叶绿素a的测量-乙醇提取法
叶绿素a提取方案

盘星藻叶绿素a的检测方法
1、实验器材:紫外-可见分光光度计、比色皿、抽滤器、微孔滤膜、直径为47mm孔径为0.7um 的玻璃纤维滤膜、真空泵、低温冰箱(能控制在-40+1度)、电子天平、电热恒温水浴锅、温度计、离心管(10ml)
实验药品及试剂:95 % 乙醇
2、实验步骤
⑴样品富集:将微孔滤膜放置在连接有真空泵的抽滤器上,准确量取定量体积的混匀水样进行抽滤,抽滤时负压不应超过20kpa ,逐渐减压,在水样刚刚完全通过滤膜时结束抽滤。
用镊子小心将滤膜取出,将有样品的一面对折,用滤纸吸干剩余水分如样品不能及时提取,应将吸干水分的滤膜放入培养皿中,外面包裹一层铝箔,放入以下的冰箱中保存
⑵叶绿素a的提取:准确称取0 . 5 g新鲜样品于10 m L具塞离心管中,置冰箱中冷冻1 h , 取出后加入10 m L在水浴锅中加热至50度的95%乙醇中,充分振摇后于暗柜中静置3h , 取上清液测定。
⑶含量测定:分别以相应的提取液为空白, 扫描测定各种叶绿素提取液在645 n m和663 n m的吸收值A 645、A 6 63, 利用 A r no n 法计算叶绿素含量。
叶绿素a浓度( m g /L ):
C h la = 12 . 7 A 663 - 2 . 69 A 6 45
①双波长分光光度法同时测定叶绿素 a 、b 汪志国, 王静, 李国刚(中国环境监测总站,北京10 002 9)
②测定浮萍叶绿素含量的方法研究黄 帆, 郭正元, 徐 珍(湖南农业大学农业环保研究所, 湖南长沙41 012
8 )
③分光光度法测定水体中叶绿素含量的改进戴欣,杨航,石岩,鲁雪,王玲静,李聪(松辽流域水资源保护局松辽流域水环境监测中心,吉林长春130021 ;河海大学,江苏南京210098 )。
植物体叶绿素含量的测定实验报告

实验报告植物体叶绿素含量的测定摘要:本实验采用分光光度法,利用95%乙醇提取菠菜叶片中和番茄叶片中叶绿体色素,叶绿素a ,叶绿素b 和类胡萝卜素最大吸收峰的波长分别是665nm 、649nm 和470nm 。
根据分光光度计测定的吸光度值,从而计算出乙醇提取液中叶绿体色素含量。
实验原理:利用95%乙醇提取叶绿体色素,叶绿素a ,叶绿素b 和类胡萝卜素最大吸收峰的波长分别是665nm 、649nm 和470nm 。
根据分光光度计测定的吸光度值,可以计算出乙醇提取液中叶绿体色素含量。
实验目的:掌握分光光度计法对叶绿素a 、叶绿素b 、叶绿素总浓度和类胡萝卜素总浓度测定和计算的方法。
实验材料:生物材料:菠菜叶片0.25g ,自己培养的全素番茄苗叶片0.2g ,缺磷番茄苗叶片0.2g ;试剂:95%乙醇、石英砂、碳酸钙;仪器:分光光度计、电子天平、研钵、漏斗、玻璃棒、小烧杯、10ml量筒、50ml 容量瓶、剪刀、滤纸、滴管。
实验步骤:1.叶绿体色素的提取取新鲜菠菜叶片0.25g ,擦干,去中脉,剪碎放入研钵,加入少许石英砂和CaCO 3,再加入95%乙醇3ml,研磨成匀浆,再加95%乙醇10ml ,静置10min ,用漏斗滤去残渣,用乙醇反复冲洗研钵、残渣至无色;用容量瓶定容至50ml 。
2.吸光度的测定取光径1cm 比色杯,注入上述叶绿素提取液,以95%乙醇注入另一同样的比色杯内作为空白对照,在波长665、649、和470nm 下测定吸光度。
3.结果计算依据下列计算公式,分别计算出叶绿素a 、B 的浓度及其叶绿素总浓度和类胡萝卜素的浓度。
C a (叶绿素a )=13.95A 665 – 6.8A 649C b (叶绿素b )=24.96A 649 – 7.32A 665C T (叶绿素)=C a +C b =18.16A 649 + 6.63A 665C x.c (类胡萝卜素)=(1000A 470 – 2.05C a -114.8C b )/248叶绿体色素含量 = )样品鲜重(稀释倍数)提取液体积()色素浓度(g /mg ⨯⨯L L实验结果:菠菜叶片提取液吸光值:1、测定叶绿素ab为什么选用红光波长?叶绿素吸收红光和蓝紫光,故有两个吸收峰,光合色素还有类胡萝卜素,只吸收蓝紫光,所以不能选蓝紫光区测定,否则被类胡萝卜素干扰,只能用红光。
叶绿素测定实验方法

叶绿素测定实验方法引言:叶绿素是一种存在于植物和藻类细胞中的绿色色素,它在光合作用中起着至关重要的作用。
因此,测定叶绿素含量对于研究光合作用的过程和效率具有重要意义。
本文将介绍一种常用的叶绿素测定实验方法,通过该方法可以准确快速地测定叶绿素的含量。
实验材料:1. 叶绿素提取液:含有乙醇和醋酸的混合液;2. 磷酸盐缓冲液:用于稀释样品和调整pH值;3. 丙酮:用于去除样品中的类胡萝卜素;4. 乙醇:用于去除样品中的脂类物质;5. 乙酸镁溶液:用于稀释样品和调整pH值;6. 纯水:用于稀释样品和制备试剂。
实验步骤:1. 取一片新鲜的叶片,用研钵将其研磨成细碎的叶浆。
添加适量的磷酸盐缓冲液,使叶浆与缓冲液的体积比为1:10,并搅拌均匀。
2. 将混合物过滤,收集滤液,滤液即为叶绿素提取液。
3. 将叶绿素提取液分装到两个试管中,分别标记为A和B。
4. 在试管A中加入适量的丙酮,用于去除样品中的类胡萝卜素。
搅拌均匀后,使其静置5分钟。
5. 在试管B中加入适量的乙醇,用于去除样品中的脂类物质。
搅拌均匀后,使其静置5分钟。
6. 分别离心试管A和B,将上清液转移到两个新的试管中。
7. 在试管A中加入适量的乙酸镁溶液,用于稀释样品和调整pH值。
搅拌均匀后,使其静置5分钟。
8. 在试管B中加入适量的纯水,用于稀释样品和制备试剂。
搅拌均匀后,使其静置5分钟。
9. 分别使用分光光度计测量试管A和B中溶液的吸光度。
选择适当的波长(通常为665nm和649nm),分别记录吸光度值为A665和A649。
10. 根据公式A = (A665 - A649) × V / M,计算叶绿素的含量。
其中,V为取样体积,M为叶绿素的摩尔吸光系数。
结果分析:通过测量试管A和B中溶液的吸光度,可以计算出叶绿素的含量。
试管A中的溶液经过丙酮处理,去除了类胡萝卜素的干扰;试管B 中的溶液经过乙醇处理,去除了脂类物质的干扰。
因此,通过计算两个试管中溶液的吸光度差,可以准确测定叶绿素的含量。
叶绿素提取的实验报告

一、实验目的1. 学习从植物叶片中提取叶绿素的方法。
2. 掌握有机溶剂提取和过滤分离的实验操作。
3. 了解叶绿素提取过程中的注意事项。
二、实验原理叶绿素是植物进行光合作用的重要色素,它主要由叶绿素a、叶绿素b、胡萝卜素和叶黄素组成。
这些色素在水中不溶,但在有机溶剂中易溶。
本实验采用95%乙醇作为提取剂,通过研磨、过滤等步骤提取叶绿素。
三、实验材料与仪器1. 实验材料:新鲜菠菜叶片2. 仪器:研钵、剪刀、漏斗、滤纸、试管、量筒、移液管、电子天平、酒精灯、烧杯、100mL容量瓶、恒温水浴锅、分光光度计四、实验步骤1. 准备材料:取新鲜菠菜叶片约1g,洗净、擦干,用剪刀剪碎。
2. 提取叶绿素:将剪碎的菠菜叶片放入研钵中,加入少量石英砂和碳酸钙粉,再加入2-3mL 95%乙醇,用研棒研磨至糊状。
3. 过滤:将研磨好的混合物转移到漏斗中,用滤纸过滤,收集滤液。
4. 定容:将滤液转移到100mL容量瓶中,用95%乙醇定容至刻度线,摇匀。
5. 测定吸光度:将定容后的叶绿素提取液倒入比色杯中,以95%乙醇为空白,在波长645nm下测定吸光度。
五、实验结果与分析1. 实验结果:根据分光光度计测定结果,得到叶绿素提取液的吸光度为A。
2. 结果分析:根据叶绿素在波长645nm处的吸光度,可以计算出叶绿素提取液中的叶绿素含量。
六、实验注意事项1. 实验过程中应保持操作环境干净,避免污染。
2. 研磨过程中应适当控制研磨力度,以免破坏叶绿素结构。
3. 过滤时要注意滤纸的清洁,避免杂质影响实验结果。
4. 定容时要注意准确加入溶剂,避免影响实验结果。
5. 测定吸光度时,要注意比色杯的清洁和校准。
七、实验结论通过本次实验,成功从菠菜叶片中提取了叶绿素。
实验结果表明,采用95%乙醇作为提取剂,能够有效地提取叶绿素。
在实验过程中,应注意操作规范,避免污染和误差,以确保实验结果的准确性。
测定植物叶绿素含量的方法

测定植物叶绿素含量的方法
植物叶绿素是一种广泛存在于植物、藻类和一些细菌中的绿色色素,能够在吸收光子的过程中将光能转化为化学能。
因此,测定植物叶绿素含量是衡量植物光合作用效率的重要指标之一。
1. 乙醇提取法
将待测叶片粉碎后加入适量的95%乙醇中,放置于暗处浸泡数小时或过夜,然后离心收集上清液。
测定上清液吸光度,通过比较不同波长下的吸光度值,可计算出叶绿素a、叶绿素b和类胡萝卜素的含量。
将待测叶片粉碎后加入1.5mL 80%乙醇和0.5mL 1mol/L HCl的混合液中,振荡10分钟后加入玻璃珠摇匀,含有叶绿素的乙醇溶液将变为红褐色。
用0.22µm微孔滤纸过滤,取上清液,用分光光度计测定吸光度值后计算叶绿素含量。
3. 醋酸铜法
将待测叶片加入0.05%醋酸铜溶液中,用滚轴摇匀10分钟后过滤,取上清液后测定吸光度并计算叶绿素含量。
4. 液相色谱法
将待测叶片加入甲醇或乙腈中,使用高效液相色谱仪分析样品中的叶绿素和类胡萝卜素含量。
这种方法需要更为精确的仪器和技术,但可以同时测定多种色素。
无论使用哪种方法测定植物叶绿素含量,都需要注意以下几点:
1. 样品采集应在相同的时间、地点和光照条件下进行,以保证结果可比性。
2. 需要控制乙醇、醋酸铜等试剂用量、摇匀时间和过滤条件等因素,以获得准确的结果。
3. 对于不同种类和部位的植物,可能需要针对性地选择不同的测定方法,并对结果进行修正和比较。
叶绿素含量测定方法研究

叶绿素含量测定方法研究叶绿素含量测定方法研究引言:叶绿素是一种广泛存在于植物及其他光合生物体内的绿色色素,是光合作用中至关重要的组成部分。
测定叶绿素含量能够为我们了解光合作用的效率、植物的健康状态以及环境的质量提供重要的信息。
在本文中,我们将探讨叶绿素含量测定的方法,包括传统的化学分析方法以及现代的光谱测量方法,并对其进行评估和比较。
传统的化学分析方法:传统的测定叶绿素含量的化学分析方法主要包括醋酸镁提取法和乙醇提取法。
这些方法的基本原理是利用溶剂将叶绿素从叶片中提取出来,然后通过化学反应测定提取物中叶绿素的浓度。
这些方法具有一定的准确性和可靠性,但需要复杂的操作步骤和较长的测量时间。
此外,这些方法对样品的处理和提取过程中容易引入误差,且需要大量的化学试剂,对环境造成一定的负担。
现代的光谱测量方法:随着光谱技术的发展,近年来出现了一系列基于光谱测量的非破坏性叶绿素含量测定方法。
这些方法主要基于叶绿素的吸收光谱特征,通过光谱仪器测量叶片表面的反射光谱或透射光谱来估算叶绿素含量。
这些方法具有操作简便、快速高效的特点,且不需要样品处理和大量的化学试剂。
其中,反射光谱法和荧光光谱法是目前应用较广泛的方法。
反射光谱法基于叶绿素对光的吸收特性,通过测量叶片表面的反射光谱来间接估算叶绿素含量。
这种方法不仅可以测定总叶绿素含量,还可以提供叶绿素a、叶绿素b和总类胡萝卜素等不同色素的含量信息。
同时,反射光谱法可以实时非破坏地监测植物叶片的叶绿素含量变化,并对植物的生长和光合作用进行动态调控。
荧光光谱法则是基于叶绿素的荧光特性,通过测量叶片表面的荧光光谱来评估叶绿素含量。
在光合作用过程中,叶绿素受到光激发后会产生荧光发射。
荧光光谱法通过测量荧光发射的强度和峰位来推断叶绿素含量,并进一步评估光合作用的效率和植物的健康状态。
相比于反射光谱法,荧光光谱法对光照条件和叶片的内部结构影响较小。
评估与比较:传统的化学分析方法在测定叶绿素含量方面具有一定的准确性,但操作复杂且耗时较长。
植物叶绿素含量测定丙酮乙醇混合液法

植物叶绿素含量测定丙酮乙醇混合液法一、本文概述本文旨在介绍一种测定植物叶绿素含量的常用方法——丙酮乙醇混合液法。
叶绿素作为植物进行光合作用的关键色素,其含量的高低直接关系到植物的生长状况和光合效率。
因此,准确测定植物叶绿素含量对于研究植物生理生态、评估植物健康状况以及优化农业生产等方面具有重要意义。
丙酮乙醇混合液法因其操作简便、结果准确等优点而被广泛应用于植物叶绿素含量的测定。
本文将详细介绍该方法的实验原理、所需材料、操作步骤、注意事项以及叶绿素含量的计算方法,以期为相关研究和应用提供有益的参考。
二、丙酮乙醇混合液法原理丙酮乙醇混合液法是一种常用的植物叶绿素含量测定方法。
其原理基于叶绿素在特定溶剂中的溶解性和颜色特性。
叶绿素是植物进行光合作用的关键色素,主要吸收光能并将其转化为化学能,驱动植物的生长和发育。
丙酮乙醇混合液法利用叶绿素在有机溶剂中的溶解性,通过将植物组织浸泡在丙酮乙醇混合液中,使叶绿素从植物组织中提取出来。
丙酮和乙醇的混合液具有良好的溶解能力,能够有效地提取叶绿素,并且它们的沸点较低,易于后续的蒸发和浓缩操作。
提取后的叶绿素溶液呈现绿色,其颜色深浅与叶绿素含量成正比。
通过测定叶绿素溶液的吸光度或颜色强度,可以间接推算出植物组织中叶绿素的含量。
常用的测定方法包括分光光度法和比色法,通过测量特定波长下的光吸收或颜色变化,从而计算出叶绿素含量。
丙酮乙醇混合液法具有操作简便、提取效率高、测定结果可靠等优点,在植物生理生态学、农业科学研究等领域得到了广泛应用。
通过该方法,可以快速准确地测定植物叶绿素含量,为植物生长发育、逆境胁迫响应等研究提供重要依据。
三、实验材料与方法本实验主要使用新鲜绿色植物叶片(如菠菜、生菜等),以及丙酮、乙醇、去离子水、研钵、滤纸、离心管、分光光度计等实验试剂和器材。
选取新鲜绿色植物叶片,清洗干净后去除叶柄和主脉,将叶片剪碎成约1cm²的小块,以备后续实验使用。
叶绿素等的测定方法

叶绿素等的测定方法叶绿素是存在于植物和藻类细胞中的一种绿色色素,它在光合作用中起着关键作用。
因此,测定叶绿素及其相关的测定方法对于研究植物生理学、光合作用机理以及环境生态学等方面具有重要意义。
下面将介绍几种常用的叶绿素测定方法。
1.全光谱扫描法全光谱扫描法可以用于测定叶绿素a、叶绿素b以及类胡萝卜素的含量。
该方法基于不同波长下叶绿素和类胡萝卜素的吸光度差异,通过测量样品在300-800nm范围内的吸光度来确定其含量。
全光谱扫描法准确度较高,但需要较贵的设备。
2.分光光度法分光光度法是一种常用的测定叶绿素含量的方法。
该方法基于叶绿素和类胡萝卜素在不同波长下的吸光度差异,通过选择波长进行测定。
常用的波长包括470nm、645nm和663nm等。
该方法简单、快速,并且可以用于高通量样品测定。
3.乙醇提取法乙醇提取法是一种常用的叶绿素提取和测定方法。
该方法将叶样品放入乙醇等有机溶剂中,通过溶剂提取叶绿素并使其溶于溶剂中,然后使用分光光度法或高效液相色谱法等测定溶液中叶绿素的含量。
乙醇提取法可以快速提取样品中的叶绿素,适用于大量样品的测定。
4.高效液相色谱法高效液相色谱法是一种高精度的叶绿素测定方法。
该方法基于叶绿素在特定条件下在高效液相色谱柱中的分离和检测,通过测定样品中叶绿素的峰面积或峰高来确定其含量。
高效液相色谱法准确度高,但需要较为复杂的仪器和操作技术。
除了以上介绍的常用方法外,还有一些新兴的测定方法不断涌现,例如荧光光谱法、激光诱导荧光法、红外反射法等。
这些新方法在提高测定精度、扩展测定范围和降低测定成本方面具有优势,正在逐渐得到广泛应用。
综上所述,叶绿素测定方法多种多样,每一种方法都有其特点和适用范围。
在选择合适的测定方法时,需要考虑实验目的、样品种类、所需精度、设备条件和实验操作难易程度等因素,以确定最适合的测定方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Hydrobiologia485:191–198,2002.©2002Kluwer Academic Publishers.Printed in the Netherlands.191 Chlorophyll-a determination with ethanol–a critical test´Eva P´a pista1,´Eva´Acs2&B´e la Böddi3,∗1Eötvös Lor´a nd University of Science,Doctoral School,P´a zm´a ny P´e ter allee1/A,Budapest H-1117,Hungary2Eötvös Lor´a nd University of Science,Department of Microbiology,P´a zm´a ny P´e ter allee1/C Budapest H-1117, Hungary3Eötvös Lor´a nd University of Science,Department of Plant Anatomy,P´a zm´a ny P´e ter allee1/C,BudapestH-1117,HungaryTel:12660240;E-mail:bbfotos@ludens.elte.hu(∗Author for correspondence)Received2May2001;in revised form30August2002;accepted20August2002Key words:algae,chlorophyll-a determination,ethanol,ISO standard10260(1992)AbstractChlorophyll-a content is widely used as an indicator of the quality of freshwater bodies.Quantification of chlorophyll-a is a routine procedure in the test laboratories of water works,and in research laboratories.Although attempts have been made to standardise the measurement procedure,there are nonetheless many procedures currently in use.This work is focused on a careful re-examination of the ISO:10260,1992standard,which prescribes90%(v/v)ethanol for chlorophyll extraction and measurement.Chlorophyll contents of cultures of the cyanobacterium Synechococcus elongatus Nägeli and the chlorophyte Scenedesmus acutus Meyen were determined by means of a series of concentrations of ethanol/water mixtures which were employed as extracting agents–the water content was gradually decreased from20to0%.The extraction procedure was verified by measuring the amount of retained water after using both water and oil pumps forfiltering the samples.The spectroscopic effects of the presence of water were studied and the molecular background of these spectral phenomena is discussed.The extraction yields obtained with90%ethanol were compared to those obtained with methanol and acetone.On the basis of the calculated error level,improvements to the ISO:10260,1992standard method have been suggested.IntroductionThe chlorophyll(Chl)content of freshwater bodies is a widely accepted indicator of water quality.Research projects on periphyton(Cattaneo,1983;Jonsson, 1987;Robinson&Rushforth,1987;Pantecost,1991) or phytoplankton(Kiss&Genkal,1993;Balogh et al., 1995;Jones,1995;Kiss,1996;Shafik et al.,1997; Skidmore et al.,1998;Kiss et al.,1998)use these characteristics to describe the trophic state(Sumner &Fisher,1979;Vörös&Padisák,1991;Talling, 1993)of the studied system.However,the identific-ation of the alga species,the knowledge of the algal cell number,or the physiological state of cells may also be important in providing a true picture of the water quality or trophic state.A combination of Chl determination and consideration of these other factors may provide an improvement in the reliability and ac-curacy of water quality estimation.Utermöhl(1958) developed a method to determine the individual num-ber of algae with an inverted microscope and Lund et al.(1958)described a procedure to estimate the accuracy and limitations of Utermöhl’s method.If certain taxa are in developing or degrading stages in the studied populations,consideration of the factors above is essential,since certain species produce toxins harmful to both water animals and hu-man(Slatkin et al.,1983;Codd et al.,1992).It has been established that the presence of algae and thus the Chl content indicate the concentration of certain chemicals or the appearance of toxins in the drinking water(Bernhardt&Clasen,1991).Thus,considera-192tion of the Chl content together with the algal species is beneficial in thefield of water treatment technology.There is a large variety of Chl determination meth-ods in hydrobiology.The main variability lies in the choice of the extracting solvent,probably because the extraction yield is different in the case of different alga taxa.Absolute methanol or acetone is often used in basic research.To increase the extraction yield,meth-anol/water mixtures(Jewson et al.,1981;Skidmore et al.,1998)are used or dimethysulfoxide(Lean& Pick,1981)is added(especially if Bacillariophyceae are studied).Pure(Stauber&Jeffrey,1988)or90% acetone(Rosen&Lowe,1984;Levasseur et al.,1993) is used if certain Chlorophyceae species are present.The ISO standard method(ISO10260,1992) has been developed with consideration given to the toxicity of the solvents above and is accepted in freshwater test laboratories in many countries.This method prescribesfiltering(although the conditions are not fully specified)of the water sample followed by Chl extraction with90%ethanol/water(v/v)mix-ture,centrifugation and spectroscopic measurement of the supernatant atfixed wavelengths.The spectro-photometer must be set to zero at750nm and the absorbance is recorded at666nm.Unfortunately,the physico-chemical properties of the90%ethanol/water mixture predict a poor extraction yield in case of nu-merous alga taxa,furthermore the same properties make the results of the spectroscopic Chl determina-tion dubious.Despite of the numerous methods and equations used in the basic research(for example Lichtenthaler,1987;Porra et al.,1989;Wellburn, 1994),the ethanolic extraction is used in recent pub-lications(Thompson et al.,1999;Halling-Sorensen, 2000;Kataura et al.,2000).The extraction yields of the different methods have not been determined and compared to each other and no standard procedure has been generally accepted(Vladkova,2000).Despite these uncertainties,a prerequisite for the accreditation of freshwater test laboratories in several countries is the application of ethanolic extraction.This paper studies the effect of water content in the extracting ethanol on the extraction yield of Chl from Synechococcus and Scenedesmus cultures.The amount of water retained in thefilter after different filtration methods were employed was measured.The absorption spectra of pigment extractions were recor-ded.These results,and the influence of disturbing physical effects(baseline distortion,absorption band diffusion)and chemical effects(Chl-hydrate crystal formation,colloid structures)are studied and dis-cussed.The extraction yields of different solvents is also studied and compared.Materials and methodsAlgaeTo test the Chl determination methods,algal cultures and natural water samples were used.The algal cul-tures were the cyanobacterium Synechococcus elong-atus Nägeli and the chlorophyte Scenedesmus acutus Meyen grown in Allen medium under12L/12D and 20◦C.The natural water sample was collected from a eutrophic pond in which Chlorophyta(mainly Scene-desmus and Kirchneriella species)usually dominate the algal community.Pigment extractionA small volume of the cultures(400–750µl/sample) wasfiltered with an oil pump through glassfibrefilters (MN GF-1;Macherey-Nagel GER).Thefiltration time was60s.Thefilters were immersed into the extraction solutions which were ethanol with varying water con-tent between80%and100%(virtual concentrations, v/v),pure methanol,or acetone.The samples were heated to the boiling point of the ethanol and methanol solvents,then maintained at this temperature for15s before being cooled to room temperature.The samples were centrifuged with MLW T52.1centrifuge for10 min with1000g.The experiments were repeated three times with10parallels in each experiment.The extrac-tion with90%acetone was performed in accordance with the Standard Methods for the Examination of Water and Wastewater(1992).After thefiltration,the filters were immersed in acetone and kept in the dark at4◦C for48h.The samples were then centrifuged as above.FiltrationA water pump(at10000Pa)and an oil pump(Vacu-ubrand ME2C at8000Pa)were used for testing the amount of water retained by thefilters.Then500cm3 of distilled water wasfiltered in each test for30–120 s.The time periods were measured from the moment when the water drained from the upper device of the filtering apparatus to the moment when thefilter sur-face became matted.The amount of the retained water was determined by measuring the mass of thefilter193before and after the experiments.Three experiments were conducted,each comprising10repetitions. Absorption spectroscopyThe absorption spectra were recorded with UNICAM UV/Vis2and SHIMADZU UV-2101PC spectropho-tometers.The spectra were measured between375 and800nm with0.5nm data frequency and a1nm slit.The data were exported into ASCII format for further data processing:baseline correction and cal-culation of average spectra.The software SPSERV V-3.14(Copyright:Csaba Bagyinka;Inst.Biophys. Biol.Res.Cent.Szeged,Hungary)was used.The Chl-a contents were determined with the ISO calculation (ISO:10290,1992).ResultsThe spectroscopic concentration determination is based on equations in which the absorption coefficient refers to readily identifiable and uniform chromophore species.To demonstrate that the water modifies the absorption spectrum of Chl-s in algal extractions,the following experiment was carried out:the chloro-phylls were extracted from a Scenedesmus acutus culture with80%acetone,then transferred into diethyl ether and the traces of water removed with desic-cated Na2SO4.The pigment solution was halved and the diethyl ether was evaporated from both extrac-tions.The pigments were resolved in100%ethanol in one sample and with90%ethanol(v/v)in the other. The comparison of the absorption spectra in the red region(which is used for concentration determina-tion)showed significant differences(Fig.1).In the spectrum of the watered sample,the absorbance has increased in the700–800nm region.A reduction in the maximum absorbance value is also evident,as is a change in the spectral position of the maximum value.These spectral phenomena are more obvious in Figures2A and2B in which the abovementioned details are magnified.The spectral structure formed by the broad maximum around740–745nm indicates that new chromophore species have been formed in the watered sample.In addition to the error sources described above,a reduction in the extraction yield was found in the case of natural water samples.When the Chl was extracted from natural water samples with 90%ethanol using the ISO:10260,1992standard method,a decrease in the absorbance ofapproximately parison of the absorption spectra of pigments extrac-ted from Scenedesmus acutus:1,solvent100(v/v)%ethanol,2, solvent88(v/v)%ethanol.50%was observed.Furthermore,baseline distortions were found in the absorption spectrum,compared with the absorption properties of the extraction in which 100%methanol was used(Fig.3).This baseline dis-tortion proved to be significant.When the baseline was corrected with a computer program and the corrected baseline subsequently subtracted from the spectra,the calculated Chl content values decreased by5–10%. To investigate the reasons for these anomalies,the following experiment was performed.Using the ISO:10260,1992standard method, Chl was extracted from a natural water sample.The chlorophyllous solution was centrifuged and the ex-traction repeated with the precipitate with100%eth-anol.The suspension was boiled,cooled,centrifuged and its absorption spectrum was measured.This ex-periment showed that approximately35%of the Chl content of the alga culture remained in the precipitate after thefirst extraction with90%ethanol.This res-ult illustrates that low extraction efficiency can be a source of basic error in the ISO:10260,1992standard method.In the next series of experiments,we studied the actual water content of the solutions after thefiltering of the water samples.The amount of water retained by thefilter on which the alga cells are collected from the water sample varies,and depends upon the details of the procedure employed.Consequently,immersion of thisfilter into the extracting solution will modify the ethanol/water molar ratio dependent upon the amount of water introduced via thefilter.This experiment was important because thefiltration procedure(vacuum value,pore size offilter,time offiltration)is poorly194Figure2.Details of the absorption spectra of pigments extracted from Synechococcus elongatus:1,solvent100(v/v)%ethanol,2,solvent88 (v/v)%ethanol.(A)Spectral shift and broadening of the absorption band are caused by the presence of water.(B)Formation of micro-crystals caused the appearance of an absorption band at743nm.described in the ISO standard.These measurementshave shown that the amount of retained water wassignificant–it modified the initial90%ethanol/waterconcentration of the extraction solution by3.4–4.1%or1.3–1.5%when using a water-pump or an oil-pump,respectively(Table1).In the next experiment,the molar ratio of wa-ter to ethanol was varied to study the extractionyield of the different solutions when the ISO:10260,1992standard method was used.Chl-s were extractedfrom Synecococcus elongatus and Scenedesmus acu-tus cultures;the extracting agents were ethanol-watersolutions with88–96%(virtual concentration,v/v)ofethanol.To demonstrate the data scattering,the Chl content obtained with90%ethanol was normalised to 100%and the standard error values were calculated. There is no evident trend in the series of the data but this experiment does show a high level of error in the case of each concentration(Fig.4).The extraction yields were compared when100% methanol,90%ethanol,and acetone were used ac-cording to the ISO:10260,1992standard method, and the modified Standard Methods,1992,which was applied in the last two cases only.(In case of the Standard Methods,we did not apply the acidifica-tion because we were not interested in the determ-ination of pheophytins;consequently,we used other equations[Jeffrey&Humphry,1975]for the cal-culations.)The Chl-s were extracted from a natural water sample dominated by Scenedesmus and Kirch-neriella(Chlorophyta)species.Methanolic extraction was found to provide both the highest extraction yield and the lowest standard error value.Normalising this Chl concentration value to100%,the90%ethanol and Figure3.Absorption spectra of pigments extracted from natural water sample collected from an eutrophic pond dominated by green algae:1,solvent100(v/v)%methanol,2,solvent88.5%(v/v) ethanol.the acetone yielded only77%and60%,respectively –furthermore,the error level increased significantly (Table2).DiscussionThe extraction solvent must meet the following re-quirements:it must penetrate the alga cells;it must denature the membranes holding the Chl-s,including the Chl–protein complexes,in such a way that the Chl-s can leave the complex;andfinally it must form a uniform monosolvate complex with the Chl-s.In this case,the chromophore can be characterised with a single extinction coefficient and the Beer-Lambert equation can be used.The ethanol/water mixture can-195 Table1.The amount of retarded water in glassfiberfilters after different times offiltering in case of water-pump and oil pump.Calculating10ml extraction solvent ofethanol90%(v/v),thefinal concentrations are shown in the right columns.Values ofstandard deviation are shownWater pump Oil pumpAverage weight of Modified cc.Average weight of Modified cc.retarded water(g)(%)retarded water(g)(%)30s0.483±0.01185.870.172±0.00788.4860s0.424±0.01286.340.167±0.00888.5290s0.411±0.01586.450.155±0.01088.62120s0.389±0.01786.630.142±0.01288.74Table2.Extraction yields of chlorophylls with different solvents.The data are meanvalues of30measurements;the standard deviation values are indicated90%(v/v)EtOH90%(v/v)Acetone100%(v/v)MeOHE max0.1110.1060.129Chl a concentration18.67±4.3314.65±3.98a24.28±4.53µg/l(EtOH:ethanol;MeOH:methanol).a Using the equation of Jeffrey&Humphrey(1975).Figure4.The relative extraction yields obtained with different ethanolic solvents in which the water content was varied.The ex-traction yield at90(v/v)%(ISO10260standard)was normalised to100%.Thefigure shows results and data scattering offive inde-pendent experiments.Pigments were extracted from Synechococcus elongatus“Cyano”and Scenedesmus acutus“Green”cultures. not meet these requirements–it does not form a suitable,homogenous molecular environment for the Chl molecules.H-bridges connect water and ethanol molecules–the size and amount of aggregates formed this way change in time statistically and depend on numerous factors(e.g.temperature,molar ratio of wa-ter/ethanol,impurities in the solvent,etc.).Due to these molecular interactions,the density of the eth-anol/water solution exhibits a non-linear relationship with respect to concentration(Horwitz,1955).Corres-pondingly,the refraction indices of the ethanol/water solutions have a similarly non-linear relationship with concentration–this has a direct bearing on the spec-troscopic properties(extinction coefficient and absorp-tion band position)of Chl-s(Seely&Jensen,1965). Moreover,in ethanol/water solutions,Chl-s form dif-ferent complexes.Since the central Mg in the por-phyrin ring is coordinatively unsaturated it can accept electron donor molecules or molecule groups.In this way,Chl-monosolvate or Chl-bisolvate complexes are produced in which the coordination number of Mg is 5or6,respectively(Fong,1975;Fong&Koester, 1975;Mukherjee et al.,1978).Both ethanol and wa-ter can be electron donors in forming such complexes. Besides Mg,water can coordinate to other atoms of the porphyrin ring producing a series of solvate com-plexes in various structures.With its positive pole it can coordinate to the non-bonding electron pairs of N-atoms or O-atoms of the porphyrin ring.These in-teractions modify the energy level of the delocalized electron cloud and so change the excitation energy of the molecule,i.e.the position of absorption band will be shifted by several nm(Clarke,1982).In ad-196dition,water,as a bifunctional ligand,can connect two or several Chl molecules thereby forming hy-drated dimers,oligomers or micro-crystals.(The shift of the absorption maximum and the broadening of the absorption band in Figures1and2indicate the formation of several Chl-water or Chl-ethanol com-plexes.The appearance of the absorption band in the 740–745nm region(Fig.2B)indicates the formation of Chl-hydrate micro-crystals(Ballsmither&Katz, 1972).The probability of the appearance and the size(or size distribution)of these crystals depend on the molar ratios of Chl,water and ethanol.Considering the usu-ally low Chl concentration of samples obtained from natural water samples(about10−5M),the number of water molecules is usually several orders higher than that of Chl-s.Therefore,any of the above-described complexes can appear.In addition,in a90%eth-anol/water solution the molar ratio is close to3.At this value,ethanol and water molecules form aggregates of different sizes in which Chl molecules can build.If the size of these complexes reaches a value close to the absorption band of Chl,interference takes place in a manner similar to that which occurs in colloid solu-tions.As a result,the absorption band broadens,the baseline distorts,and the solution will be unsuitable for absorption measurements.The formation of Chl-hydrate micro-crystals can significantly modify the results of Chl content determ-ination.Their absorption maximum is at740–745nm and their band is very broad.When using the ISO 10260method,the spectrophotometer is set to zero at750nm,i.e.close to the absorption maximum of the micro-crystals.Consequently,the amplitude of absorption band of the monomer Chl-a(666nm)is reduced,depending on the degree of micro-crystal formation.The extinction coefficient of the micro-crystals is not known,nor have their exact structures been de-scribed(i.e.the number of Chl molecules built into the crystals).The baseline distortion is,at least partly, due to the formation of the colloid-like structures –ethanol-water-Chl associations.The prevalence of these structures depends upon the molar ratios of the interacting molecules.Therefore,even the small amount of water introduced with thefilter can signi-ficantly change the shape of the absorption spectra. The absorption spectrum of these solutions is super-posed on a light scattering curve,which increases the absorbance value measured at the maximum of Chl-s. The two effects described above may compensate each other,but their contribution is unknown.In light of the fact that the ISO10260standard method prescribes the measurement of the absorbance value at the absorp-tion maximum and the fact that the spectrum is not recorded,the researcher has no information about the above-described spectral phenomena.Another source of uncertainty is the formation of ethanol-water as-sociations that reduce the extraction yield–these complexes can denature the biological membranes and the Chl–protein complexes to a limited extent.These phenomena are not significant in the cases of methanol or acetone.However,acetone cannot be used generally in algological studies–hot methanol may provide better extraction yields depending upon the species present(Iwamura et al.,1970).Compared with methanolic extraction,the yield obtained with acetone was smaller.This solvent either cannot de-nature,i.e.break up all algal cells,or it precipitates the Chl–protein complexes producing stable structures –thus100%solubility of the Chl-s is unattainable. The most effective extracting agent was the methanol, the mobility of which is superior to that of ethanol, it does not form large adducts with water,and it eas-ily denatures both the biological membranes and the Chl–protein complexes.The data presented within this work shows that the application of ethanol(either in90%concentration as in the ISO10260method,or pure)provides dubi-ous results.It is clearly necessary that water quality testing laboratories have simple and fast test meth-ods because of the large quantity of samples to be processed,but the current unreliable methods lead to erroneous data,which can mislead and corrupt asso-ciated environmental research.Further basic research is needed to develop a technique that provides the requisite processing speed and level of test accuracy and reliability.Employment of modern computerised spectroscopy technology provides a good opportunity to develop such a technique,which would suit wide-spread application in water quality testing laboratories.On the basis of the foregoing results and related experiences,we suggest the following:1.The90% ethanol/water solvent should be avoided–100%meth-anol seems to be generally more suitable.(Algologists engaged in basic research traditionally use this.)How-ever,after determining the presence of the alga spe-cies,the method must be varied.The tendency to avoid the use of methanol in the laboratory can be addressed through attention to the appropriate precautions and laboratory conditions.2.The conditions forfiltration must be defined:the type of thefilter,thefiltration197time,and the vacuum value.The use of an oil-pump and a minimum of60sfiltration time are suggested.3. The centrifugation conditions must be defined(10min with1000g seems to be effective)and the pellet must be checked(at least randomly,or in case of unusual samples–alga blooming or new species–regularly).4.The measurement of absorption spectra should be recorded at least in the600–800nm region in order to obtain information about the spectral distortions. AcknowledgementsWe are grateful to Peter Sweeney for his advice in correcting the text of this paper.ReferencesBallschmitter K.&J.J.Katz,1972.Chlorophyll–Chlorophyll and Chlorophyll–water interactions in the solid state.BBA256 (46277):307–327.Balogh,K.,A.Bothár,K.T.Kiss&L.Vörös,1994.Bacterio-, phyto-,lankton of the River Danube(Hungary).Verh.int.Ver.Limnol.25:1692–1694.Bernhardt,H.&J.Clasen,1991.Flocculation of micro-organisms.J.Water SRT–Aqua40:76–87.Cattaneo,A.,1983.Grazing on epiphytes.Limnol.Oceanogr.28: 121–132.Clarke,R.H.,1982.The chlorophyll triple state and the structure of chlorophyll aggregates.In Fong,F.K.(ed.),Light Reaction Path of Photosynthesis.Springer–Verlag Berlin Heidelberg New York:196–233.Codd,G.A., C.Edwards,K.A.Beattle,W.M.Barr&G.J.Gunn,1992.Fatal attraction to Cyanobacteria.Nature V olume 359:110–111.Fong,K.F.,1975.Ester and keto carbonyl linkages in Chlorophyll a,Prochlorophyll a and Protochlorophyll a.J.am.Chem.Soc.97:23–6890.Fong,K.F.&V.J.Koester,1975.Bonding interactions in anhydrous and hydrated Chlorophyll a.J.am.Chem.Soc.97:23–6888. Halling-Sorensen,B.,2000.Algal toxicity of antibacterial agents used in intensive farming.Chemosphere40:731–739. Horwitz,W.(ed.),1955.Official Methods of Analysis of the As-sociation of Agricultural Chemists1955.Association of Official Agricultural Chemists,Washington:939pp.ISO10260,1992.Water quality,measurement of biochem.paramet-ers;spectrometric determination of the chlorophyll-a concentra-tion.Beuth Verlag GmbH Berlin-Vien–Zürich.Iwamura,T.,H.Nagai&S.Ichimura,1970.Improved methods for determinig contents of chlyll,protein,ribonucleic acid,and dezoxyribonucleic acid in planctonic populations.Int.Rev.ges.Hydrobiol.55/1:131–147.Jeffrey,S.W.&G.F.Humphrey,1975.New spectrometric equa-tions for determining chlorophylls a,b,c1and c2in higher plants,algae and natural phytoplankton.Biochem.Physiol.Pflanzen(BPP)Bd.167:191–194.Jewson,D.H.,G.H.Rippley&W.K.Gilmore,1981.Loss rates from sedimentation,parasitism and grazing during the growth,nutrient limitation and dormancy of a diatom crop.Limnol.Oceanogr.26:1045–1056.Jones,R.J.,1995.The horizontal distribution of plankton in a deep oligotrophic lake–Loch Ness,Scotland.Freshwat.Biol.33: 161–170.Jonsson,G.S.,1987.The depth-distribution and biomass of epilithic periphytonin Lake Thingvallavatn,Iceland.Arch.Hidrobiol.108:531–547.Kataura,K.,S.Koseki,H.Ogawa, F.Yamazaki&Y.Tateno, 2000.Characteristics of ethanol-extracted chlorophyll-related compounds from salted brown seaweed,Konbu Laminaria ja-ponica and its use on seasoning extractive of Konbu.Nippon Suisan Gakk66:104–109.Kiss,K.T.,1996.Diurnal changes of planctonic diatoms in the River Danube near Budapest(Hungary).Algological Studies80 =Arch.Hidrobiol.Suppl.112:113–122.Kiss,K.T.&S.I.Genkal,1993.Winter blooms of centric di-atoms in the River Danube and in its side-arms near Budapest (Hungary).Hydrobiologia269/270:317–325.Kiss,K.T.,J.Nosek&L.Kremmer,1998.Diurnal change of phytoplankton,some physical and chemical components in the River Danube near Budapest(Hungary).Verh.int.Ver.Limnol.26:1041–1044.Lean,D.R.S.&F.R.Pick,1981.Photosynthetic response to nutri-ent enrichment:a test for nutrient limitation.Limnol.Oceanogr.26:1001–1019.Levasseur,M.P.,A.Thompson&P.J.Harrison,1993.Physiolo-gical acclimation of marine phytoplankton to different nitrogen sources.J.Phycol.29:587–595.Lichtenthaler,H.K.1987.Chlorophylls and caroteniods:Pigments of photosynthetic biomembranes.Methods in Enzymol.V olume 148:350–382.Lund,J.W.G.,G.C.Kipling&E.D.Lecreen,1958.The inverted microscope method of estimating algal number and the statistical basis of estimation by counting.Hydrobiologia11:143–170. Mukherjee,T.,A.V.Sapre&J.P.Mittal,1978.On the nature of Chlorophyll a in aquaeous micellar systems.Photochem.Photobiol.V:28.95.Pantecost,A.1991.Algal and bryophyteflora of a Yorkshire(U.K.) hill stream:a comparative study approach using biovolume estimations.Arc.Hydrobiol.121:181–201.Porra,R.J.,W.A.Thompson&P.E.Kriedman,1989.De-termination of accurate extinction coefficients and simultaneous equations for assaying Chlorophylls a and b extracted with four different solvents:verification of concentration of Chlorophyll standards by atomic absorption spectroscopy.Biochim.Biophys.Acta975:384–394.Robinson,C.T.&S.R.Rushforth,1987.Effect of physical disturb-ance and canopy cover on attached diatom community structure in an Idaho stream.Hydrobiologia154:49–59.Rosen,B.H.&R.L.Lowe,1984.Physiological and ultrastructural responses of Cyclotella meneghiniana(Bacillariophyta)to light intensity and nutrient limitation.J.Phycol.20:173–183.Seely G.R.&R.G.Jensen,1965.Effect of solvent on the spectrum of Chlorophyll.Spectrochimica Acta12:1935–1845.Shafik,H.M.,S.Herodek,L.Vörös,M.Présing&K.T.Kiss, 1997.Growth of Cyclotella meneghiniana Kutz.I.Effect of tem-perature,light and low rate nutrient supply.Annls.Limnol.33: 139–147.Skidmore,R.,S.C.Maberly&B.A.Whitton,1998.Patterns of spatial and temporal variation in phytoplankton chlorophyll a in the River Tent and its tributaries.Sci.Tot.Environ.210/211: 357–365.。