轧机辊缝调整原理
液压纠偏器工作原理

液压纠偏器工作原理
液压纠偏器是一种常用于纠正轧机辊缝偏移的设备。
其工作原理如下:
1. 整体结构:液压纠偏器由液压缸、液压站、传感器和控制系统组成。
2. 传感器检测:传感器安装在轧机辊缝的两侧,用于检测辊缝的偏移情况。
传感器将检测到的数据传输给控制系统。
3. 控制系统响应:当传感器检测到辊缝的偏离时,控制系统会接收到相应的信号,并根据偏移方向和偏移量来判断纠偏器的工作状态。
4. 液压驱动:控制系统通过电磁阀控制液压站的工作,将液压油送入液压缸中。
液压缸的活塞根据液压力的作用下进行移动,实现对辊缝的纠偏。
5. 纠偏:液压缸活塞运动时,通过连接杆或销轴等机构将辊缝纠偏力传递给辊缝调整机构,使辊缝回到正确的位置。
6. 反馈控制:随着辊缝偏移的纠正,传感器会不断检测并反馈纠偏后的数据给控制系统,控制系统会实时调整液压缸的工作状态,以保持辊缝的稳定和精确的位置。
通过以上工作原理,液压纠偏器能够实现对辊缝的自动纠偏,从而提高轧制过程的精度和稳定性。
二十辊轧机工作原理

二十辊轧机工作原理二十辊轧机是一种常用的金属材料加工设备,它能够将金属材料进行轧制,从而改变其形状和厚度。
在工业生产中,二十辊轧机被广泛应用于钢铁、铝、铜等金属材料的加工过程中。
那么,二十辊轧机是如何工作的呢?接下来,我们将详细介绍二十辊轧机的工作原理。
首先,让我们来了解一下二十辊轧机的结构。
二十辊轧机由上、下辊架、辊子、传动装置、辊间装置、辊缝调整装置等部分组成。
在工作时,金属材料经过辊子的轧制,通过不同的辊缝来改变其形状和厚度。
二十辊轧机的工作原理主要包括以下几个步骤,进料、轧制、出料和辊缝调整。
首先,金属材料被送入二十辊轧机的进料口,经过一系列的传动装置和辊子的作用,金属材料开始进行轧制。
在轧制过程中,金属材料经过多次来回轧制,逐渐改变其形状和厚度。
最后,轧制后的金属材料从二十辊轧机的出料口输出,完成整个轧制过程。
在二十辊轧机的工作过程中,辊缝调整是非常重要的一环。
通过调整辊缝的大小,可以控制金属材料的轧制厚度和形状,从而满足不同工艺要求。
辊缝的调整通常由液压或机械手段来实现,操作简便、灵活。
总的来说,二十辊轧机通过辊子的轧制作用,能够将金属材料进行塑性变形,从而改变其形状和厚度。
在工业生产中,二十辊轧机广泛应用于钢铁、铝、铜等金属材料的加工过程中,为金属材料的生产提供了重要的技术支持。
通过本文的介绍,相信大家对二十辊轧机的工作原理有了更深入的了解。
二十辊轧机作为一种重要的金属加工设备,其工作原理的掌握对于相关行业的从业人员来说是非常重要的。
希望本文能够对大家有所帮助,谢谢阅读!。
钢球轧机轧辊的调整

钢球轧机轧辊的调整钢球轧机轧辊的调整是钢球斜轧成型的关键问题之一,它直接影响着产品的形状、尺寸及质量。
轧机调整的实质就是使轧辊和导板处在正确的位置,以便轧件顺利地实现塑性变形,轧出合格的产品。
因为斜轧机的调整因素较多,并且各因素又相互影响,所以斜轧机的调整比其它类型轧机的调整要复杂得多。
轧机调整的内容包括:轧辊的径向调整、倾角调整、轴向调整、相位调整、喇叭口调整、导板相对位置的调整、试轧调整等。
从图4-1斜轧机调整内容示意图中可以看出:轧机调整因素的空间几何关系。
有五个自由度需要调整。
4-1 斜轧机调整内容示意图轧辊的径向调整轧辊的径向调整是最基本的调整,其目的是控制产品的径向尺寸,同时,轧辊径向调整还直接影响轧制能否正常进行及产品内部质量的好坏。
轧辊的径向调整比较简单,其基本调整如下。
首先,根据孔型设计的要求,通过侧压螺丝机构,使轧辊移动,达到合理的辊缝尺寸。
然后再用卡钳检验,也有用标准样柱检验的。
但是按这种方法调整的轧辊径向孔型,有时仍不能轧出合格的产品来。
这是因为轧辊径向孔型尺寸在轧制过程中受到轧机的刚性,轧制线的位置,轧辊自身的热胀冷缩等因素的影响。
当轧机的刚性较差,即在轧制过程中辊跳严重时,这时轧辊孔型的径向尺寸应当减去辊跳值。
考虑到轧辊热胀的影响,在稳定轧制一定时间后,要适当地放开轧辊孔型的径向尺寸。
当轧辊的热传导达到热平衡状态后,轧辊孔型的径向尺寸处于稳定状态。
所以,对于精轧产品,往往需要预先对轧辊进行加热,这样就可以在轧制一开始便消除这一因素的影响,保证精轧产品的质量要求。
当轧机中心线与轧制中心线(即轧件旋转的轴线)位置重合时,这时应用卡钳测得的孔型径向尺寸,就应等于热轧毛坯直径。
而当轧件贴一个导板轧制时,轧辊与轧件的接触点将上移或下移。
当贴上导板轧制时,接触点便上移;反之,贴下导板轧制时,接触点便下移。
图4-2 测量孔型径向尺寸关系图从图4-2可以看出,用卡钳测得的轧辊孔型径向尺寸只能是图中A '、B '两点间的距离l ',而轧件与轧辊实际接触点应是A 、B 两点间的距离l 。
液压agc的原理

液压agc的原理液压AGC(Hydraulic Automatic Gauge Control)是一种广泛应用于轧钢生产过程中的自动测厚和控制系统。
它通过调整轧机辊缝来实时控制钢材的厚度,以确保产品达到预期的厚度要求。
液压AGC系统的工作原理可以简单地分为测量和调节两个过程。
1. 测量过程:液压AGC系统首先使用高精度的测厚仪器对钢材进行测量,实时获取当前的厚度数据。
这些数据可以通过厚度传感器或激光测距仪等设备获得。
测厚仪器通常会安装在轧机出口或入口的适当位置,能够准确快速地测量通过的钢材厚度。
2. 调节过程:在测量到当前厚度数据后,液压AGC系统会将这些数据与预定的目标厚度进行比较。
如果当前厚度与目标厚度相差较大,则需要对轧机辊缝进行调节,使厚度逐渐趋近于目标厚度。
调节过程通过液压系统来实现,包括液压缸和油源系统。
具体而言,液压AGC系统将通过控制非工作侧辊缝和工作侧辊缝的间隙来调节钢材的厚度。
当当前厚度小于目标厚度时,系统会通过增大非工作侧辊缝的间隙,使得钢材矫直或压扁。
这将在下一工作循环中导致钢材变薄。
相反,当当前厚度大于目标厚度时,系统会通过增大工作侧辊缝的间隙,使钢材伸长或胀厚,即下一工作循环中导致钢材变厚。
液压AGC系统通过调节液压缸来实现轧机辊缝的调整,使其达到预期的值。
液压缸通常由一个或多个活塞、液压油口和控制阀组成。
液压油通过液压油口进入油缸,推动活塞运动。
控制阀用来控制液压系统的入口和出口,以调整液压缸的位移和速度。
液压AGC系统还会根据测得的厚度数据进行统计和分析。
通过对历史数据的分析,系统可以根据产生的变化模式对轧机辊缝进行智能地调整,在长时间内保持稳定的厚度控制,并避免由于材料、温度和速度等因素引起的厚度波动。
总之,液压AGC系统通过测量钢材厚度,并使用液压系统调整轧机辊缝来控制钢材的厚度。
它提供了高精度和实时的厚度控制,确保生产出符合要求的钢材。
在钢铁工业中,液压AGC系统已经得到了广泛的应用,为钢材生产过程带来了巨大的效益和质量改进。
轧机液压辊缝控制系统的原理及应用

轧机液压辊缝控制系统的原理及应用许战军(河北钢铁集团 邯钢公司 西区冷轧厂 河北 邯郸 056002)摘 要: 介绍邯宝公司2080冷轧酸轧联合机组轧机液压辊缝控制,通过分析HGC液压缸可以在位置控制模式和轧制力控制模式下运行的模式,由液压辊缝控制(HGC)系统调节轧机对带钢的压下量,直接影响到板型效果。
关键词: 轧机;液压辊缝控制;压下量中图分类号:TG333 文献标识码:A 文章编号:1671-7597(2012)1110010-02用。
在咬钢的瞬间从位置控制转换到轧制控制,反过来也一0 前言样。
由于控制模式转换必须在任何时候都可用,所以控制回路邯钢新区冷轧厂采用德国SMS集团最新的轧制技术,5架串必须时刻调整输出来平衡设定值和实际值。
位置控制和轧辊轧列式6辊轧机,通过弯辊系统、窜辊系统和螺旋压下系统来轧制制力控制从属于更高一级的控制如厚度控制或秒流量控制。
带钢改善板型。
螺旋压下系统主要靠液压辊缝控制(HGC)系同步/倾斜控制系统是建立在位置控制和轧制力控制上统来调节轧机对带钢的压下量。
冷轧就是带钢在再结晶温度进的,以确保两个调节液压缸平行动作,这样可使轧机的上支承行轧制,所以液压辊缝控制的精度直接影响产品的厚度,液压辊保持在轧机中心线上,并可变化。
伺服阀的电源由UPS来提辊缝控制的倾斜控制配合弯辊和窜辊直接影响板型效果。
供,下表是伺服阀在各种模式下的电流值。
1 液压辊缝机械和液压系统结构轧机机架配备了两个HGC液压缸。
液压缸安装在轧机机架上部。
HGC液压缸是用伺服阀进行闭环控制的,伺服阀仅控制液压缸塞侧的压力。
其中液压缸的油压必须是由轧机区高压液压系统提供的。
轧机机架的畜能器,直接在伺服阀之前,确保持续的缓冲油量。
液压缸的杆侧是用一个独立的低压缓冲畜能器管路联结的,可以尽心润滑并且避免真空。
做打开动作时,例如当换辊时HGC液压缸打开,杆侧管路压力会上增加,以提升辊缝开张速度。
HGC液压系统图如下:2.1 位置控制系统位置控制用来控制液压缸位置,在操作侧和驱动侧都有位置控制和倾斜控制。
轧钢机械(第四章_轧辊调整方法与上辊平衡装置)

13
§4 上辊平衡装置
一、类型 1、重锤平衡 力恒定、行程大、机构庞大 2、弹簧平衡 结构简单、廉价,力波动、行程小 3、液压平衡 宝钢1300初轧 二、典型结构
©xuyong
14
§4 上辊平衡装置
©xuyong
15
§4 上辊平衡装置
©xuyong
16
§4 上辊平衡装置
©xuyong
17
§4 上辊平衡装置
©xuyong
4
§2 电动压下装置
©xuyong
5
§2 电动压下装置
©xuyong
6
§2 电动压下装置
©xuyong
7
§2 电动压下装置
©xuyong
8
§2 电动压下装置
二、两个问题
1、压下螺丝的阻塞 卡钢 坐辊 超限提升(过载升天) • 克服方法: 安全措施(如:限位开关) 消除措施 2、压下螺丝的自动回松 原因:摩擦角回升角 自锁的破坏 • 解决的办法: 增大压下螺丝直径,减小; 加大止推轴径,在球面垫上开孔。
©xuyong
18
§4 上辊平衡装置
©xuyong
19
§4 上辊平衡装置
©xuyong
20
• 上辊调整装置(压下机构)——最重要 • • • • 下辊调整装置 中辊调整装置 立辊调整装置 特殊轧机的调整装置
2、压下机构驱动方式:手动 电动 液压
©xuyong
3
§2 电动压下装置
一、快速压下装置 组成:电机、减速机、电磁离合器、差动轮系、 压下螺母、压下螺丝等 • 工艺特点:不带钢、大行程、快速频繁 • 对设备的要求:系统惯量要小 快速 排除阻塞 • 布置形式:(见图)
第三章轧辊调整平衡及换辊装置

轧辊调整、平衡及换辊装置
采用电动压下和液压压下相结合的压下方式。 在现代的冷连轧机组中,几乎全部采用液压压下装置
轧辊调整、平衡及换辊装置
2、慢速电动压下装置主要结构形式 由于慢速电动压下的传动速比高达1500~2000,同时又要求 频繁的带钢压下,因此,这种压下装置设计比较复杂,常用的 慢速电动压下机构有以下三种形式。 一种是由电动机通过两级蜗轮蜗杆传动的减速器来带动压下 螺丝的压下装置,如图3—7所示。它是由两台电动机传动的, 两台电动机1之间是用电磁离合器3连接在一起的。当打开离合 器3之后可以进行压下螺丝的单独调整,以保证上轧辊调整水平。 这种压下装置的特点是:传速比大、结构紧凑。但传动效率低、 造价球面蜗杆设计及制造工艺技术不 断的发展与完善,这种普通的蜗轮蜗杆机构已逐步被球面蜗轮 蜗杆机构所代替。这样一来不但传动效率大大提高,而且传动 平稳、寿命长,承载能力高。
轧辊调整、平衡及换辊装置
第二种是用圆柱齿轮与蜗轮蜗杆联合减速的压下传动装置,如 图3—8所示。它也是由双电动机1带动的,圆柱齿轮可用两级 也有用一级的。在两个电动机之间用电磁离合器3连接着,其目 的是用来单独调节其中一个压下螺丝的。为了使传动装置的结构 紧凑,可将圆柱齿轮与蜗轮杆机构均放在同一个箱体内。这种装 置的特点是:由于采用了圆柱齿轮,因此传动效率提高了,成本 下降了,所以这种装置在生产中较前一方案应用更为广泛,通常 多用热轧板带轧机上。
轧辊调整、平衡及换辊装置
3.3轧辊辊缝的对称调整装置
轧辊调整、平衡及换辊装置
轧辊辊缝对称调整是指轧制线固定下来, 上、下工作辊中心线同时分开或同时靠 近。图3—3为德国德马克公司高速线材 轧机精轧机组的斜楔式摇臂调整机构。
轧辊调整、平衡及换辊装置
轧制原理——精选推荐

轧制原理第1章轧制过程基本概念轧制:⾦属通过旋转的轧辊受到压缩,横断⾯积减⼩,长度增加的过程。
纵轧:⼆轧辊轴线平⾏,转向相反,轧件运动⽅向与轧辊轴线垂直。
斜轧:轧辊轴线不平⾏,即在空间交成⼀个⾓度,轧辊转向相同,轧件作螺旋运动。
横轧:轧辊轴线平⾏,但转向相同,轧件仅绕⾃⾝的轴线旋转,没有直线运动。
轧制过程:靠旋转的轧辊与轧件之间的摩擦⼒将轧件拖⼊辊缝之间,并使之受到压缩产⽣塑性变形,获得⼀定形状、尺⼨和性能产品的压⼒加⼯过程。
体积不变规律:在塑性加⼯变形过程中,如果忽略⾦属密度的变化,可以认为变形前后⾦属体积保持不变。
最⼩阻⼒定律:物体在塑性变形过程中,其质点总是向着阻⼒最⼩的⽅向流动。
简单轧制过程:轧制时上下辊径相同,转速相等,轧辊⽆切槽,均为传动辊,⽆外加张⼒或推⼒,轧辊为刚性的。
变形区概念:轧件承受轧辊作⽤,产⽣塑性变形的区域。
⼏何变形区:轧件直接承受轧辊作⽤,产⽣塑性变形的区域。
物理变形区:轧件间接承受轧辊作⽤,产⽣塑性变形的区域。
接触弧s (咬⼊弧):轧制时,轧件与轧辊相接触的圆弧(弧AB )咬⼊⾓α:接触弧所对应的圆⼼⾓。
变形区(接触弧)长度(l ):接触弧的⽔平投影长度。
咬⼊⾓α: △h = D (l-cos α)cos α=1- △h /D变形区长度l 简单轧制,即上下辊直径相等。
绝对变形量:轧前、轧后轧件尺⼨的绝对差值。
压下量△ h = H-h宽展量△b = b-B延伸量△l = l- L相对变形量:轧前、轧后轧件尺⼨的相对变化。
相对压下量ε=(△h/H )% e = ln h/H相对宽展量εb=(△b /B )% eb= ln b/B相对延伸量εl=(△l/L )% el= ln l/L 。
变形系数:轧前轧后轧件尺⼨的⽐值表⽰的变形。
压下系数:η=H/h宽展系数:β(ω)= b/B延伸系数: µ (λ)=l/L总延伸系数与总压下率(累积压下率)设轧件原始⾯积为F0 ,经过n 道次轧制后⾯积为Fn ,则轧制过程:靠旋转的轧辊与轧件之间的摩擦⼒将轧件拖⼊辊缝,并使之受到压缩产⽣塑性变形,获得⼀定形状、尺⼨和性能的压⼒加⼯过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轧机辊缝调整原理
轧机辊缝调整原理是指在轧机生产过程中,通过调整辊缝的宽度和位置,实现对轧制金属板材的控制变形。
调整轧机辊缝的目的是为了获得所需的板材厚度,同时确保板材的均匀性和质量。
轧机辊缝的调整原理主要有以下几点:
1. 调整辊缝宽度:通过改变辊缝的宽度,可以控制轧制板材的厚度。
辊缝越小,轧制板材越薄,反之亦然。
调整辊缝宽度通常是通过机械手动或电动调节机构实现的,确保辊缝宽度的均匀变化。
2. 调整辊缝位置:辊缝位置的调整主要是为了保持板材的均匀性。
在轧机过程中,由于辊缝位置的不对称性,可能会导致板材出现边部过厚或过薄的问题。
调整辊缝位置可以通过调整辊子的相对位置来实现,以获得均匀的压力分布和变形。
3. 控制凸度:凸度是指辊子表面的弧度,通过调整凸度可以实现对板材的控制变形。
凸度的调整通常是通过调整辊子的弯曲方式来实现的,可以单独调整每个辊子的凸度,也可以同步调整多个辊子,以达到所需的变形效果。
轧机辊缝调整原理的核心是通过调整辊缝的宽度、位置和凸度,实现对轧制金属板材的控制变形。
这些调整可以通过机械手动或电动调节机构来实现,并且需要持续监控和调整,以确保板材的厚度和均匀性符合要求。