的根.∴ a2+a==9.由根与系数的关系得:a+b=-1.∴ a2+2a+b=(a2+a)+(a+b)=9+(-1)=8.考点:方程与不等式—一元二次方程—根与系数的关系—韦达定理应用.14.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12cm的住房墙.另外三边用25cm长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门.(1)所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?(2)能否围成一个面积为100 m2的矩形猪舍?如能,说明了围法;如不能,请说明理由.答案:(1)矩形猪舍的长为10m,宽为8m.(2)不能围成一个面积为100 m2的矩形猪舍.解析:(1)设矩形猪舍垂直于房墙的一边长为xm,则矩形猪舍的另一边长为(26-2x)m.由题意得:x(26-2x)=80.解得:x1=5,x2=8,当x=5时,26-2x=16>12(舍去).当x=8时,26-2x=10<12.答:矩形猪舍的长为10m,宽为8m.(2)由题意得:x(26-2x)=100.整理得:x2-13x+50=0.∵△=(-13)2-4×1×50=-31<0.∴方程无解.故不能围成一个面积为100 m2的矩形猪舍.考点:方程与不等式—一元二次方程—根的判别式—判断一元二次方程根的情况.一元二次方程的应用.15.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为 120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售__________件,每件盈利__________元(用x的代数式表示).(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想每天赢利2000元,可能吗?请说明理由.答案:(1)(20+2x),(40-x).(2)20元或10元.(3)不可能,理由见解析.解析:(1)根据题意得:每天可销售(20+2x);每件盈利(40-x).(2)根据题意得:(40-x)(20+2x)=1200.解得:x1=20,x2=10.答:每件童装降价20元或10元时,平均每天赢利1200元.(3)(40-x)(20+2x)=2000.整理得:x2-30x+600=0.△=62-4ac=(-30)2-4×1×600=900-2400<0.∴方程无解.答:不可能做到平均每天赢利2000元.考点:式—整式—代数式.方程与不等式—一元二次方程—一元二次方程的解.根的判别式—判断一元二次方程根的情况—一元二次方程的应用.16.若a>b,则下列不等式中正确的是.(填序号)① a-2<b-2 ② 5a<5b ③-2a<-2b ④a3<b3答案:③.解析:不等式的两边同时乘以(或除以)同一个负数,不等号改变方向.考点:方程与不等式—不等式与不等式组—不等式的基础—不等式的性质.17.解不等式:2−x+23>x+x−12.答案:x<1.解析:12-2(x+2)>6x+3(x-1).12-2x-4>6x+3x-3.-11x>-11.X<1.考点:方程与不等式—不等式与不等式组—解一元一次不等式.18.解不等式组{2x+4≤5(x+2)x−1<23x,把它的解集在数轴上表示出来,并求它的整数解.答案:原不等式组的整数解为-2,-1,0,1,2.解析:由2x+4≤5(x+2)得x≥-2.由x−1<23x得x<3.不等式组的解集在数轴上表示如下.∴原不等式组的解集为-2≤x<3.∴原不等式组的整数解为-2,-1,0,1,2.考点:方程与不等式—不等式与不等式组—在数轴上表示不等式的解集—一元一次不等式组的整数解.19.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表.已知可供建造沼气池的占地面积不超过370m2,该村农户共有498户.(1)满足条件的方案共有哪几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱?造价最低是多少万元?答案:(1)方案共三种:分别是A型6个,B型14个.A型7个,B型13个.A型8个,B型12个.(2)A型建8个的方案最省,最低造价52万元.解析:(1)设A型的建造了x个,得不等式组:{15x+20(20−x)≤370 18x+30(20−x)≥498.解得:6≤x≤8.5.三方案:A型6个,B型14个.A型7个,B型13个.A型8个,B型12个.(2)当x=6时,造价2×6+3×14=54.当x=7时,造价2×7+3×13=53.当x=8时,造价2×8+3×12=52.故A型建8个的方案最省,最低造价52万元.考点:方程与不等式—不等式与不等式组—一元一次不等式组的应用—最优化方案.20.服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?答案:(1)甲种服装最多购进75件.(2)当0<a<10时,购进甲种服装75件,乙种服装25件.当a=10时,按哪种方案进货都可以.当10<a<20时,购进甲种服装65件,乙种服装35件.解析:(1)设购进甲种服装x件,由题意可知.80x+60(100-x)≤7500,解得:x≤75.答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75.W=(40-a)x+30(100-x)=(10-a)x+3000.方案1:当0<a<10时,10-a>0,w随x的增大而增大.所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件.方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以.方案3:当10<a<20时,10-a<0,w随x的增大而减小.所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.考点:方程与不等式—不等式与不等式组—一元一次不等式的应用—一元一次不等式组的应用—最优化方案.21.解答下列问题:(1)计算:2xx+1−2x+6x2−1÷x+3x2−2x+1.(2)解分式方程:3x+1+1x−1=6x2−1.答案:(1)2x+1.(2)x=2.解析:(1)原式=2xx+1−2(x+3)(x+1)(x−1)÷(x−1)2x+3.=2xx+1−2(x−1)x+1=2x+1.(2)3(x-1)+x+1=6.3x-3+x+1=6.4x=8.x=2.检验:当x=2时,x2+1≠0.故x=2是该分式方程的解.考点:式—分式—分式的加减法—简单异分母分式的加减.方程与不等式—分式方程—解分式方程—常规法解分式方程.22.解下列方程:(1)5x−4x−2=4x+103x−6−1.(2)x−2x+2−x+2x−2=8x2−4.答案:(1)x=2是方程的增根,原方程无解.(2)x=-1.解析:(1)等式两边同乘以3(x-2)得,3(5x-4)=4x+10.解得x=2.检验x=2时,2(x-2)=0.∴ x=2是方程的增根,原方程无解.(2)两边同乘x2-4.得:-8x=8.X=-1.经检验x=-1是原方程的解.考点:方程与不等式—分式方程—解分式方程—常规法解分式方程.分式方程解的情况—分式方程有解—分式方程有增根.23.若分式方程2xx+1−m+1x2+x=x+1x产生增根,则m的值为.答案:-2或1.解析:方程两边都乘x(x+1).得x2-(m+1)=(x+1)2.∵原方程有增根.∴最简公分母x(x+1)=0.解得x=0或-1.当x=0时,m=-2.当x=-1时,m=0.故m的值可能是-2或0.考点:方程与不等式—分式方程—分式方程解的情况—根据增根求参数.24.在“春节”前夕,某花店用13000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的12,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?答案:第二批鲜花每盒的进价是 120元.解析:设第二批鲜花每盒的进价是x元.依题意有:6000x =12×13000x+10.解得x=120.经检验:x=120是原方程的解,且符合题意.答:第二批鲜花每盒的进价是120元.考点:方程与不等式—分式方程—分式方程的应用.25.甲、乙两个工程队共同承担一项筑路任务,甲队单独完成此项任务比乙队单独完成此项任务多用10天,且乙队每天的工作效率是甲队每天工作效率的1.5倍.(1)甲、乙两队单独完成此项任务各需要多少天?(2)若甲、乙两队共同工作4天后,乙队因工作需要停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,如果要完成任务,那么甲队再单独施工多少天?答案:(1)甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天.(2)甲队再单独施工10天.解析:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天.由题意可得:1x = 1.5x+10.解得:x=20.经检验,x=20是原方程的解.∴x+10=30(天).答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天.(2)设甲队再单独施工a天,由题意可得:(130+120)×4+230×a=1.解得:a=10.答:甲队再单独施工10天.考点:方程与不等式—一元一次方程—一元一次方程的应用—工程问题.分式方程—分式方程的应用.。

高一数学第2章 一元二次函数、方程和不等式 章末测试(提升)(解析版)

高一数学第2章 一元二次函数、方程和不等式 章末测试(提升)(解析版)

第2章 一元二次函数、方程和不等式 章末测试(提升)第I 卷(选择题)一、单选题(每题5分,8题共40分)1.(2022·全国·专题练习)“不等式20x x m -+>在R 上恒成立”的充要条件是( ) A .14m >B .14m <C .1m <D . 1m【答案】A【解析】∵不等式20x x m -+>在R 上恒成立, ∵24(10)m ∆--<= ,解得14m >, 又∵14m >,∵140m ∆=-<,则不等式20x x m -+>在R 上恒成立, ∵“14m >”是“不等式20x x m -+>在R 上恒成立”的充要条件,故选:A. 2.(2022·四川成都)下列函数中,最小值为2的函数是( ) A .()10y x x x=+≠ B .222y x x -=+C .()230y x x x =+≥D .2211y x x =++【答案】D【解析】A.当0x <时,()()1122⎛⎫=--+≤--⋅=- ⎪--⎝⎭y x x x x ,当且仅当1x x-=-,即1x =-时,等号成立;当0x >时,112y x x x x=+≥⋅=,当且仅当1x x =,即1x =时,等号成立;故错误;B. ()2222111y x x x =-+=-+≥,故错误; C. ())223023123=+≥=+=+≥y x x x xx x ,故错误;D. 22221121211y x x x x +≥+⋅=++2211x x ++0x =时,等号成立,故正确故选:D3.(2022·安徽·合肥已知正数x ,y 满足21133x y x y+=++,则x y +的最小值( )A 322+B .324C 322+D .328+【答案】A【解析】令3x y m +=,3x y n +=,则211m n+=, 即()()()334m n x y x y x y +=+++=+,∵211212324442444444m n m n m n m n x y m n n m n m +⎛⎫⎛⎫+==++=+++≥⋅ ⎪⎪⎝⎭⎝⎭ 322324422==, 当且仅当244m n n m=,即22m =21n =时,等号成立, 故选:A.4.(2021·江苏·高一专题练习)下列说法正确的是( ) A .若2x >,则函数11y x x =+-的最小值为3 B .若0x >,0y >,315x y +=,则54x y +的最小值为5C .若0x >,0y >,3x y xy ++=,则xy 的最小值为1D .若1x >,0y >,2x y +=,则12y+的最小值为322+【答案】D【解析】选项A :1111121?13111y x x x x x x =+=-++-=---,当且仅当()211x -=时可以取等号, 但题设条件中2x >,故函数最小值取不到3,故A 错误;选项B :若0x >,0y >,315x y+=,则()1311512151219415545419192?555x y x y x y x y x y y x y x ⎛⎛⎫⎛⎫++=++=+++= ⎪ ⎪ ⎝⎭⎝⎭⎝512x y y x =时不等式可取等号,故B 错误;选项C :32230xy x y xy xy xy -=+⇒+-当且仅当x y =时取等号,()0xy t t =,2230t t +-,解得31t -,即01xy ,故xy 的最大值为1,故C 错误; 选项D :2x y +=,()11x y -+=,()()()21211212·11232?3221111x x y y x y x y x y x y x y --⎛⎫⎡⎤+=+-+=++++=+ ⎪⎣⎦----⎝⎭ 当且仅当22y x =又因为2x y +=,故222x y ⎧=⎪⎨=⎪⎩即121x y+-最小值可取到322+, 故D 正确. 故选:D .5.(2022·北京·101)已知某产品的总成本C (单位:元)与年产量Q (单位:件)之间的关系为23300010C Q =+.设该产品年产量为Q 时的平均成本为f (Q )(单位:元/件),则f (Q )的最小值是( ) A .30 B .60C .900D .1800【答案】B【解析】23300010()Q C f Q Q Q+==,3300010Q Q =+ ,3300022306010Q Q ≥⋅⨯=,当且仅当3300010Q Q =,即当100Q =时等号成立.所以f (Q )的最小值是60.故选:B.6.(2022·山西现代双语学校南校)已知关于x 的不等式()()()2233100,0a m x b m x a b +--->>>的解集为1(,1)(,)2-∞-+∞,则下列结论错误的是( )A .21a b +=B .ab 的最大值为18C .12a b+的最小值为4D .11a b+的最小值为322+【答案】C【解析】由题意,不等式()()223310a m x b m x +--->的解集为(]1,1,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭,可得230a m +>,且方程()()223310a m x b m x +---=的两根为1-和12,所以131223111223b m a m a m -⎧-+=⎪⎪+⎨⎪-⨯=-⎪+⎩,所以232a m +=,31b m -=-,所以21a b +=,所以A 正确;因为0a >,0b >,所以2122a b ab +=≥18ab ≤,当且仅当122a b ==时取等号,所以ab 的最大值为18,所以B 正确; 由121244()(2)44448b a b aa b a b a b a b a b+=++=++≥+⋅+=, 当且仅当4b a a b =时,即122a b ==时取等号,所以12a b+的最小值为8,所以C 错误; 由()111122233232b a b a a b a b a b a b a b⎛⎫+=++=++≥+⋅ ⎪⎝⎭ 当且仅当2b aa b=时,即2b a 时,等号成立, 所以11a b+的最小值为322+D 正确. 故选:C .7.(2022·广东深圳·高一期末)设a ,b ∈R ,0a b <<,则( ) A .22a b < B .b aa b> C .11a b a>- D .2ab b >【答案】D【解析】因为0a b <<,则0a b ->->,所以()()22a b ->-,即22a b >,故A 错误; 因为0a b <<,所以0ab >,则10ab>, 所以11a b ab ab⋅<⋅,即11b a <,∵1a a b a >=,1b b b a =>,即b aa b<,故B 错误; ∵由()()()11a a b b a b a a b a a b a---==---,因为0,0a b a -<<,所以()0a b a ->,又因为0b <,所以110a b a -<-,即11a b a<-,故C 错误; 由0a b <<可得,2ab b >,故D 正确. 故选:D.8.(2022·福建·厦门一中高一期中)已知关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,则下列说法正确的是( ) A .0a > B .不等式20ax cx b ++>的解集为{|2727}x x < C .0a b c ++< D .不等式0ax b +>的解集为{}|3x x >【答案】B【解析】因为关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,所以0a <,所以选项A 错误;由题得014,3,414a b b a c a a c a ⎧⎪<⎪⎪-+=-∴=-=-⎨⎪⎪-⨯=⎪⎩,所以20ax cx b ++>为2430,2727x x x --<∴<+所以选项B正确;设2()f x ax bx c =++,则(1)0f a b c =++>,所以选项C 错误; 不等式0ax b +>为30,3ax a x ->∴<,所以选项D 错误. 故选:B二、多选题(每题至少有两个选项为正确答案,少选且正确得2分,每题5分。

与方程(组)、不等式(组)有关的参数问题

与方程(组)、不等式(组)有关的参数问题

4´10 - (3a +1) = 6´10 - 2a +1,
40 - 3a -1 = 60 - 2a +1 ,
39 - 3a = 61- 2a ,
-3a + 2a = -39 + 61,
-a = 22 ,
a = -22 ,
故 a 的值为 -22 .
5.已知关于
x,
y
的方程组
ì2x - y = 2m - 4①
解得: 8 < a £ 3 , 3
即此时 a 的取值范围是 8 < a £ 3 . 3
12.已知
ì2x + íîx + 2
y y
= =
3 3
+
2a 2a
a
¹
0
是关于
x,y
的二元一次方程组.
(1)求方程组的解(用含 a 的代数式表示); (2)若 x - 2 y > 0 ,求 a 的取值范围.
【答案】(1)
mx - 2x > m + 3 , (m - 2)x > m + 3 ,
Q
它的解集是
x
<
m m
+ -
3 2

\m-2 < 0,
解得 m < 2 ;
(2) 2x -1 > 3 - x ,
解得: x > 4 , 3
Q
它的解集是
x
>
m m
+ -
3 2

\
m m
+ -
3 2
=
4 3
,且
m
-
2
>

七年级数学下册《含参数的一元一次不等式与不等式组》练习题及答案(人教版)

七年级数学下册《含参数的一元一次不等式与不等式组》练习题及答案(人教版)

七年级数学下册《含参数的一元一次不等式与不等式组》练习题及答案(人教版)一、选择题1. 已知点P(−1,a)在第二象限,则a的取值范围是( )A. a=0B. a>1C. a>0D. a<02. 若关于x的不等式(a−1)x<1的解集是x>1a−1,则a的取值范围是( )A. a>0B. a<0C. a>1D. a<13. 关于x的不等式2x−a≤−1的解集如图所示,则a的取值是( )A. −1B. −2C. −3D. 04. 关于x的方程a−1x+1=1的解是负数,则a的取值范围是( )A. a<2B. a>1C. a>1,且a≠2D. a<2,且a≠15. 若关于x,y的方程组{x+y=m2x−y=2的解满足x>y,则m的取值范围是( )A. m<1B. m<2C. m<3D. m<46. 关于x的不等式组{x−m<03x−1>2(x−1)有解,那么m的取值范围为( )A. m≤−1B. m<−1C. m≥−1D. m>−17. 若关于x的不等式(m+1)x>m+1的解集为x<1,则m的取值范围是( )A. m<−1B. m>−1C. m>0D. m<08. 关于x、y的二元一次方程组{x+3y=2+a3x+y=−4a的解满足x+y>2,则a的取值范围为( )A. a<−2B. a>−2C. a<2D. a>29. 不等式组{x+9<5x+1x>a+1的解集是x>2,则a的取值范围是( )A. a≤2B. a≥2C. a≤1D. a>110. 若不等式组{1<x≤2x>k有解,则k的取值范围是( )A. k<2B. k≥2C. k<1D. 1≤k<2二、填空题11. 若关于x的一元一次方程4x+m+1=x−1的解是负数,则m的取值范围是______.12. 若不等式(m−2)x>1的解集是x<1m−2,则m的取值范围是______.13. 若不等式组{x+2a≥51−2x>x−2有解,则a的取值范围是______.14. 关于x、y的二元一次方程组{2x+y=2m+1x+2y=3的解满足不等式x−y>4,则m的取值范围是______.15. 不等式组{2x−a<1x−2b>3的解集为−1<x<1,则(a+2)(b−2)的值等于______ .三、解答题16.已知关于x、y的方程组{x+y=2a+7x−2y=4a−3.(1)若a=2,求方程组的解;(2)若方程组的解x、y满足x>y,求a的取值范围.17.已知关于x,y的二元一次方程组{x+y=1−ax−y=3a+7的解是一对正数.(1)求a的取值范围;(2)化简:|a+4|−|a|+|2a+3|.18.已知关于x,y的二元一次方程组{x+2y=12 x−y=3m(1)用含有m的代数式表示方程组的解;(2)如果方程组的解x,y满足x+y>0,求m的取值范围.19. 已知方程{x+y=−7−ax−y=1+3a的解x为非正数,y为负数,求a的取值范围.20.已知2x+3=2a,y−2a=4并且a−34<x+y≤2a+112.(1)求a的取值范围;(2)化简:|2a−6|+2|a+2|的结果是______;(3)比较a2+2a−5与a2+a−1的大小.参考答案1.C 2.D 3.A 4.D 5.D6.D7.A8.A9.C10.A11.m>−212.m<213.a>214.m>315.−1216.解:(1)当a=2时{x+y=11①x−2y=5②①−②得3y=6y=2将y=2代入①得x+2=11x=9则方程组的解为{x=9 y=2;(2)解方程组得{x=8a+113y=10−2a3∵x>y∴8a+113>10−2a3解得a>−110.17.解:(1){x+y=1−a①x−y=3a+7②①+②得2x=2a+8解得x=a+4代入①得y=−2a−3.故方程组的解为:{x=a+4y=−2a−3∵x>0,y>0∴{x=a+4>0y=−2a−3>0解得:−4<a<−1.5;(2)由(1)得a+4>0,a<0,2a+3<0∴原式=a+4−(−a)+(−2a−3) =a+4+a−2a−3=1.18.解:(1){x+2y=12 ①x−y=3m ②①−②,得3y=12−3m解得y=4−m.将y=4−m代入②,得x−(4−m)=3m解得x=2m+4.故方程组的解可表示为{x=2m+4 y=4−m;(2)∵x+y>0∴2m+4+4−m>0解得m>−8.故m的取值范围是m>−8.19.解:{x+y=−7−ax−y=1+3a得,{x=a−3y=−2a−4.∵{x≤0y<0∴{a−3≤0−2a−4<0.解得−2<a≤3.20.解:(1)由2x+3=2a,得到x=,由y-2a=4,得到y=2a+4代入得:可化为:由①去分母得:4a-3<4a-6+8a+16,即8a>-13,解得a>-;由②去分母得:2a-3+4a+8<4a+11,即2a<6,解得a<3∴不等式组的解集为:;(2)由(1)求出的a的范围得:2a-6≤0,a+2>0则|2a-6|+2|a+2|=6-2a+2(a+2)=6-2a+2a+4=10;故答案为:10;(3)∵(a2+2a-5)-(a2+a-1)=a2+2a-5-a2-a+1=a-4<0∴a2+2a-5<a2+a-1.。

高三数学不等式试题答案及解析

高三数学不等式试题答案及解析

高三数学不等式试题答案及解析1.已知变量满足:,则的最大值为()A.B.C.2D.4【答案】D【解析】由约束条件画出可行域,令,可知在点处取得最大值,所以的最大值为。

【考点】线性规划及指数函数的单调性。

2.若二元一次线性方程组无解,则实数的值是__________.【答案】-2【解析】二元一次线性方程组无解,则直线x+ay=3与ax+4y=6平行,则解得.【考点】二元一次方程组.3.若实数,满足,则目标函数的取值范围是()A.B.C.D.【答案】A【解析】作出可行域,由图可知,可行域三个顶点分别为,将三个点的坐标分别代入目标函数得,所以目标函数的取值范围为,故选A.【考点】线性规划.4.(本题满分10分)选修4—5:不等式选讲设对于任意实数,不等式≥恒成立.(1)求的取值范围;(2)当取最大值时,解关于的不等式:.【答案】(1);(2).【解析】本题主要考查绝对值不等式的解法、恒成立问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,将不等式≥恒成立,转化为,用零点分段法,将转化为分段函数,再每一段分别求最值;第二问,结合第一问的结论,将m的值代入,利用零点分段法将绝对值不等式转化成不等式组,分别求解.试题解析:(1)设,则有当时有最小值8当时有最小值8当时有最小值8综上有最小值8所以(2)当取最大值时原不等式等价于:等价于:或等价于:或所以原不等式的解集为【考点】绝对值不等式的解法、恒成立问题.5.(本小题满分10分)选修4—5:不等式选讲设函数.(1)当时,解不等式;(2)若的解集为,,求证:.【答案】(1);(2)证明详见解析.【解析】本题主要考查绝对值不等式的解法、基本不等式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,用零点分段法去掉绝对值符号,转化为不等式组,解不等式;第二问,先解不等式,再结合的解集为,从而得到a的值,再利用特殊值1将转化为,再利用基本不等式求函数的取值范围.试题解析:(1)当a=2时,不等式为,不等式的解集为;(2)即,解得,而解集是,,解得,所以所以.【考点】绝对值不等式的解法、基本不等式.6.已知是坐标原点,点,若点为平面区域上的一个动点,则的取值范围是()A.B.C.D.【答案】C【解析】满足约束条件的平面区域如下图所示:将平面区域的三个顶点坐标分别代入平面向量数量积公式,当时,;当时,;当时,;故取值范围为,故选C.【考点】1.简单的线性规划;2.向量的数量积.7.(本小题满分10分)选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若,且,求证:.【答案】(Ⅰ);(Ⅱ)证明见解析.(Ⅱ)【解析】(Ⅰ)这是含绝对值的不等式工,解法是由绝对值的定义对变量的范围进行分类讨论以去掉绝对值符号,化为普通的不等式(不含绝对值);(Ⅱ)不等式为,可两边平方去掉绝对值符号,再作差可证.试题解析:(Ⅰ)由题意,原不等式等价为,令 3分不等式的解集是 5分(Ⅱ)要证,只需证,只需证而,从而原不等式成立. 10分【考点】含绝对值不等式的解法,绝对值不等式的证明,分析法.8.若是任意实数,且,则下列不等式成立的是()A.B.C.D.【答案】D【解析】因为函数在上是减函数,又,所以,故选D.【考点】不等式的性质.9.选修4-5:不等式选讲已知x,y为任意实数,有(1)若求的最小值;(2)求三个数中最大数的最小值.【答案】(1);(2).【解析】(1)利用消元法可得关于x的二次三项式,从而用配方法可求得最小值.(2)利用绝对值不等式可求最大值的最小值.试题解析:(1)解:当时,最小值为(2)设,则所以即中最大数的最小值为【考点】配方法,绝对值不等式,最值.10.若实数,满足不等式组.则的最大值是()A.10B.11C.13D.14【答案】D【解析】画出可行域如图:当时,作出目标函数线,平移目标函数线使之经过可行域,当目标函数线过点时纵截距最大同时也最大, 最大值为;当时,作出目标函数线,平移目标函数线使之经过可行域四边形但不包括边,当目标函数线经过点时纵截距最大同时也最大, 的最大值为.综上可得的最大值为14.【考点】简单的线性规划.11.已知函数,.(1)若,解不等式;(3)若,且对任意,方程在总存在两不相等的实数根,求的取值范围.【答案】(1):,:;(2).【解析】(1)根据的取值情况进行分类讨论,将表达式中的绝对值号去掉,再利用二次函数的单调性讨论即可求解;(2)利用二次函数的单调性首先课确定的大致范围,再利根据条件方程在总存在两不相等的实数根,建立关于的不等式组,从而求解.试题解析:(1)∵,∴在单调递增,在单调递减,在单调递增,若:令解得:∴不等式的解为:;若:令,解得:,,根据图象不等式的解为:,综上::不等式的解为;:不等式的解为;(3),∵,∴在单调递增,在单调递减,在单调递增,∴或,∴在单调递增,∴,若:在单调递减,在单调递增,∴必须,即;若:在单调递增,在单调递减,,即;综上实数的取值范围是.【考点】1.二次函数的综合题;2.分类讨论的数学思想.【方法点睛】解决二次函数综合题常见的解题策略有:1.尽可能画图,画图时要关注已知确定的东西,如零点,截距,对称轴,开口方向,判别式等;2.两个变元或以上,学会变换角度抓主元;3.数形结合,务必要保持数形刻画的等价性,不能丢失信息;3.掌握二次函数,二次不等式,二次方程的内在联系,熟练等价转化和准确表述;4.恒成立问题可转化为最值问题.12.设函数.(1)若,解不等式;(2)如果,,求的取值范围.【答案】(1);(2).【解析】(1)当,圆不等式变为,可利用绝对值的集合意义求解,从而得到不等式的解集;(2)求当,,a的取值范围,可先对a进行分类讨论:,对后两种情形,只需求出的最小值,最后“,”的充要条件是,即可求得结果.试题解析:由题意得,(Ⅰ)当时,.由,得,(ⅰ)时,不等式化为,即.不等式组的解集为.(ⅱ)当时,不等式化为,不可能成立.不等式组的解集为.(ⅲ)当时,不等式化为,即.不等式组的解集为.综上得,的解集为.(Ⅱ)若,不满足题设条件.若的最小值为.若的最小值为.所以的充要条件是,从而的取值范围为.【考点】绝对值不等式的求解及其应用.13.变量满足约束条件,当目标函数取得最大值时,其最优解为.【答案】.【解析】作出可行域,画出目标函数的图象,由图知最优解为.【考点】线性规划.14.(1)选修4—4:坐标系与参数方程已知直线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,曲线的参数方程是(为参数),直线和曲线相交于两点,求线段的长.(2)选修4—5:不等式选讲已知正实数满足,求证:.【答案】(1);(2)证明见解析.【解析】(1)先由直线的极坐标方程得直线的直角坐标方程,再化为参数方程;曲线的参数方程化为直角坐标方程,把直线的参数方程与曲线联立,利用韦达定理求线段的长.(2)利用基本不等式得,,再根据不等式的性质得,因为,得证.试题解析:(1)由直线的极坐标方程是,可得由直线的直角坐标方程是,化为参数方程为(为参数);曲线(为参数)可化为.将直线的参数方程代入,得.设所对应的参数为,,,所以.(2)证明:因为正实数,所以.同理可证:..,.当且仅当时,等号成立.【考点】1、极坐标方程;2、参数方程;3、直线与椭圆;4、基本不等式;5、不等式的性质.【方法点睛】(1)先由直线的极坐标方程得直线的直角坐标方程,再化为参数方程;再把曲线的参数方程化为直角坐标方程,然后把直线的参数方程与曲线联立,利用韦达定理和弦长公式求出线段的长.把直线的参数方程与曲线的直角坐标方程联立能够简化解题过程;(2)利用基本不等式及不等式的性质进行证明.15.已知满足约束条件,若的最大值为4,则()A.3B.2C.-2D.-3【答案】B【解析】将化为,作出可行域(如图所示),当时,当直线向右下方平移时,直线在轴上的截距减少,当直线过原点时,(舍);当时,当直线向右上方平移时,直线在轴上的截距增大,若,即时,当直线过点时,,解得(舍),当,即时,则当直线过点时,,解得;故选B.【考点】1.简单的线性规划;2.数形结合思想.【易错点睛】本题主要考查简单的线性规划与数形结合思想的应用,属于中档题;处理简单的线性规划问题的基本方法是:先画出可行域,再结合目标函数的几何意义进行解决,往往容易忽视的是目标函数基准直线与可行域边界的倾斜程度,如本题中,不仅要讨论斜率的符号,还要讨论斜率与边界直线斜率的大小关系.16.如果实数满足关系,则的最小值是.【答案】2【解析】满足不等式组的平面区域,如图所示,因表示定点到平面区域内的点的距离,由图易知其最小距离为点到直线的距离,即,所以的最小值为2.【考点】1、平面区域;2、点到直线的距离公式.【方法点睛】(1)平面区域的确定,已知,则,表示的区域为直线的右方(右下方或右上方),表示的区域为直线的左方(左下方或左上方);(2)具有一定的几何意义,即几何意义为点到的距离的平方.17.(2014•河南模拟)已知函数f(x)=|x+a|+|2x﹣1|(a∈R).(1)当a=1,求不等式f(x)≥2的解集;(2)若f(x)≤2x的解集包含[,1],求a的取值范围.【答案】(1)原不等式的解集为{x|x≤0,或}.(2)[﹣].【解析】对第(1)问,利用零点分段法,令|x+1|=0,|2x﹣1|=0,获得分类讨论的标准,最后取各部分解集的并集即可;对第(2)问,不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,由此去掉一个绝对值符号,再探究f(x)≤2x的解集与区间[,1]的关系.解:(1)当a=1时,由f(x)≥2,得|x+1|+|2x﹣1|≥2,①当x≥时,原不等式可化为(x+1)+(2x﹣1)≥2,得x≥,∴x≥;②当﹣1≤x<时,原不等式可化为(x+1)﹣(2x﹣1)≥2,得x≤0,∴﹣1≤x≤0;③当x<﹣1时,原不等式可化为﹣(x+1)﹣(2x﹣1)≥2,得x≤,∴x<﹣1.综上知,原不等式的解集为{x|x≤0,或}.(2)不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,从而原不等式可化为|x+a|+(2x﹣1)≤2x,即|x+a|≤1,∴当x∈[,1]时,﹣a﹣1≤x≤﹣a+1恒成立,∴,解得,故a的取值范围是[﹣].【考点】绝对值不等式的解法.18.不等式的解集是()A.B.C.D.【答案】B【解析】或.故B正确.【考点】一元二次不等式.19.直线ax﹣2by+1=0(a>0,b>0)平分圆x2+y2+4x﹣2y﹣1=0的面积,则+的最小值为()A.3+2B.4+2C.6+4D.8【答案】C【解析】根据已知条件得到a+b=,将其代入+,结合基本不等式的性质计算即可.解:∵直线ax﹣2by+1=0(a>0,b>0)平分圆x2+y2+4x﹣2y﹣1=0的面积,∴圆x2+y2+4x﹣2y﹣1=0的圆心(﹣2,1)在直线上,可得﹣2a﹣2b+1=0,即a+b=,因此2(+)(a+b)=2(3++)≥6+4,当且仅当:=时“=”成立,故选:C.【考点】直线与圆的位置关系.20.已知实数满足不等式组,则的最大值为________.【答案】9.【解析】作出不等式组表示的平面区域如下图:由图可知,当直线经过点时,取得最大值为:.故答案应填:9.【考点】线性规划.21.已知.(Ⅰ)求证:;(Ⅱ)若对任意实数都成立,求实数的取值范围.【答案】(Ⅰ)见解析;(Ⅱ).【解析】(Ⅰ)利用零点分段讨论法将绝对值符号去掉,得到分段函数,再求各段的值域即可;(Ⅱ)利用基本不等式和不等式恒成立进行求解.试题解析:(Ⅰ)∵,∴的最小值为5,∴.(Ⅱ)解:由(Ⅰ)知:的最大值等于5.∵,“=”成立,即,∴当时,取得最小值5.当时,,又∵对任意实数,都成立,∴.∴的取值范围为.【考点】1.零点分段讨论法;2.基本不等式.22.设函数,其中.(I)当时,解不等式;(II)若对于任意实数,恒有成立,求的取值范围.【答案】(I);(II).【解析】(I)采用零点分区间法求解;(II)先求出的最大值为,把问题转化为求解.试题解析:(Ⅰ)时,就是当时,,得,不成立;当时,,得,所以;当时,,即,恒成立,所以.综上可知,不等式的解集是.(Ⅱ) 因为,所以的最大值为.对于任意实数,恒有成立等价于.当时,,得;当时,,,不成立.综上,所求的取值范围是【考点】.绝对值不等式的解法;不等式恒成立问题23.已知函数.(1)解不等式;(2)若不等式对任意的恒成立,求实数的取值范围.【答案】(1) 不等式的解集为;(2) .【解析】(1)分区间去掉绝对值符号,将函数表示成分段函数的形式,在每个区间上分别解不等式,最后再求并集即可;(2) 不等式对任意的恒成立,由(1)求出函数的最小值,解不等式即可.试题解析:(1).当时,由,得,此时无解;当时,由,得,所以;当时,由,得,所以.综上,所求不等式的解集为.(2)由(1)的函数解析式可以看出函数在区间上单调递减,在区间上单调递增,故在处取得最小值,最小值为不等式对任意的恒成立,即,解得,故的取值范围为.【考点】1.含绝对值不等式的解法;2.函数与不等式.24.设,若对任意的正实数,都存在以为三边长的三角形,则实数的取值范围是()A.B.C.D.以上均不正确【答案】A【解析】因为正实数,则,要使为三边的三角形存在,则,即恒成立,故,令,则,取,递减,所以时,;同理取,递增,可知时,,故实数的取值范围是,故选A.【考点】基本不等式的应用.方法点睛:本题结合三角形的基本性质考查了基本不等式的应用,属于中档题.解答本题应先根据基本不等式求得,再三角形的性质任意两边之和大于第三边,任意两边之差小于第三边得到即得的不等式组,再利用基本不等式结合函数的单调性求出的取值范围.25.已知函数(是常数)和是定义在上的函数,对任意的,存在使得,,且,则在集合上的最大值为()A.B.C.4D.5【答案】D【解析】由题知,易知在上是减函数,在上是增函数,所以,又因为,所以,化简得,再由,可求得,所以,并且可判定在上是减函数,在上是增函数,由于,所以在集合上的最大值为,故选D.【考点】1、导数在函数研究中的应用;2、函数的最值.【思路点睛】本题是一个利用导数研究函数的单调性、最值方面的综合性问题,属于难题.解决本题的基本思路是,首先根据题意判断出的最值关系,再由条件求出函数在定义域上的最小值,进而判断出的最值情况,并据此求出的值,从而得到的解析式,进一步可求出的最大值,问题得以解决.26.已知直线经过点,则的最小值为()A.B.C.D.【答案】B【解析】因为直线经过点,所以,故,当且仅当时,等号成立.【考点】基本不等式.27.已知函数.(1)求不等式的解集;(2)若关于的表达式的解集,求实数的取值范围.【答案】(1);(2)或.【解析】(1)由绝对值的定义可分类讨论去绝对值,再分别解不等式即可;(2)由题意可得的值域为,要,需,解得实数的取值范围是或.试题解析:(1)由题意得:,则不等式等价于或,解得:或,∴不等式的解集.(2)∵,∴的值域为,∴的解集.要,需,即或,∴或,∴实数的取值范围是或.【考点】含绝对值不等式的解法.28.设函数.(1)若不等式的解集为,求实数的值;(2)在(1)的条件下,若不等式的解集非空,求实数的取值范围.【答案】(1);(2).【解析】本题主要考查绝对值不等式、存在性问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力. 第一问,解绝对值不等式,先得到与解集对应系数相等,解出的值;第二问,先整理,构造函数,画出函数图象,结合图象,得到,或,从而解出的取值范围.试题解析:(1)∵,∴,∴,∴,因为不等式的解集为,所以,解得.(2)由(1)得.∴,化简整理得:,令,的图象如图所示:要使不等式的解集非空,需,或,∴的取值范围是【考点】本题主要考查:1.绝对值不等式;2.存在性问题.29.若,若的最大值为3,则的值是___________.【答案】【解析】画出可行域如下图所示,为最优解,故.【考点】线性规划.30.选修4-5:不等式选讲若,且.(1)求的最小值;(2)是否存在,使得?并说明理由.【答案】(1)(2)不存在【解析】(1)利用基本不等式得,即,而,等号都是取得,(2)利用基本不等式得,即与矛盾,故不存在试题解析:解:(Ⅰ)由,得,且当时等号成立,故,且当时等号成立,∴的最小值为.(Ⅱ)由,得,又由(Ⅰ)知,二者矛盾,所以不存在,使得成立.【考点】基本不等式【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.31.已知x、y满足,那么z=3x+2y的最大值为 .【答案】【解析】由题意得,作出不等式组表示平面区域,如图所示,可得平面区域为一个三角形,当目标函数经过点时,目标函数取得最大值,此时最大值为.【考点】简单的线性规划.32.已知实数x,y满足,则z=4x+y的最大值为()A.10B.2C.8D.0【答案】C【解析】作出可行域,如图内部(含边界),作直线,向上平移直线,增大,当过点时,取最大值8.【考点】简单的线性规划问题.33.若实数满足约束条件,则的最大值为()A.B.1C.D.【答案】A【解析】因画出不等式组表示的区域如图, 的几何意义是区域内的动点与定点连线的斜率,借助图形不难看出区域内的点与定点连线的斜率最大,最大值为,所以的最大值为,应选A.【考点】线性规划的知识及运用.34.已知,使不等式成立.(1)求满足条件的实数的集合;(2)若,对,不等式恒成立,求的最小值.【答案】(1);(2).【解析】(1)运用分类讨论的方法分段求解;(2)借助题设条件及基本不等式求解.试题解析:(1)令,则,由于使不等式成立,有(2)由(1)知,,根据基本不等式,从而,当且仅当时取等号,再根据基本不等式当且仅当时取等号,所以的最小值为6【考点】绝对值不等式、基本不等式及运用.35.设变量满足不等式组则目标函数的最小值是______.【答案】7【解析】不等式组对应的可行域如图,由图可知,,目标函数表示斜率为的一组平行线当目标函数经过图中点时取得最小值.故填:7.【考点】线性规划36.设x,y满足约束条件且的最大值为4,则实数的值为____________.【答案】-4【解析】作出可行域,令得 .结合图象可知目标函数在处取得最大值,代入可得.故本题答案应填.【考点】线性规划.37.已知函数,其中为常数.(1)当时,求不等式的解集;(2)设实数,,满足,若函数的最小值为,证明:.【答案】(1);(2)证明见解析.【解析】(1)由.再由或或解集为;(2)由当且仅当,即时取等号,,则.解法一:由题设.解法二:由题设,,即,.试题解析:(1)当时,由,得或,即或所以不等式的解集为(2)因为,当且仅当,即时取等号,则.由已知,,则解法一:由题设,则,,解法二:由题设,,据柯西不等式,有,即,所以【考点】1、绝对值不等式;2、重要不等式;3、柯西不等式.38.若满足约束条件,则的最大值为.【答案】【解析】作出可行域,如图内部(含边界),,,表示可行域内点与的连线的斜率,,因此最大值为.【考点】简单线性规划的非线性运用.39.已知变量满足约束条件,目标函数的最大值为10,则实数的值等于()A.4B.C.2D.8【答案】A【解析】由不等式组可得可行域(如图),当直线经过点时,取得最大值,且由已知,解得.【考点】简单线性规划.【方法点睛】本题主要考查简单线性规划问题,属于基础题.处理此类问题时,首先应明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围等.40.已知变量满足约束条件,则的最大值为__________.【答案】1【解析】可行域为一个三角形ABC及其内部,其中,直线过点C时取最大值1.【考点】线性规划【易错点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.41.设,则a, b,c的大小关系是()A.a>c>b B.a>b>cC.c>a>b D.b>c>a【答案】A【解析】,考察函数,该函数在上单调递减,,考察函数,该函数在上单调递增,,故选A.【考点】指数函数的单调性与幂函数的单调性.42.若满足约束条件,则当取最大值时,的值为()A.B.C.D.【答案】D【解析】作出可行域如图中阴影部分所示,的几何意义是:过定点与可行域内的点的直线的斜率,由图可知,当直线过点时,斜率取得最大值,此时的值分别为,所以.故选D.【考点】简单线性规划.43.若,则()A.B.C.D.【答案】A【解析】因为即,,所以,故选A.【考点】指数函数、对数函数的性质.44.已知实数满足不等式组则的最大值是___________.【答案】6【解析】作出不等式组表示的平面区域,如图所示,由图知当目标函数经过点时取得最大值,即.【考点】简单的线性规划问题.【方法点睛】运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值;在哪个端点,目标函数取得最小值,正确作出可行域是解答此类问题的前提条件.45.选修4-5:不等式选讲设函数.(1)证明:;(2)若不等式的解集为非空集,求的取值范围.【答案】(1)详见解析;(2)(-1,0)【解析】(1)(当且仅当时取等号);(2)作出函数的图象,由图像可求出结果.试题解析:解:(1)(当且仅当时取等号)(2)函数的图象如图所示.当时,,依题意:,解得,∴的取值范围是(-1,0).【考点】1.绝对值不等式;2.基本不等式.46.选修4—5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若存在实数,使得,求实数的取值范围.【答案】(I);(II).【解析】(I)分,,三种情况讨论,去掉绝对值符号,转化不等式求出解集,取并集即可;(II)移项可得,根据绝对值的几何意义,求出的最大值,即可求得实数的取值范围.试题解析:(I)①当时,,所以②当时,,所以为③当时,,所以综合①②③不等式的解集(II)即由绝对值的几何意义,只需【考点】绝对值不等式的解法和绝对值的几何意义.47.设,满足约束条件则的取值范围为.【答案】【解析】画出可行域如下图所示,由图可知,目标函数在点处取得最小值为,在点处取得最大值为.【考点】线性规划.48.实数满足,则的最大值是()A.2B.4C.6D.8【答案】B【解析】依题画出可行域如图,可见及内部区域为可行域,令,则为直线在轴上的截距,由图知在点处的最大值是,在最小值是,所以而,所以的最大值是,故选B.【考点】1、可行域的画法;2、最优解的求法.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.49.选修4-5:不等式选讲已知函数.(Ⅰ)若,解不等式;(Ⅱ)若存在实数,使得不等式成立,求实数的取值范围.【答案】(I)(II)【解析】(I)先根据绝对值定义将不等式转化为三个不等式组:,或,或,最后求三个不等式组解集的并集得原不等式的解集(II)先化简不等式为,再利用绝对值三角不等式求最值:,再转化解不等式得实数的取值范围.试题解析:不等式化为,则,或,或,……………………3分解得,所以不等式的解集为.……………………5分(2)不等式等价于,即,由绝对值三角不等式知.……………………8分若存在实数,使得不等式成立,则,解得,所以实数的取值范围是.……………………10分【考点】绝对值三角不等式,绝对值定义【名师】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.50.选修4-5:不等式选讲已知函数.(1)解不等式;。

高中数学选考系列(参数方程与不等式)解析版

高中数学选考系列(参数方程与不等式)解析版

选考系列(参数方程与不等式)选考系列主要包含参数方程极坐标,以及不等式是高考中二选一的一道解答题,属于相对比较简单的题目,共10分,是高考大题中分值最小的一道题目.对于参数方程与极坐标,一般均是简单一点的解析几何.对于不等式部分,主要还是以绝对值不等式为主.本专题中主要介绍几种高考中常见的选做题类型,以及在后面【点睛】处有此类题型的解决方法.通过本专题的讲解与练习之后,在高考中,此类题型就能够迎刃而解.拿到满分.【知识点分析以及满分技巧】对于参数方程与极坐标系方程属于简单一点的解析几何.需要搞清楚极坐标系与直角坐标系之间的等量转化,相对于要学会将极坐标系转化成直角坐标去运算,同理将直角坐标系转化成极坐标系去运算.对于绝对值不等式的求解,一般采用三段法,将绝对值不等式分成三段,从而进行分段讨论运算,应注意计算技巧,计算是本类题目的易错点. 【常见题型限时检测】(建议用时:120分钟)一、单选题1.(2020·上海青浦区·高三二模)记椭圆221441x ny n +=+围成的区域(含边界)为(1,2)n n Ω=,当点(,)x y 分别在12,,ΩΩ上时x y +的最大值分别是1M ,2M ,…,则lim n n M →∞=( ) A .25 B .4C .3D .2【答案】D【分析】通过221441x nyn +=+的参数方程2cos 14x y n θθ=⎧⎪⎨=+⎪⎩(θ为参数), 可得:()112cos 48x y n n θθθϕ+=++=++,从而max 1()8x y n+=+, 求极限即可得解.【详解】椭圆221441x nyn +=+的参数方程为:2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数) ,所以:()()2cos x y θθθϕθϕ+=++=+,所以:max ()x y +=,所以:lim lim n n n M →∞→∞==故选:D.【点睛】本题考查了椭圆的参数方程,考查了辅助角公式求三角函数最值,考查了转化思想,也考查了极限的运算,属于中档题.2.(2020·上海高三其他模拟)已知直线l 的方程为3410x y -+=,则下列各式是l 的参数方程的是( )A .4334x ty t =+⎧⎨=-⎩B .4334x ty t =+⎧⎨=+⎩C .1413x ty t =-⎧⎨=+⎩D .1413x ty t=+⎧⎨=+⎩【答案】D【分析】将各参数方程消参,化为普通方程后,与已知直线的方程对比,即可作出判定. 【详解】A.参数方程可化简为4+3250x y -=,故A 不正确; B.参数方程可化简为4370x y --=,故B 不正确; C.参数方程可化简为3+470x y -=,故C 不正确; D.参数方程可化简为3410x y -+=,故D 正确. 故选:D .【点睛】本题考查直线的参数方程的判定,涉及参数方程与普通方程的互化,属基础题,难度一般. 3.(2018·上海金山区·高三一模)给出下列四个命题:(1)函数()arccos 11y x x =-≤≤的反函数为()cos y x x R =∈;(2)函数()21m m y x m N +-=∈为奇函数;(3)参数方程()2221121t x t t R t y t ⎧-=⎪⎪+∈⎨⎪=⎪+⎩所表示的曲线是圆;(4)函数()221sin 32xf x x ⎛⎫=-+ ⎪⎝⎭,当2017x >时,()12f x >恒成立.其中真命题的个数为( ).A .4个B .3个C .2个D .1个【答案】D【分析】(1)求出函数()arccos 11y x x =-≤≤的值域,然后进行判断正假即可; (2)判断()21m m m N +-∈的奇偶性,然后进行判断正假即可;(3)运用平方法进行消参,然后进行判断正假即可; (4)计算()700f π的值,然后进行判断正假即可.【详解】(1)函数()arccos 11y x x =-≤≤的值域为[0,]π,因此函数()arccos 11y x x =-≤≤的反函数为()cos [0,]y x x π=∈,故本命题是假命题; (2)221(1)11m m m m m N m m +-=+-∈∴+-是奇数,故函数()21mm y x m N +-=∈为奇函数,故本命题是真命题;(3)()2222222211211111121t x t t t R x y x x t t ty t ⎧-=⎪-⎪+∈⇒+===-∴≠-⎨++⎪=⎪+⎩,故本命题是假命题; (4)()7002117000()322f ππ=-+<,而7002017π>,故本命题是假命题. 故选:D【点睛】本题考查了函数奇偶性的判断,考查了函数与反函数的关系性质,考查了平方消参法,考查了特殊值法.4.(2020·宝山区·上海交大附中高三其他模拟)已知曲线Γ的参数方程为(3cos ln x t t t y t ⎧=-⎪⎨=+⎪⎩其中参数t R ∈,,则曲线Γ( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .没有对称轴【答案】C【分析】设()x f t =,()y g t = t R ∈,首先判断这两个函数都是奇函数,然后再判断函数关于原点对称. 【详解】设()x f t =,()y g t = t R ∈()()()()()333cos cos cos f t t t t t t t t t t x -=----=-+=--=-,()x f t ∴=是奇函数,()()()()()22ln 1ln 1g t g t t t t t -+=-+-++++()()22ln 1ln 1ln10t t t t =-+++++== ,()y g t ∴=也是奇函数,设点()()(),P f t g t 在函数图象上,那么关于原点的对称点是()()(),Q f t g t --,()f t 和()g t 都是奇函数,所以点Q 的坐标是()()(),Q f t g t --,可知点Q 在曲线上,∴ 函数图象关于原点对称.故选:C【点睛】本题考查函数图象和性质的综合应用,意在考查转化与计算能力,属于中档题型.5.(2020·上海长宁区·高三一模)设()1232f x x b kx b x b =-+---,其中常数0k >,123,,b b b ∈R .若函数()y f x =的图象如图所示,则数组()123,,b b b 的一组值可以是( )A .()3,1,1-B .()1,2,1--C .()1,2,2-D .(),,-131【答案】A【分析】利用取极限的思想,0k >,当x 足够大时,总有()1232f x x b kx b x b =-+--+,由图像可知,此时()f x 与x 无关,故当1k =时,得1230b b b --+<,即可判断. 【详解】由于0k >,当x 足够大时, 总有()1232f x x b kx b x b =-+--+,由图像可知,此时()f x 与x 无关,故当1k =时,得1230b b b --+<,由此排除B ,C ,D ;对于A :()3121f x x x x =-++--,()()()1,1123,12125,321,3x x x f x x x x ⎧≤-⎪⎛⎫⎪+-<≤ ⎪⎪⎝⎭⎪=⎨⎛⎫⎪-+<≤ ⎪⎪⎝⎭⎪->⎪⎩,符合图象,故选:A.【点睛】关键点睛:利用取极限的思想,分析出0k >,当x 足够大时,由图象可知,此时函数的变化与x 无关,是解决本题的关键.6.(2020·上海嘉定区·高三二模)已知x ∈R ,则“1x >”是“|2|1x -<”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件【答案】B【分析】先对“|2|1x -<”等价变形,再利用集合法判断充要条件. 【详解】由|2|113x x -<⇒<<,则(1,)p =+∞,(1,3)q =,则p ⊂≠q ,故p 为q 必要非充分条件.故选:B .【点睛】本题考查了用集合法判断充要条件,属于容易题.7.(2019·上海交大附中高三一模)已知2(3)f x x x =+,若1x a -≤,则下列不等式一定成立的是( )A .33()()f x f a a -≤+B .24()()f x f a a -≤+C .()()5f x f a a -≤+D .2|()()2|(1)f x f a a -≤+【答案】B【分析】先令a=0,排除A ,C,D,再利用绝对值三角不等式证明选项B 成立【详解】令a=0,则1x ≤,即-1≤x≤1,()()()()()0?f x f a f x f f x -=-=≤4,此时A,C,D 不成立,下面证明选项B 成立()()22 33f x f a x x a a -=+--=()() 3x a x a -++≤()()3x a x a -++≤()3x a ++=23x a a -++≤23x a a -++≤24a +故选:B .【点睛】本题考查了绝对值三角不等式的应用,特值法,结合二次函数最值分析问题,准确推理计算是关键,是基础题.二、填空题8.(2020·上海高三其他模拟)已知直线l 的参数方程是10.820.6x ty t =+⎧⎨=+⎩(t 为参数),则它的普通方程是_____.【答案】3x ﹣4y +5=0【分析】根据加减消元得普通方程. 【详解】10.83438345020.6x tx y x y y t=+⎧∴-=-⇒-+=⎨=+⎩ 故答案为:3450x y -+=【点睛】本题考查参数方程化普通方程,考查基本分析求解能力,属基础题. 9.(2020·上海长宁区·高三二模)直线2:12x tl y t=+⎧⎨=-+⎩(t 是参数)的斜率为_______.【答案】2【分析】根据题意,利用消参法将直线的参数方程化为普通方程,即可得出直线的斜率. 【详解】解:根据题意,直线l 的参数方程为:212x ty t=+⎧⎨=-+⎩(t 是参数),消去参数t ,得出直线l 的普通方程为:()122y x +=-, 所以直线l 的斜率为:2.故答案为:2.【点睛】本题考查直线的斜率,利用消去参数法将直线的参数方程化为普通方程,以及对直线点斜式方程的理解.10.(2020·上海杨浦区·高三二模)已知曲线1C 的参数方程为212x t y t =-⎧⎨=+⎩,曲线2C的参数方程为1x y θθ⎧=-+⎪⎨=⎪⎩(θ是参数),则1C 和2C 的两个交点之间的距离为_______.【答案】5【分析】把两曲线的参数方程化为普通方程,求出圆心到直线的距离,根据勾股定理计算弦长. 【详解】消去参数得两曲线的普通方程为:2212:250,:(1)5C x y C x y -+=++=,曲线2C 是圆,圆心为2(1,0)C -,半径为r =d ==间距离为==.故答案为:5. 【点睛】本题考查参数方程与普通方程的互化,考查求直线与圆相交弦长,求直线与圆相交弦长问题,一般不是直接求出交点坐标,而是求出圆心到弦所在直线距离,用勾股定理(几何方法)计算弦长. 11.(2020·上海浦东新区·高三二模)在平面直角坐标系xOy 中,直线l 的参数方程为1x t y t=-⎧⎨=⎩(t 为参数),圆O 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),则直线l 与圆O 的位置关系是________.【答案】相交【分析】由已知可得:直线l 的标准方程为10x y -+=,圆O 的标准方程为221x y +=,再计算出圆心到直线的距离22dr ,问题得解.【详解】由直线l 的参数方程1x t y t=-⎧⎨=⎩,可得:直线l 的标准方程为:10x y -+=,由圆O 的参数方程cos sin x y θθ=⎧⎨=⎩,可得:圆O 的标准方程为:221x y +=,圆心为(0,0),半径1r =圆心为(0,0)到直线l 的距离2212121(1)d ,则直线l 与圆O 的位置关系是相交.故答案为:相交【点睛】本题考查了参数方程与普通方程的转化,考查了直线与圆的位置关系,属于中档题.12.(2020·上海嘉定区·高三二模)设P 是双曲线2218y x -=的动点,直线3cos sin x t y t θθ=+⎧⎨=⎩(t 为参数)与圆22(3)1x y -+=相交于A B 、两点,则PA PB ⋅的最小值是_________. 【答案】3.【分析】先分析直线与圆的方程,得到直线过圆心(3,0)C ,再将PA PB ⋅变为()()C CA P PC CB +⋅+22PC CA =-,转化为动点P 到C 的距离的最小值.【详解】设圆心为(3,0)C ,并且直线过(3,0)C ,则()()C CA P PC CB +⋅+22PC CA =-又21CA =,2PC =2PC ,又min 2PC =,则PA PB ⋅21PC =-22213≥-=.故答案为:3【点睛】本题是直线参数方程、直线与圆位置关系、向量、圆锥曲线的综合问题,分析出直线过圆心,向量式转化化简是突破点,难点.13.(2020·上海奉贤区·高三二模)集合22{|0}24x x A x -=≤-,{|||2}B x x a =-≤,若AB =∅,则实数a的取值范围是________ 【答案】(,1)[4,)-∞-+∞【分析】先分别求出集合,A B ,再由AB =∅列不等式可求出a 的取值范围【详解】解:由22024x x -≤-得,(22)(24)0x x --≤且(24)0x -≠,解得12x ≤<,所以集合{}12A x x =≤<,由||2x a -≤得,22a x a -≤≤+,所以集合{}22B x a x a =-≤≤+, 因为AB =∅,所以21a +<或22a -≥,解得1a <-或4a ≥故答案为:(,1)[4,)-∞-+∞【点睛】此题考查的是解分式不等式,解绝对值不等式,集合的交集运算,属于中档题 14.(2020·上海高三一模)不等式22|2|36x x x x -->--的解集是________ 【答案】(4,)-+∞【分析】将不等式22|2|36x x x x -->--转换为不等式22|2|36x x x x -+>--,再根据220x x -+>恒成立,则原不等式等价于22236x x x x -+>--解得即可;【详解】解:不等式22|2|36x x x x -->--转换为不等式22|2|36x x x x -+>--, 由于函数22y x x =-+的图象在x 轴上方,所以220x x -+>恒成立,所以22236x x x x -+>--,解得4x >-,故不等式的解集为(4,)-+∞.故答案为:(4,)-+∞【点睛】本题考查的知识要点:不等式的解法及应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.三、解答题15.(2019·上海青浦区·高三二模)在平面直角坐标系xOy 中,对于任意一点(),P x y ,总存在一个点(),Q x y ''满足关系式: :x x y yλϕμ''=⎧⎨=⎩(0λ>,0μ>),则称ϕ为平面直角坐标系中的伸缩变换.(1)在同一直角坐标系中,求平面直角坐标系中的伸缩变换ϕ,使得椭圆224936x y +=变换为一个单位圆;(2)在同一直角坐标系中,△AOB (O 为坐标原点)经平面直角坐标系中的伸缩变换:x xy yλϕμ''=⎧⎨=⎩(0λ>,0μ>)得到△A O B ''',记△AOB 和△A O B '''的面积分别为S 与S ',求证:S Sλμ'=; 【答案】(1)32xx y y ⎧=⎪⎪⎨''⎪=⎪⎩;(2)见详解. 【分析】(1)将椭圆方程化为标准方程22194x y +=,再由单位圆的方程,以及题中伸缩变换的概念,即可得出结果.(2)先设()()1122,,A B x y x y ,,根据伸缩变换得到()11A x y λμ',,()22,B x y λμ',得到O A '',OA 设直线OA 的斜率为k ,得到直线OA 的方程为y kx =,从而求出点B 到直线OA 的距离d , 同理得到点B '到直线O A ''的距离为1d ,最后由1O A d S S OA d⋅=''⋅'化简即可得出结果. 【详解】(1)因为椭圆224936x y +=的标准方程为22194x y +=,又单位圆的方程为221x y +=,因此要想由椭圆224936x y +=变换为一个单位圆,伸缩变换只需为3:{2xx y y ϕ='='; (2)先设()()1122,,A B x y x y ,,因为O 为坐标原点,所以()0,0O , 由△AOB (O 为坐标原点)经平面直角坐标系中的伸缩变换:{ x xy yλϕμ'=='(0λ>,0μ>)得到△A O B ''',所以()11A x y λμ',,()22,B x y λμ',()0,0O ',所以()()2211O A x y λμ''=+2211OA x y =+设直线OA 的斜率为k ,则直线OA 的方程为y kx =,故11y kx =,所以点B 到直线OA的距离为d =又直线O A ''的斜率为11y k x μμλλ=,直线O A ''的方程为y kx μλ=,即0kx y μλ-=, 所以点B '到直线O A ''的距离为1d ==,因此1O A d S S OA d λμ⋅'==''⋅=λμ==【点睛】本题主要考查伸缩变换的问题,熟记伸缩变换的概念、以及点到直线距离公式等即可求解,属于常考题型,计算量较大.16.(2020·上海徐汇区·高三二模)已知函数()()31,1f x x g x x =-=-. (1)解不等式()2f x ≤;(2)求()()()F x f x g x =-的最小值. 【答案】(1)1,13⎡⎤-⎢⎥⎣⎦ ;(2)23- 【分析】(1)由()2f x ≤可得312x -≤,即2312x -≤-≤,求解即可;(2)将()F x 写为分段函数的形式,再由一次函数的性质判断单调性,即可求得最值. 【详解】解:(1)因为()2f x ≤,则312x -≤,即2312x -≤-≤,解得113x -≤≤,即1,13x ⎡⎤∈-⎢⎥⎣⎦(2)由题,()()()()()131,04,011311131,02,03311311,42,33x x x x x F x x x x x x x x x x x x x ⎧⎧⎪⎪--+<-<⎪⎪⎪⎪=---=---≤<=-≤<⎨⎨⎪⎪⎪⎪---≥-≥⎪⎪⎩⎩,所以()F x 在1,3⎡⎫+∞⎪⎢⎣⎭上单调递增,在1,3⎛⎫-∞ ⎪⎝⎭上单调递减,所以()min 1233F x F ⎛⎫==- ⎪⎝⎭【点睛】本题考查解含绝对值的不等式,考查求分段函数的最值.17.(2020·上海浦东新区·高三二模)若数列{}n a 对任意连续三项12,,i i i a a a ++,均有()()2210i i i i a a a a +++-->,则称该数列为“跳跃数列”.(1)判断下列两个数列是否是跳跃数列: ①等差数列:1,2,3,4,5,;②等比数列:11111,,,,24816--;(2)若数列{}n a 满足对任何正整数n ,均有11na n a a +=()10a >.证明:数列{}n a 是跳跃数列的充分必要条件是101a <<.(3)跳跃数列{}n a 满足对任意正整数n 均有21195nn a a +-=,求首项1a 的取值范围.【答案】(1)① 等差数列:1,2,3,4,5,...不是跳跃数列;② 等比数列:11111,,,,, (24816)--是跳跃数列.(2)证明见解析(3)()()12,23,21a ∈-【分析】(1)①数列通项公式为n a n =,计算可得:()()22120i i i i a a a a +++--=-<,所以它不是跳跃数列;②数列通项公式为:112n n a -⎛⎫=- ⎪⎝⎭,计算可得:()()222191042ii i i i a a a a +++⎛⎫--=⨯-> ⎪⎝⎭,所以它是跳跃数列;(2)必要性:若11a >,则{}n a 是单调递增数列,若11a =,{}n a 是常数列,均不是跳跃数列;充分性:用数学归纳法证明证明,1n =命题成立,若n k =时2121222221,k k k k k k a a a a a a -+++<<>>,可得:222423k k k a a a +++>>,所以当1n k =+时命题也成立;(3)有已知可得:21n n a a ++-()()221519195125n n n n a a a a =----,2n n a a +-()()()2123195125n n n n a a a a =----,若1n n a a +>,则12n n n a a a ++>>,解得2n a ⎫∈⎪⎪⎝⎭;若1n n a a +<,则12n n n a a a ++<<,解得n a ⎛∈ ⎝⎭,由522n a ⎛⎫∈ ⎪ ⎪⎝⎭,则153,2n a +⎛∈ ⎝⎭,得()2,2n a ∈-;当53,2n a ⎛+∈ ⎝⎭,则()12,2n a +∈-,得(n a ∈,问题得解. 【详解】(1)①等差数列:1,2,3,4,5,通项公式为:n a n =()()[][]221(2)2(1)20i i i i a a a a i i i i +++--=-++-+=-<,所以此数列不是跳跃数列;②等比数列:11111,,,,,24816--通项公式为:112n n a -⎛⎫=- ⎪⎝⎭()()11122211111910222242i i i i ii i i i a a a a -+++++⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--=------=⨯->⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦所以此数列是跳跃数列(2)必要性:若11a >,则{}n a 是单调递增数列,不是跳跃数列;若11a =,{}n a 是常数列,不是跳跃数列. 充分性:(下面用数学归纳法证明) 若101a <<,则对任何正整数n ,均有2121222221,n n n n n n a a a a a a -+++<<>>成立.①当1n =时,112111a a a a a =>=, 213112a a a a a a =<=,1212131111,a a a a a a a a =<∴=>=,231a a a ∴>>321231111342,,a a a a a a a a a a a a >>∴<<<<,所以1n =命题成立②若n k =时,2121222221,k k k k k k a a a a a a -+++<<>>,则22221212322,k k k a a ak k k a a a a a a +++++<<∴<<,212322222423,k k k a a a k k k a a a a a a ++++++>>∴>>,所以当1n k =+时命题也成立,根据数学归纳法,可知命题成立,数列满足()()2210i i i i a a a a +++-->,故{}n a 是跳跃数列.(3)21195n n a a +-=()222212191919251919555125n n n n a a a a ++-⎛⎫- ⎪⨯---⎝⎭∴===()22221192519191255nn n n a a a a ++⨯---∴-=-()()221519195125n n n n a a a a =----()222192519125n n n n a a a a +⨯---=-()()()2123195125n n n n a a a a =---- ①若1n n a a +>,则12n n n a a a ++>>,()()()()()222151919501251231950125n n n n n n n n a a a a a a a a ⎧----<⎪⎪∴⎨⎪---->⎪⎩,解得2n a ⎫∈⎪⎪⎝⎭; ②若1n n a a +<,则12n n n a a a ++<<,()()()()()222151919501251231950125n n n n n n n n a a a a a a a a ⎧---->⎪⎪∴⎨⎪----<⎪⎩解得53,2n a ⎛+∈ ⎝⎭;若2n a ⎫∈⎪⎪⎝⎭,则21195nn a a +⎛-=∈ ⎝⎭,所以()2,2n a ∈-,若n a ⎛∈ ⎝⎭,则()21192,25n n a a +-=∈-,所以(n a ∈,所以()()12,23,21a ∈-,此时对任何正整数n ,均有()()2,23,21n a ∈-【点睛】本题考查了与数列相关的不等式证明,考查了数学归纳法,考查了分类与整合思想,属于难题. 18.(2020·徐汇区·上海中学高三其他模拟)若函数()f x 对任意的x ∈R ,均有()()()112f x f x f x -++≥,则称函数()f x 具有性质P .(1)判断下面两个函数是否具有性质P ,并说明理由.①()1xy aa =>;②3y x =.(2)若函数()f x 具有性质P ,且()()()*002,N f f n n n >∈==,求证:对任意{}1,2,3,,1i n ∈-有()0f i ≤;(3)在(2)的条件下,是否对任意[]0,x n ∈均有()0f i ≤.若成立给出证明,若不成立给出反例. 【答案】(1)①()1xy a a =>具有性质P ;②3y x =不具有性质P ,见解析;(2)见解析(3)不成立,见解析【分析】(1)①根据已知中函数的解析式,结合指数的运算性质,计算出()()()112f x f x f x -++-的表达式,进而根据基本不等式,判断其符号即可得到结论;②由3y x =,举出当1x =-时,不满足()()()112f x f x f x -++≥,即可得到结论;(2)由于本题是任意性的证明,从下面证明比较困难,故可以采用反证法进行证明,即假设()f i 为()()()1,2,,1f f f n -中第一个大于0的值,由此推理得到矛盾,进而假设不成立,原命题为真;(3)由(2)中的结论,我们可以举出反例,如()()2,,x x n x f x x x ⎧-=⎨⎩为有理数为无理数,证明对任意[]0,x n ∈均有()0f x ≤不成立.【详解】证明:(1)①函数()()1xf x aa =>具有性质P ,()()()11111222x x x x f x f x f x a a a a a a -+⎛⎫-++-=+-=+- ⎪⎝⎭,因为1a >,120xa a a ⎛⎫+->⎪⎝⎭,即()()()112f x f x f x -++≥,此函数为具有性质P ; ②函数()3f x x =不具有性质P ,例如,当1x =-时,()()()()11208f x f x f f -++=-+=-,()22f x =-,所以,()()()201f f f -+<-,此函数不具有性质P . (2)假设()f i 为()()()1,2,,1f f f n -中第一个大于0的值,则()()10f i f i -->,因为函数()f x 具有性质P ,所以,对于任意*n ∈N ,均有()()()()11f n f n f n f n +-≥--, 所以()()()()()()11210f n f n f n f n f i f i --≥---≥≥-->,所以()()()()()()110f n f n f n f i f i f i =--+++-+>⎡⎤⎡⎤⎣⎦⎣⎦,与()0f n =矛盾,所以,对任意的{}1,2,3,,1i n ∈-有()0f i ≤.(3)不成立.例如,()()2,,x x n x f x x x ⎧-=⎨⎩为有理数为无理数证明:当x 为有理数时,1x -,1x +均为有理数,()()()112f x f x f x -++-()()()2221121122x x x n x x x =-++---++-=,当x 为无理数时,1x -,1x +均为无理数,()()()()()2221121122f x f x f x x x x -++-=-++-= 所以,函数()f x 对任意的x ∈R ,均有()()()112f x f x f x -++≥,即函数()f x 具有性质P . 而当[]()0,2x n n ∈>且当x 为无理数时,()0f x >.所以,在(2)的条件下, “对任意[]0,x n ∈均有()0f x ≤”不成立.如()()()01x f x x ⎧⎪=⎨⎪⎩为有理数为无理数,()()()01x f x x ⎧⎪=⎨⎪⎩为整数为非整数,()()()20x f x x x ⎧⎪=⎨⎪⎩为整数为非整数等.【点睛】本题考查了函数的新定义及其应用,涉及指数函数和幂函数的性质,反证法,其中在证明全称命题为假命题时,举出反例是最有效,快捷,准确的方法.19.(2018·上海静安区·高三二模)设函数()271f x x ax =-++(a 为实数). (1)若1a =-,解不等式()0f x ≥; (2)若当01xx>-时,关于x 的不等式()1f x ≥成立,求a 的取值范围; (3)设21()1x g x ax +=--,若存在x 使不等式()()f x g x ≤成立,求a 的取值范围. 【答案】(1)8{|3x x ≤或6}x ≥;(2)[5,)-+∞;(3)[4,)-+∞ 【分析】(1)代入1a =-直接解不等式即可; (2)由01xx>-解得01x <<,故可将()1f x ≥化为(2)70a x -+≥,从而求出a 的范围; (3)化简()g x ,故可将题设条件变为:存在x 使1|27||22|a x x -≥---成立,因此求出2722x x ---的最小值即可得出结论.【详解】(1)若1a =-,则()271f x x x =-+-,由()0f x ≥得|27|1x x -≥-,即270271x x x ->⎧⎨-≥-⎩或270721x x x -≤⎧⎨-≥-⎩,解得6x ≥或83x ≤,故不等式的解集为8{|3x x ≤或6}x ≥; (2)由01xx>-解得01x <<,由()1f x ≥得|27|0x ax -+≥, 当01x <<时,该不等式即为(2)70a x -+≥,设()(2)7F x a x =-+,则有(0)70(1)50F F a =>⎧⎨=+≥⎩,解得5a ≥-,因此实数a 的取值范围为[5,)-+∞;(3)21()1x g x ax +=--2|1|(1)x a x =-++,若存在x 使不等式()()f x g x ≤成立, 即存在x 使271x ax -++2|1|(1)x a x ≤-++成立,即存在x 使1|27||22|a x x -≥---成立, 又272227(22)5x x x x ---≤---=,所以527225x x -≤---≤, 所以15a -≥-,即4a ≥-,所以a 的取值范围为:[4,)-+∞【点睛】本题主要考查了绝对值不等式,结合了恒成立,能成立等问题,属于综合应用题.解决恒成立,能成立问题时,常将其转化为最值问题求解.20.(2020·上海市南洋模范中学高三月考)对于函数()()f x x D ∈,若存在正常数T ,使得对任意的x D ∈,都有()()f x T f x +≥成立,我们称函数()f x 为“T 同比不减函数”. (1)求证:对任意正常数T ,()2f x x =都不是“T 同比不减函数”;(2)若函数()sin f x kx x =+是“2π同比不减函数”,求k 的取值范围; (3)是否存在正常数T ,使得函数()11f x x x x =+--+为“T 同比不减函数”,若存在,求T 的取值范围;若不存在,请说明理由.【答案】(1)证明见解析 (2)k π≥(3)存在,4T ≥【分析】(1)取特殊值使得()()f x f x T ≤+不成立,即可证明; (2)根据“T 同比不减函数”的定义,sin sin 22k x x kx x ππ⎛⎫⎛⎫+++≥+ ⎪ ⎪⎝⎭⎝⎭恒成立,分离参数k ,构造函数,转化为k 与函数的最值关系,即可求出结果;(3)去绝对值化简函数()f x 解析式,根据“T 同比不减函数”的定义,取1x =-,因为()()()1113f T f f -+≥-==成立,求出T 的范围,然后证明对任意的x ∈R ,()()f x T f x +≥恒成立,即可求出结论.【详解】证明:(1)任取正常数T ,存在0x T =-,所以00x T +=,因为()()()()2000f x f T T f f x T =-=>=+,即()()f x f x T ≤+不恒成立,所以()2f x x =不是“T 同比不减函数”.(2)因为函数()sin f x kx x =+是“2π同比不减函数”, 所以()2f x f x π⎛⎫+≥ ⎪⎝⎭恒成立,即sin sin 22k x x kx x ππ⎛⎫⎛⎫+++≥+ ⎪ ⎪⎝⎭⎝⎭恒成立, ()2sin cos 4x x x k πππ⎛⎫- ⎪-⎝⎭≥=对一切x ∈R 成立.所以max4x k πππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎪≥= ⎪⎪⎝⎭. (3)设函数()11f x x x x =+--+是“T 同比不减函数”,()()()()211121x x f x x x x x ⎧-≥⎪=--<<⎨⎪+≤-⎩,当1x =-时,因为()()()1113f T f f -+≥-==成立,所以13T -+≥,所以4T ≥, 而另一方面,若4T ≥, (Ⅰ)当(],1x ∈-∞-时,()()()112f x T f x x T x T x T x +-=+++--++-+ 112T x T x T =++--++-因为()()1111x T x T x T x T +--++≥-+--++2=-, 所以()()220f x T f x T +-≥--≥,所以有()()f x T f x +≥成立. (Ⅱ)当()1,x ∈-+∞时,()()()211f x T f x x T x x x +-=+--+--+211T x x =---++因为()()11112x x x x +--≥-+--=-,所以()()220f x T f x T +-≥--≥, 即()()f x T f x +≥成立.综上,恒有有()()f x T f x +≥成立,所以T 的取值范围是[)4,+∞.【点睛】本题考查新定义的理解和应用,考查等价转化思想,考查从特殊到一般的解决问题方法,属于较难题.。

(易错题精选)初中数学方程与不等式之不等式与不等式组基础测试题附答案解析(1)

(易错题精选)初中数学方程与不等式之不等式与不等式组基础测试题附答案解析(1)

(易错题精选)初中数学方程与不等式之不等式与不等式组基础测试题附答案解析(1)一、选择题1.a 的一半与b 的差是负数,用不等式表示为( )A .102a b -< B .102a b -≤ C .()102a b -< D .102a b -< 【答案】D【解析】【分析】列代数式表示a 的一半与b 的差,是负数即小于0. 【详解】解:根据题意得102a b -< 故选D .【点睛】 本题考查了列不等式,首先要列出表示题中数量关系的代数式,再由不等关系列不等式.2.不等式的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】【分析】 先解不等式,根据解集确定数轴的正确表示方法.【详解】解:不等式2x+1>-3,移项,得2x >-1-3,合并,得2x >-4,化系数为1,得x >-2.【点睛】本题考查解一元一次不等式,注意不等式的性质的应用.3.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.4.关于x 的不等式组()02332x m x x ->⎧⎨-≥-⎩恰有五个整数解,那么m 的取值范围为( ) A .21m -≤<-B .21m -<<C .1m <-D .2m ≥-【答案】A【解析】【分析】先求出不等式组的解集,然后结合有五个整数解,即可求出m 的取值范围.【详解】 解:()02332x m x x ->⎧⎨-≥-⎩解不等式①,得:x m >,解不等式②,得:3x ≤,∴不等式组的解集为:3m x <≤,∵不等式组恰有五个整数解,∴整数解分别为:3、2、1、0、1-;∴m 的取值范围为21m -≤<-;【点睛】本题考查了解不等式组,根据不等式组的整数解求参数的取值范围,解题的关键是正确求出不等式组的解集,从而求出m 的取值范围.5.若不等式组0,122x a x x -≥⎧⎨->-⎩有解,则a 的取值范围是( ) A .a >-1B .a≥-1C .a≤1D .a <1【答案】D【解析】【分析】首先分别解出两个不等式的解集,再根据解集的规律:大小小大中间找,确定a 的取值范围是a <1.【详解】 解:0122x a x x -≥⎧⎨->-⎩①②, 由①得:x≥a ,由②得:x <1,∵不等式组有解,∴a <1,故选:D .【点睛】此题主要考查了一元一次不等式组的解法,关键是正确解出两个不等式的解集,掌握确定不等式组解集的方法.6.若a b >,则下列不等式中,不成立的是( )A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+ 【答案】A【解析】【分析】 根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C 、根据不等式的性质2,不等式的两边乘以13,可得33a b >,故C 成立;D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.若x y >,则下列各式正确的是( )A .0x y -<B .11x y -<-C .34x y +>+D .xm ym >【答案】B【解析】【分析】根据不等式的基本性质解答即可.【详解】由x >y 可得:x-y >0,1-x <1-y ,x+3>y+3,故选:B .【点睛】此题考查不等式的性质,熟练运用不等式的性质是解题的关键.8.不等式组21512x x ①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是( ) A .B .C .D .【答案】C【解析】分析:根据解一元一次不等式组的一般步骤解答,并把解集表示在数轴上,再作判断即可. 详解:解不等式①,得:x 1<;解不等式②,得:x 3≥-;∴原不等式组的解集为:3x 1-≤<,将解集表示在数轴上为:故选C.点睛:掌握“解一元一次不等式组的解法和将不等式的解集表示在数轴上的方法”是解答本题的关键.9.若a b <,则下列变形错误的是( )A .22a b <B .22a b +<+C .1122a b <D .22a b -<- 【答案】D【解析】【分析】根据不等式的性质解答.【详解】∵a b <,∴22a b <,故A 正确;∵a b <,∴22a b +<+,故B 正确;∵a b <,∴1122a b <,故C 正确; ∵a b <,∴2-a>2-b ,故D 错误,故选:D.【点睛】此题考查不等式的性质,熟记性质定理并运用解题是关键.10.运行程序如图所示,规定:从“输入一个值”到”结果是否“为一次程序操作.如果程序操作进行了三次才停止,那么x 的取值范围是( )A .11x ≥B .1123x ≤≤C .1123x <≤D .23x ≤【答案】C【解析】【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【详解】解依题意得:()()219522119522211195x x x ⎧+≤⎪⎪++≤⎨⎪⎡⎤+++>⎪⎣⎦⎩①②③ 解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x >11,所以,x 的取值范围是11<x≤23.故选:C .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.11.某商品进价为800元,出售时标价为1200元,后来商店准备打折出售,但要保持利润率不低于20%,则最多打( )折.A .6折B .7折C .8折D .9折【答案】C【解析】【分析】设打了x 折,用售价×折扣﹣进价得出利润,根据利润率不低于20%,列不等式求解.【详解】解:设打了x 折,由题意得,1200×0.1x ﹣800≥800×20%,解得:x≥8.答:至多打8折.故选:C【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.12.若关于x 的不等式组0521x a x -⎧⎨-<⎩…的整数解只有3个,则a 的取值范围是( ) A .6≤a <7B .5≤a <6C .4<a ≤5D .5<a ≤6【答案】B【解析】【分析】根据解不等式可得,2<x ≤a ,然后根据题意只有3个整数解,可得a 的范围.【详解】解不等式x ﹣a ≤0,得:x ≤a ,解不等式5﹣2x <1,得:x >2,则不等式组的解集为2<x ≤a .∵不等式组的整数解只有3个,∴5≤a <6.故选:B .【点睛】本题主要考查不等式的解法,根据题意得出a 的取值范围是解题的关键.13.若不等式组236x x x m -<-⎧⎨<⎩无解,那么m 的取值范围是( ) A .m >2B .m <2C .m ≥2D .m ≤2 【答案】D【解析】【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m 的取值范围.【详解】解:236x x x m -<-⎧⎨<⎩②①由①得,x >2,由②得,x <m ,又因为不等式组无解,所以根据“大大小小解不了”原则,m ≤2.故选:D .【点睛】此题考查解一元一次不等式组,解题关键在于掌握求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.14.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C【解析】【分析】 此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围.【详解】 解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2, 由以上可得不等式组的解集为:a ﹣2<x ≤4, 因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1,解得:2≤a <3,故选C .【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a 的不等式是解答本题的关键.15.已知关于x 的不等式4x a 3+>1的解都是不等式2x 13+>0的解,则a 的范围是( ) A .a 5=B .a 5≥C .a 5≤D .a 5< 【答案】C【解析】【分析】先把a 看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【详解】 由413x a +>得,34a x ->, 由210,3x +> 得,1,2x >- ∵关于x 的不等式413x a +>的解都是不等式2103x +>的解, ∴3142a -≥-, 解得 5.a ≤即a 的取值范围是: 5.a ≤故选:C.【点睛】考查不等式的解析,掌握一元一次不等式的求法是解题的关键.16.如果不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,m 的取值范围为( ) A .m <4B .m ≥4C .m ≤4D .无法确定 【答案】C【解析】【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m 的范围即可.【详解】解不等式﹣x+2<x ﹣6得:x >4,由不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,得到m≤4, 故选:C .【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.下列不等式变形正确的是( )A .由a b >,得22a b -<-B .由a b >,得22a b -<-C .由a b >,得a b >D .由a b >,得22a b > 【答案】B【解析】【分析】根据不等式的基本性质结合特殊值法逐项判断即可.【详解】解:A 、由a >b ,不等式两边同时减去2可得a-2>b-2,故此选项错误;B 、由a >b ,不等式两边同时乘以-2可得-2a <-2b ,故此选项正确;C 、当a >b >0时,才有|a|>|b|;当0>a >b 时,有|a|<|b|,故此选项错误;D 、由a >b ,得a 2>b 2错误,例如:1>-2,有12<(-2)2,故此选项错误. 故选:B .【点睛】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.18.如图,不等式组315215x x --⎧⎨-<⎩…的解集在数轴上表示为( ) A . B .C .D .【答案】C【解析】【分析】根据解一元一次不等式组的步骤:先解第一个不等式,再解第二个不等式,然后在数轴上表示出两个解集找公共部分即可.【详解】由题意可知:不等式组315215xx①②--⎧⎨-<⎩…,不等式①的解集为2x≥-,不等式②的解集为3x<,不等式组的解集为23x-≤<,在数轴上表示应为.故选C.【点睛】本题主要考查了一元一次不等式组的解法,熟知和掌握不等式组解法的步骤和在数轴上表示解集是解题关键.19.若关于x的不等式x<a恰有2个正整数解,则a的取值范围为()A.2<a≤3B.2≤a<3 C.0<a<3 D.0<a≤2【答案】A【解析】【分析】结合题意,可确定这两个正整数解应为1和2,至此即可求出a的取值范围【详解】由于x<a恰有2个正整数解,即为1和2,故2<a≤3故正确答案为A【点睛】此题考查了不等式的整数解,列出关于a的不等式是解题的关键20.下列命题中逆命题是真命题的是()A.若a > 0,b > 0,则a·b > 0 B.对顶角相等C.内错角相等,两直线平行D.所有的直角都相等【答案】C【解析】【分析】先写出各命题的逆命题,再分别根据不等式的性质、对顶角、平行线的性质、角的概念逐项判断即可.【详解】A 、逆命题:若0a b ->,则0,0a b >>反例:2,1a b ==-时,2(1)0a b -=-->即此逆命题是假命题,此项不符题意B 、逆命题:如果两个角相等,那么这两个角是对顶角相等的角不一定是对顶角即此逆命题是假命题,此项不符题意C 、逆命题:两直线平行,内错角相等此逆命题是真命题,此项符合题意D 、逆命题:相等的角都是直角此逆命题是假命题,此项不符题意故选:C .【点睛】本题考查了不等式的性质、对顶角、平行线的性质、角的概念,熟记各性质与定义是解题关键.。

专题02 含参不等式与方程(解析版)

专题02 含参不等式与方程(解析版)

二、含参不等式与方程知识点拨含参不等式题型一、给出不等式解的情况,求参数取值范围:总结:给出不等式组解集的情况,只能确定参数的取值范围。

记住:“大小小大有解;大大小小无解。

”注:端点值格外考虑。

二、给出不等式解集,求参数的值总结:给出不等式组确切的解集,可以求出参数的值。

方法:先解出含参的不等式组中每个不等式的解集,再利用已知解集与所求解集之间的对应关系,建立方程。

三、给出方程(组)解的情况,转化成不等式(组)总结:先解含参数的方程组,解用含参数的式子表示出来。

列出题中解满足的不等关系,将含参数的式子代入,转化成关于参数的不等式(组)。

四、给出方程组解的个数,确定参数的范围总结:先解出不含参数的不等式的解集,按题意在解集范围内找出连续的几个整数解,参数的范围就在与最后一个整数解差一个单位长度的范围内(借助数轴解决问题),端点值特殊考虑。

例题演练一.选择题(共20小题)1.如果关于x的不等式组有且只有两个奇数解,且关于y的分式方程﹣=1的解为非负整数,则符合条件的所有整数a的和为( )A.8B.16C.18D.20【解答】解:不等式组整理得:,解得:<x≤6,由不等式组有且只有两个奇数解,得到1≤<3,解得:2≤a<10,即整数a=2,3,4,5,6,7,8,9,分式方程去分母得:3y+a﹣10=y﹣2,解得:y=,由分式方程解为非负整数,得到a=2,6,8,之和为16,故选:B.2.如果关于x的不等式组有且只有四个整数解,且关于x的分式方程=﹣8的解为非负数,则符合条件的所有整数a的个数为( )A.1B.2C.3D.4【解答】解:,不等式组化简为,由不等式组有且只有四个整数解,得到2≤<3,解得:6≤a<10,即整数a=6,7,8,9,,分式方程去分母得:ax﹣28=﹣32+8,解得:x=,由分式方程的解为非负数以及分式有意义的条件,x﹣4≠0,x≠4,a≠7,a﹣8<0,解得:a<8,因为a=7是增根,故a=6.故选:A.3.若关于x的不等式组有且只有五个整数解,且关于y的分式方程=1的解为非负整数,则符合条件的所有整数a的和为( )A.10B.12C.14D.18【解答】解:由①得x≤6,由②得x>.∵方程组有且只有五个整数解,∴<x≤6,即x可取6、5、4、3、2.∵x要取到2,且取不到,∴1≤<2,∴4≤a<10.∵分式方程﹣=1的解为y=4﹣,4﹣是非负整数,∴a≤8,且a是2的整数倍.又∵y≠2,∴a≠4.∴a的取值为6、8.故选:C.4.如果关于x的分式方程+=2有非负整数解,关于y的不等式组有且只有4个整数解,则所有符合条件的a的和是( )A.﹣3B.﹣2C.1D.2【解答】解:解不等式组,得,∵不等式组有且只有4个整数解,∴1<≤2,∴﹣3<a≤1.解式方程+=2,得x=3﹣a,∵x=3﹣a为非负整数,﹣3<a≤1,∴a=﹣2或﹣1或0或1,∵a=1时,x=2,原分式方程无解,故将a=1舍去,∴所有满足条件的a的值之和是﹣2﹣1+0=﹣3,故选:A.5.若m使关于x的分式方程1﹣=的解为非负数,且使关于y的不等式组有且只有三个整数解,则所有满足条件的整数m的和为( )A.3B.2C.1D.﹣3【解答】解:去分母得:1﹣x+m=x+1,解得:x=,由解为非负整数解,得到≥0,且≠1,即m≥0且m≠2,,由①得,y<4,由②得,y4,∴,由不等式组只有3个整数解,∴解得:﹣2≤m<2,∴0≤m<2,则符合题意m有1,0,1+0=1故选:C.6.若数a使关于x的不等式组有且仅有4个整数解,且使关于y的分式方程+=1有正整数解,则满足条件的a的个数是( )A.0个B.1个C.2个D.3个【解答】解:解不等式组,得,∵不等式组有且仅有4个整数解,∴﹣1<≤0,∴﹣8<a≤﹣3.解分式方程+=1,得y=,∵y=≠2为整数,∴a≠﹣6,∴所有满足条件的只有﹣4,故选:B.7.若整数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣3有正整数解,则满足条件的a的值之积为( )A.28B.﹣4C.4D.﹣2【解答】解:不等式组整理得:,由不等式组无解,得到3a﹣2≤a+2,解得:a≤2,分式方程去分母得:ax+5=﹣3x+15,即(a+3)x=10,由分式方程有正整数解,得到x=,即a+3=1,2,5,10,解得:a=﹣2,﹣1,2,7,∵x≠5,即≠5∴a≠﹣1综上,满足条件a的为﹣2,2,之积为,﹣4,故选:B.8.如果关于x的方程=1有正整数解,且关于y的不等式组至少有两个偶数解,则满足条件的整数a有( )个.A.0B.1C.2D.3【解答】解:解方程=1得,x=,∵方程有正整数解,∴整数a=1,3,6,解不等式组得,∵关于y的不等式组至少有两个偶数解,∴a﹣1≤2,∴a≤3,∴满足条件的整数a有两个.故选:C.9.如果关于x的分式方程+=3的解为整数,且关于x的不等式组有且仅有1个正整数解,则符合条件的所有整数a的和是( )A.15B.12C.7D.6【解答】解:分式方程+=3,去分母得:ax﹣5﹣10=3x﹣9,整理得:x=,由分式方程的解为整数,得到a﹣3=±1或a﹣3=﹣2或a﹣3=±3或a﹣3=±6,解得:a=4或2或1或6或0或9或﹣3,不等式组整理得:,解得:﹣2<x≤,由不等式组有且仅有1个正整数解,得到正整数解为1,则有1≤<2,解得:1≤a<6,综上,整数a=1,2,4,这几个整数的和为7.故选:C.10.若实数a使关于x的不等式组至少有3个整数解,且使关于y的分式方程+=1有正整数解,则符合条件的所有整数a的和为( )A.﹣7B.﹣12C.﹣21D.﹣23【解答】解:,解不等式①得:x≥﹣7,解不等式②得:x<a+6,∴﹣7≤x<a+6,∵至少有3个整数解,∴a+6>﹣5,∴a>﹣11;分式方程两边都乘以y﹣3得:4y﹣(y﹣a)=y﹣3,解得:y=﹣,∵y﹣3≠0,∴﹣≠3,∴a≠﹣9,∵分式方程有正整数解,∴﹣>0,∴a<﹣3,∴﹣11<a<﹣3且a≠﹣9,∵a是整数,﹣是正整数,∴a=﹣7,﹣5,∴所有a的和为﹣12.故选:B.11.如果关于x的分式方程有整数解,且关于x的不等式组的解集为x>4,那么符合条件的所有整数a的值之和是( )A.7B.8C.4D.5【解答】解:由分式方程可得1﹣ax+2(x﹣2)=﹣1解得x=∵关于x的分式方程有整数解,且a为整数∴,即a≠1于是a=0、3、4又∵关于x的不等式组整理得而不等式组的解集为x>4∴a≤4于是符合条件的所有整数a的值之和为:0+3+4=7故选:A.12.若关于x的不等式组至少有3个整数解,且关于y的分式方程=1的解是非负数,则符合条件的所有整数a的个数是( )A.3个B.4个C.5个D.6个【解答】解:解不等式组,得,∵不等式组至少有3个整数解,∴a≥2,解分式方程=1,得y=6﹣a,∵y=6﹣a为非负数,a≥2,∴a=2、3、4、5、6,∵a=4时,y=2,原分式方程无解,故将a=4舍去,∴符合条件的所有整数a的个数为4,故选:B.13.若关于x的分式方程=1有正整数解,且关于y的一元一次不等式组的解集为y≤a,则所有满足条件的整数a的和为( )A.8B.7C.3D.2【解答】解:分式方程去分母,得:x﹣a=x﹣2+5﹣2x,解得:x=,由不等式组,解不等式①,得:y<5,解不等式②,得:y≤a,∵不等式组的解集为y≤a,∴a<5,又∵分式方程有正整数解,且x≠2,∴符合题意的整数a的值可以取3;﹣1,它们的和为3+(﹣1)=2,故选:D.14.若关于x的不等式组至少有4个整数解,且关于y的分式方程3﹣=有整数解,则符合条件的所有整数a的和为( )A.4B.9C.11D.12【解答】解:不等式组整理得:,解得:﹣2≤x<a﹣1,由不等式组至少有4个整数解,得到a﹣1>1,即a>2,分式方程去分母得:3(y﹣1)﹣ay=﹣5,去括号得:3y﹣3﹣ay=﹣5,即(3﹣a)y=﹣2,解得:y=,由分式方程有整数解,得到a﹣3=±1,a﹣3=﹣2,解得:a=2(不符合题意,舍去),a=4,a=1(不符合题意,舍去),故符合条件的所有整数a的和为4.故选:A.15.若实数a使关于x的不等式组有且只有4个整数解,且使关于x的方程=﹣2的解为正数,则符合条件的所有整数a的和为( )A.7B.10C.12D.1【解答】解:解不等式组得,,∵不等式组只有4个整数解,∴0,∴0<a≤6,解分式方程得:,∵分式方程的解为正数,∴,且≠1,解得:a<5且a≠3,综上可得,a的取值范围为0<a<5,且a≠3,则符合条件的所有整数a的和为:1+2+4=7.故选:A.16.若关于x的不等式组有且仅有4个整数解,且使得关于y的方式方程有整数解,则满足条件整数a的和为( )A.﹣4B.﹣3C.﹣2D.9【解答】解:,解不等式①,得:x≤3,解不等式②,得:x>﹣,∵该不等式组有且仅有4个整数解,∴﹣1≤﹣<0,解得:﹣4<a≤1,分式方程去分母,得:y﹣(1﹣y)=﹣a,解得:y=,∵分式方程有整数解,且y≠1,∴满足条件的整数a可以取﹣3,1,其和为﹣3+1=﹣2,故选:C.17.若关于x的不等式组无解,且关于y的分式方程=1﹣的解为非负整数,则符合条件的所有整数a的和为( )A.6B.16C.18D.20【解答】解:,解①得,x≥3,解②得,x<a﹣7,∵不等式组无解,∴a﹣7≤3,∴a≤10,=1﹣,去分母,得﹣3y=y﹣2﹣a﹣y,∴y=,∵分式方程=1﹣的解为非负整数,∴y≥0且y﹣2≠0,∴且a≠4,∵a为整数,为非负整数,∴a=﹣2,1,7,10,∴整数a的和为﹣2+1+7+10=16.故选:B.18.如果关于x的分式方程有整数解,且关于x的不等式组的解集为x,那么符合条件的所有整数a的和为( )A.4B.6C.2D.1【解答】解:分式方程去分母得:ax﹣2x+4=﹣x,整理得:x=,由分式方程有整数解,得到1﹣a=1或﹣1或﹣2或4或﹣4,解得:a=0,2,3,﹣3,5,不等式组整理得:,由不等式组的解集为x>,得到a﹣1≤,即a≤,则a的值为0,2,3,﹣3,之和为2,故选:C.19.若整数a使得关于x的不等式组的解集为x<﹣2,且关于y的分式方程=+3的解为负数,则所有符合条件的整数a的和为( )A.0B.﹣3C.﹣5D.﹣8【解答】解:,解不等式①得x<﹣2,解不等式②得,∵不等式组的解集为x<﹣2,∴,解得a≥﹣5,解关于y的分式方程=+3得y=,∵关于y的分式方程=+3的解为负数,∴<0,∴a<5,∵y+1≠0,∴y≠﹣1,即≠﹣1,解得a≠3,∴﹣5≤a<5且a≠3,∵a为整数,∴a=﹣5或±4或﹣3或±2或±1或0,∴﹣5+4﹣4﹣3+2﹣2+1﹣1+0=﹣8,故所有符合条件的整数a的和为﹣8.故选:D.20.若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程=1有正整数解,则所有满足条件的整数a的值之积是( )A.28B.﹣14C.7D.﹣56【解答】解:,解不等式①,得:x≤a,解不等式②,得:x≤7,∵该不等式组的解集为x≤a,∴a≤7,分式方程去分母,得:y﹣a+3y﹣4=y﹣2,,解得:y=,∵分式方程有正整数解,且y≠2,∴满足条件的整数a可以取7,1,其积为7×1=7,,故选:C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参数方程与不等式小测验
班级:姓名:学号:
一、选择题
1.已知曲线的方程为⎩⎪⎨⎪⎧
x =2t ,y =t (t 为参数),则下列点中在曲线上的是( ) A .(1,1) B .(2,2) C .(0,0) D .(1,2)
2.(2014·北京高考)曲线⎩⎪⎨⎪⎧
x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( ) A .在直线y =2x 上
B .在直线y =-2x 上
C .在直线y =x -1上
D .在直线y =x +1上
3.直线⎩⎪⎨⎪⎧
x =3+t ,y =2-2t (t 为参数)的倾斜角为α,则cos α=( ) A .55B .-55C .-35 D .-255
4.椭圆⎩⎪⎨⎪⎧
x =4+3cos θ,y =1+5sin θ的焦距等于( ) A .4B .6C .8 D .10
5.设a ,b ∈R ,a 2+2b 2=6,则a +b 的最小值是( )
A .-22
B .-533
C .-3
D .-72
6.若圆的参数方程为⎩⎪⎨⎪⎧ x =-1+2cos θ,y =3+2sin θ(θ为参数),直线的参数方程为⎩⎪⎨⎪⎧
x =2t -1,y =6t -1(t 为参数),则直线与圆的位置关系是( )
A .过圆心
B .相交而不过圆心
C .相切
D .相离
7.直线l 的参数方程为⎩⎪⎨⎪⎧
x =a +t ,y =b +t (t 为参数),l 上的点P 1对应的参数是t 1,则点P 1与P (a ,b )之间的距离是( )
A .|t 1|
B .2|t 1|
C .2|t 1|
D .22|t 1
|
二、填空题
8.若A =(x +3)(x +7),B =(x +4)(x +6),则A ,B 的大小关系为________.
9.函数f (x )=3x +12x
2(x >0)的最小值为________.
10.以下三个命题:(1)若|a -b |<1,则|a |<|b |+1;(2)若a ,b ∈R ,则|a +b |-2|a |≤|a -b |;(3)若|x |<2,
|y |>3,则⎪⎪⎪⎪x y <23.其中正确的有__________个.
11.若不等式|x +1|-|x -4|≥a +4a
,对任意的x ∈R 恒成立,则实数a 的取值范围是____________.
三、解答题
12.(2014·福建)已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧
x =4cos θ,y =4sin θ(θ为参数).
(1)求直线l 和圆C 的普通方程;
(2)若直线l 与圆C 有公共点,求实数a 的取值范围.
13.(辽宁高考)已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}.
(1)求a 的值;
(2)若⎪⎪⎪
⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立,求k 的取值范围.
答案:
一、选择题
1.解析:当t =0时,x =0且y =0.即点(0,0)在曲线上.
答案:C
2.解析:消去参数θ,将参数方程化为普通方程.曲线可化为(x +1)2+(y -2)2=1,其对称中心为圆心(-1,2),该点在直线y =-2x 上,故选B.
答案:B
3.解析:∵k =y -2x -3
=-2t t =-2, ∴tan α=-2,sin α=-2cos α.
又sin 2α+cos 2α=1,∴5cos 2α=1.
∵α∈⎝⎛⎭⎫π2,π,∴cos α=-55
. 答案:B
4.解析:a =5,b =3,∴c =4,2c =8,应选C.
答案:C
5.解析:a 2+2b 2=6,化为a 26+b 2
3=1,化为参数形式⎩⎨⎧ a =6cos θ,b =3sin θ(θ为参数). ∴a +b =6cos θ+3sin θ=3sin(θ+φ),
其中cos φ=33
. ∴a +b 的最小值为-3.
答案:C
6.解析:圆与直线的普通方程分别为(x +1)2+(y -3)2=4,3x -y +2=0,圆心(-1,3)到直线的距离d =|3×(-1)-3+2|32+(-1)2
=2105<r =2. 又3×(-1)-3+2≠0,∴选B. 答案:B
7.解析:直线l 的参数方程即为
⎩⎨⎧ x =a +22(
2t ),y =b +22(2t ),令2t =t ′,
化为标准形式为⎩⎨⎧ x =a +22t ′,
y =b +22
t ′(t ′为参数),点P 1对应的参数是2t 1,则点P 1与P (a ,
b )之间的距离是2|t 1|.
答案:C
二、填空题
8.解析:因为(x +3)(x +7)-(x +4)(x +6)=(x 2+10x +21)-(x 2+10x +24)=-3<0, 所以(x +3)(x +7)<(x +4)(x +6),即A <B .
答案:A <B
9.解析:f (x )=3x +12x 2=3x 2+3x 2+12x 2≥333x 2·3x 2·12x 2=9,当且仅当3x 2=12x
2即x =2时取等号. 答案:9
10.解析:(1)∵|a |-|b |≤|a -b |<1,∴|a |<|b |+1.
∴(1)正确.
(2)∵|a +b |-2|a |=|a +b |-|2a |≤|a +b -2a |=|b -a |=|a -b |,∴(2)正确.
(3)∵|x |<2,|y |>3,∴⎪⎪⎪⎪x y =|x ||y |<23.∴(3)正确.
答案:3
11.解析:只要|x +1|-|x -4|的最小值不小于a +4a
即可.由于||x +1|-|x -4||≤|(x +1)-(x -4)|=5,所以-5≤|x +1|-|x -4|≤5,故只要-5≥a +4a 即可.当a >0时,不等式-5≥a +4a
无解;当a <0时,得a 2+5a +4≥0,则有a ≤-4或-1≤a <0.综上可知,实数a 的取值范围是(-∞,-4]∪[-1,0).
答案:(-∞,-4]∪[-1,0)
三、解答题
12.解:(1)直线l 的普通方程为2x -y -2a =0,
圆C 的普通方程为x 2+y 2=16.
(2)因为直线l 与圆C 有公共点, 故圆C 的圆心到直线l 的距离d =|-2a |5
≤4, 解得-25≤a ≤2 5.
13.解:(1)由|ax +1|≤3得-4≤ax ≤2.
又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意.
当a >0时,-4a ≤x ≤2a
,得a =2. (2)法一:记h (x )=f (x )-2f ⎝⎛⎭⎫x 2,
则h (x )=错误!
所以|h (x )|≤1,因此k 的取值范围是[1,+∞).
法二:⎪⎪⎪
⎪f (x )-2f ⎝⎛⎭⎫x 2=|||2x +1|-2|x +1| =2⎪⎪⎪
⎪⎪⎪⎪⎪x +12-|x +1|≤1, 由⎪⎪⎪
⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立, 可知k ≥1,
所以k 的取值范围是[1,+∞).。

相关文档
最新文档