三次样条插值---matlab实现

合集下载

matlab实现三次样条插值法

matlab实现三次样条插值法

题目背景:对y=1/(1+x^2)在[-1,1]区间以Xn=-1+0.1*(n-1),n=1 (21)为插值点做三次样条插值求解思路简析:以插值为四段三次函数为例进行说明(题干为插值20段三次函数),可看出方程组为q*x=d,其中q为方程组系数矩阵,x为所求三次函数的系数矩阵,其中方程组系数矩阵和d均呈规律性变化(边界点除外,首位两个点特殊堪虑)function qiujieyangtiao %%定义求解函数q=zeros(80); %%方程组的系数矩阵,赋初值为0n=-1:0.1:1; %%插值点的横坐标nd=zeros(80,1); %%插值点q*x=d中的dy=zeros(21,1); %%插值点的纵坐标向量a=1;for i=-1:0.1:1y(a)=1/(1+i^2);a=a+1; %%给插值点的纵坐标y通过原函数赋值endq(1,3)=2;q(1,4)=6*n(1);q(2,1)=1;q(2,2)=n(1);q(2,3)=n(1)^2;q(2,4)=n(1)^3;d(2)=y(1); %%给左端边界点的两个方程组系数赋值j=2;for i=3:4:75q(i,i-1)=1;q(i,i)=2*n(j);q(i,i+1)=3*n(j)^2;q(i,i+3)=-1;q(i,i+4)=-2*n(j);q(i,i+5)=-3*n(j)^2;d(i)=0;q(i+1,i)=2;q(i+1,i+1)=6*n(j);q(i+1,i+4)=-2;q(i+1,i+5)=-6*n(j);d(i+1)=0;q(i+2,i-2)=1;q(i+2,i-1)=n(j);q(i+2,i)=n(j)^2;q(i+2,i+1)=n(j)^3;d(i+2)=y(j);q(i+3,i+2)=1;q(i+3,i+3)=n(j);q(i+3,i+4)=n(j)^2;q(i+3,i+5)=n(j)^3;d(i+3)=y(j);j=j+1;end %%给系数矩阵赋值q(79,79)=2;q(79,80)=6*n(21);d(79)=0;q(80,77)=1;q(80,78)=n(21);q(80,79)=n(21)^2;q(80,80)=n(21)^3;d(80)=y(21); %%给右端边界点的两个方程组系数赋值result=q\d; %%求解系数矩阵function A=fun(x)if x>=-1&&x<-0.9A=result(1)+result(2)*x+result(3)*x*x+result(4)*x*x*x;elseif x>=-0.9&x<-0.8A=result(5)+result(6)*x+result(7)*x*x+result(8)*x*x*x;elseif x>=-0.8&x<-0.7A=result(9)+result(10)*x+result(11)*x*x+result(12)*x*x*x; elseif x>=-0.7&x<-0.6A=result(13)+result(14)*x+result(15)*x*x+result(16)*x*x*x; elseif x>=-0.6&x<-0.5A=result(17)+result(18)*x+result(19)*x*x+result(20)*x*x*x; elseif x>=-0.5&x<-0.4A=result(21)+result(22)*x+result(23)*x*x+result(24)*x*x*x; elseif x>=-0.4&x<-0.3A=result(25)+result(26)*x+result(27)*x*x+result(28)*x*x*x; elseif x>=-0.3&x<-0.2A=result(29)+result(30)*x+result(31)*x*x+result(32)*x*x*x; elseif x>=-0.2&x<-0.1A=result(33)+result(34)*x+result(35)*x*x+result(36)*x*x*x; elseif x>=-0.1&x<0A=result(37)+result(38)*x+result(39)*x*x+result(40)*x*x*x; elseif x>=0&x<0.1A=result(41)+result(42)*x+result(43)*x*x+result(44)*x*x*x; elseif x>=0.1&x<0.2A=result(45)+result(46)*x+result(47)*x*x+result(48)*x*x*x; elseif x>=0.2&x<0.3A=result(49)+result(50)*x+result(51)*x*x+result(52)*x*x*x; elseif x>=0.3&x<0.4A=result(53)+result(54)*x+result(55)*x*x+result(56)*x*x*x; elseif x>=0.4&x<0.5A=result(57)+result(58)*x+result(59)*x*x+result(60)*x*x*x; elseif x>=0.5&x<0.6A=result(61)+result(62)*x+result(63)*x*x+result(64)*x*x*x; elseif x>=0.6&x<0.7A=result(65)+result(66)*x+result(67)*x*x+result(68)*x*x*x; elseif x>=0.7&x<0.8A=result(69)+result(70)*x+result(71)*x*x+result(72)*x*x*x; elseif x>=0.8&x<0.9A=result(73)+result(74)*x+result(75)*x*x+result(76)*x*x*x; elseA=result(77)+result(78)*x+result(79)*x*x+result(80)*x*x*x; endend %%插值函数用子函数表达,方便调用x=linspace(-1,1);for i=1:length(x)A(i)=fun(x(i));endY=1./(1+x.^2);plot(x,Y,'--',x,A,':')legend('primitive','fitting') %%将原函数与该插值函数画在同一图上进行比较grid ontitle('三次样条插值')for m=1:20fprintf("S%d=%.3f+%.3f*x+%.3f*x.^2+%.3f*x.^3\n",m,result(4*m-3,1),result(4*m-2,1),result(4*m-1,1),result(4*m,1)) %%输出结果endend输出结果:S1=2.049+3.619*x+3.104*x.^2+1.035*x.^3S2=1.010+0.156*x+-0.743*x.^2+-0.390*x.^3S3=1.137+0.632*x+-0.149*x.^2+-0.143*x.^3S4=1.054+0.273*x+-0.660*x.^2+-0.386*x.^3S5=1.023+0.120*x+-0.916*x.^2+-0.528*x.^3S6=1.003+-0.002*x+-1.160*x.^2+-0.691*x.^3S7=0.997+-0.044*x+-1.265*x.^2+-0.779*x.^3S8=0.998+-0.034*x+-1.233*x.^2+-0.743*x.^3S9=1.000+-0.010*x+-1.113*x.^2+-0.543*x.^3S10=1.000+-0.000*x+-1.010*x.^2+-0.200*x.^3S11=1.000+-0.000*x+-1.010*x.^2+0.200*x.^3S12=1.000+0.010*x+-1.113*x.^2+0.543*x.^3S13=0.998+0.034*x+-1.233*x.^2+0.743*x.^3S14=0.997+0.044*x+-1.265*x.^2+0.779*x.^3S15=1.003+0.002*x+-1.160*x.^2+0.691*x.^3S16=1.023+-0.120*x+-0.916*x.^2+0.528*x.^3S17=1.054+-0.273*x+-0.660*x.^2+0.386*x.^3S18=1.137+-0.632*x+-0.149*x.^2+0.143*x.^3S19=1.010+-0.156*x+-0.743*x.^2+0.390*x.^3S20=2.049+-3.619*x+3.104*x.^2+-1.035*x.^3对比图。

用Matlab实现了3次样条曲线插值的算法边界条件取为自然

用Matlab实现了3次样条曲线插值的算法边界条件取为自然

用Matlab实现了3次样条曲线插值的算法。

边界条件取为自然边界条件,即:两个端点处的2阶导数等于0;共包含3各个函数文件,主函数所在文件(即使用的时候直接调用的函数)为spline3.m,另外两个函数文件是在splin3函数文件中被调用的自定义函数。

一个是GetParam.m,一个是GetM.m。

%GetParam.m文件的内容:%根据给定的离散点的横坐标所构成的向量,计算各个区间段的h值;function GetParam(Vx,Vy)global gh;global gf;global gu;global gr;global gd;global gff;global gM;%global gn;%n=length(Vx);%length()为向量Vx所含元素的个数;%n=legth(Vx);%gn=n;%n=gn;n=length(Vx);gh(1)=Vx(2)-Vx(1);gf(1)=(Vy(2)-Vy(1))/gh(1);for i=2:1:n-1%从区间0到区间n-1; gh(i)=Vx(i+1)-Vx(i);gf(i)=(Vy(i+1)-Vy(i))/gh(i);gu(i)=gh(i-1)/(gh(i-1)+gh(i));gr(i)=1-gu(i);gff(i)=(gf(i-1)-gf(i))/(Vx(i-1)-Vx(i+1)); gd(i)=6*gff(i);end%设置与边界条件有关的参数;gM(1)=0;%起点的2阶导数;gM(n)=0;%终点的2阶导数;end%GetM.m文件的内容:function GetM(Vx)global gh;global gf;global gu;global gr;global gd;global gff;global gM;%global gn;nn=length(Vx);%nn=gn;n=nn-2;b=zeros(n,1);A=zeros(n,n);A(1,1)=2;A(1,2)=gr(2);b(1)=gd(2)-gu(2)*gM(1);for i=2:1:n-1A(i,i)=2;A(i,i-1)=gu(i+1);A(i,i+1)=gr(i+1);b(i)=gd(i+1);endA(n,n-1)=gu(n);A(n,n)=2;b(n)=gd(nn-1)-gr(nn-1)*gM(nn); X=(inv(A))*b;for i=2:1:nn-1gM(i)=X(i-1);end%主函数文件spline3.m的内容:function result=spline3(x,Vx,Vy) global gh;global gf;global gu;global gr;global gd;global gff;global gM;%global gn;GetParam(Vx,Vy);GetM(Vx);%n=length(Vx);%n=gn;n=length(Vx);nn=length(x);y=zeros(1,nn);for j=1:1:nni=1;while(x(j)>Vx(i+1))endsn=i;t1=(Vx(sn+1)-x(j))^3/(6*gh(sn));t1=t1*gM(sn);t2=(x(j)-Vx(sn))^3/(6*gh(sn));t2=t2*gM(sn+1);t3=Vy(sn)-gM(i)*((gh(i))^2)/6;t3=t3*(Vx(sn+1)-x(j))/gh(sn);t4=Vy(sn+1)-gM(sn+1)*((gh(sn))^2)/6;t4=t4*(x(j)-Vx(sn))/gh(sn);y(j)=t1+t2+t3+t4;endresult=y;end函数调用的时候,result=spline3(x,Vx,Vy),x为代求点的横坐标向量,(Vx,Vy)为已知的点的坐标。

Matlab实验报告六(三次样条与分段线性插值)范文

Matlab实验报告六(三次样条与分段线性插值)范文
1.分析问题
本题是给出粗略等分点让你插入更多点用双线性插值法来作出更清晰的山区地貌图。
2.问题求解
x=0:400:2800;
y=0:400:2400;
z=[1430 1450 1470 1320 1280 1200 1080 940;
1450 1480 1500 1550 1510 1430 1300 1200;
2.分段线性插值与计算量与n无关;n越大,误差越小.
3.三次样条插值比分段线性插值更光滑。
4.‘linear’:分段线性插值;‘spline’:三次样条值。
【实验环境】
MatlabR2010b
二、实验内容
问题1对函数 ,x[-5,5],分别用分段线性插值和三次样条插值作插值(其中插值节点不少于20),并分别作出每种插值方法的误差曲线.
本次实验因为是我们课本没有的内容,心理上给了我很大的压力,幸好我们还能根据老师的课件以及例题去掌握这次实验所需要的各种插值法,但结果还好,两道题都做出来了。
plot(x,y,'*',x1,yl,'r',x1,y2,'b')
y0=1./(1+x1.^2);
y3=yl-y0;
y4=ys-y0;
holdon
plot(x1,y3,'y',x1,y4,'g')
3.结果
4误。
问题2山区地貌图在某山区(平面区域(0,2800)(0,2400)内,单位:米)测得一些地点的高程(单位:米)如表1,试作出该山区的地貌图.
1.分析问题
本题先取出少量的插值节点并作出图形,再用分段线性插值法和三次样条插值法做出更精确的图形,最后在作出误差曲线。

matlab三次样条插值例题解析

matlab三次样条插值例题解析

文章标题:深度解析Matlab三次样条插值1. 前言在数学和工程领域中,插值是一种常见的数值分析技术,它可以用来估计不连续数据点之间的值。

而三次样条插值作为一种常用的插值方法,在Matlab中有着广泛的应用。

本文将从简单到复杂,由浅入深地解析Matlab中的三次样条插值方法,以便读者更深入地理解这一技术。

2. 三次样条插值概述三次样条插值是一种利用分段三次多项式对数据点进行插值的方法。

在Matlab中,可以使用spline函数来进行三次样条插值。

该函数需要输入数据点的x和y坐标,然后可以根据需要进行插值操作。

3. 三次样条插值的基本原理在进行三次样条插值时,首先需要对数据点进行分段处理,然后在每个分段上构造出一个三次多项式函数。

这些多项式函数需要满足一定的插值条件,如在数据点处函数值相等、一阶导数相等等。

通过这些条件,可以得到一个关于数据点的插值函数。

4. Matlab中的三次样条插值实现在Matlab中,可以使用spline函数来进行三次样条插值。

通过传入数据点的x和y坐标,可以得到一个关于x的插值函数。

spline函数也支持在已知插值函数上进行插值点的求值,这为用户提供了极大的灵活性。

5. 三次样条插值的适用范围和局限性虽然三次样条插值在许多情况下都能够得到较好的插值效果,但也存在一些局限性。

在数据点分布不均匀或有较大噪音的情况下,三次样条插值可能会出现较大的误差。

在实际应用中,需要根据具体情况选择合适的插值方法。

6. 个人观点和总结通过对Matlab中三次样条插值的深度解析,我深刻地理解了这一插值方法的原理和实现方式。

在实际工程应用中,我会根据数据点的情况选择合适的插值方法,以确保得到准确且可靠的结果。

我也意识到插值方法的局限性,这为我在实际工作中的决策提供了重要的参考。

通过以上深度解析,相信读者已经对Matlab中的三次样条插值有了更加全面、深刻和灵活的理解。

在实际应用中,希望读者能够根据具体情况选择合适的插值方法,以提高工作效率和准确性。

用MATLAB计算等距三次样条插值问题

用MATLAB计算等距三次样条插值问题

2 表达式中系数的求解
S 4( π ) 中的任意一个三次样条函数可以表示成
38
n1
四川工业学院学报 2003 年 x ), x ∑ k iB i( ∈ [ a , b] ( 2) 于是求满足条件( 3) 、 ( 4) 的 三次插值样条函数( 2)的 问题转换为求解线性方程组( 7) 的问题 。 只要从( 7)中 解出 k i( i =-1 , 0 , …, n -3) , 即可求得样条函数 。
T
k n -1 = y n 及中间系数满足的等式 k -1 B -1( x 1)+ k 0 B 0( x 1)= y 1 - y 0 + h y′ 0 Bx 1) 2( 3
ki 3 B i3( x i) +k i 2 B i2( xi ) +k i 1 B i1 ( xi )= y i i = 2 , 3 , … , n -2 k n -4 B n -4( xn -1)+k n -3 B n -3 = y n -1 h - y n - y ′ B ( x )= y i 3 n n -2 n -1 ( 6) 利用基函数( 1) , 及已知数据( 3) , 可将( 6) 式写成矩阵 形式 : 7 2 1 4 0 1 1 4 1 1 4 2 1 7 · k -1 k0 k1 ┇ k n -4 k n -3
用matlab计算等距三次样条插值问题matlab等距节点插值三次样条插值matlabmatlab样条插值matlab样条插值函数matlab样条插值求曲率matlabb样条插值拟合matlab中三次样条插值matlabb样条插值双三次样条插值matlab
四川工业学院学报
Journa l of Sichua n University o f Science and Technolog y

三次样条插值函数MATLAB编程实现

三次样条插值函数MATLAB编程实现

三次样条插值函数为()()[)()[]1011,,,,n n n S x x x x S x S x x x x-⎧∈⎪=⎨⎪∈⎩ 利用三次埃尔米特插值函数表示三次样条插值函数,即()()()()())111111,,j j j j j j j j j j j S x y x y x m x m x x x x ααββ++++++⎡=+++∈⎣(0,1,,1j n =-)基函数满足()()()()()()21112111121121111212jj j j j j j j j j j j j j j j j j j jj j j j x x x x x x x x xx xx x x x x x xx xx x x x xx x x x x x xααββ++++++++++++⎛⎫⎛⎫--=+ ⎪⎪ ⎪⎪--⎝⎭⎝⎭⎛⎫⎛⎫--=+ ⎪⎪ ⎪⎪--⎝⎭⎝⎭⎛⎫-=-⎪ ⎪-⎝⎭⎛⎫-=-⎪ ⎪-⎝⎭由上式易得()()()()()()()()()()()()()()1331111331112211112211612612246246j j j j j j j j j j j j j j j j j j j j j j jj j j j j x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xx ααββ+++++++++++++++''=---+''=-+--+''=---+''=---则有()()()()()()()()()()()111111113333111111122221111661212242466j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j S x y x y x m x m x x x x x y x y x x x x x x x x x x x x x m x m x x x x x x x x x ααββ+++++++++++++++++++''''''''''=+++⎡⎤⎡⎤++⎢⎥⎢⎥=-+-+⎢⎥⎢⎥----⎣⎦⎣⎦⎡⎤++⎢⎥+-+-⎢⎥----⎣⎦)1,j j x x x +⎡⎤⎢⎥⎡∈⎣⎢⎥⎣⎦(0,1,,1j n =-)同理有()()()()()()()()()()()()()()()11111113333111111122221111661212242466j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j S x y x y x m x m x x x x x y x y x x x x x x x x x x x x x m x m x x x x x x x x x ααββ------------------''''''''''=+++⎡⎤⎡⎤++⎢⎥⎢⎥=-+-+⎢⎥⎢⎥----⎣⎦⎣⎦⎡⎤⎡++⎢⎥+-+-⎢⎥----⎣⎦⎣)1,j j x x x -⎤⎢⎥⎡∈⎣⎢⎥⎦(1,,j n =)根据样条函数二阶导数连续性,即()()100j j j j S x S x +''''+=-(1,,1j n =-)即()()()()()()()()()()()()()()()()111111332211111111113322111166426624j j jj j j j j j j jj j jj j j j j j jj j j j jj j j j j jjj jj jj jj x x y x x y x x x x m m x x xx xx xx x x y x x y x x x x m m x x xx xx xx ++++++++++--------------+++--------=+++----(1,,1j n =-)化简得()()()()()111111111111233j j j j j j j j j j j j j j j j j j jj j xx m x x m x x m x x x x y y y y x x x x +-+--+-++-+--+-+---=-+---(1,,1j n =-)可得线性方程组()()()()()()()()()()0121201023231213121221111110212110211032213221322122233333n n n n n n n n n n n n m m x x x x x x m x x x x x x m x x x x x x m m m x x x x y y y y x x x x x x x x y y y y x x x x y ------⨯+-+⨯⎛⎫ ⎪ ⎪ ⎪---⎛⎫⎪ ⎪--- ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪--- ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭---+------+---=()()()121112112113n n n n n n n n n n n n n x x x x y y y x x x x ----------⨯⎛⎫⎪ ⎪ ⎪ ⎪⎪⎪ ⎪-- ⎪-+- ⎪--⎝⎭为了使样条插值问题有惟一解,我们在原有方程基础上增加两个边界条件。

MATLAB 三次样条

MATLAB 三次样条

12.1
基本特征
在三次样条中,要寻找三次多项式,以逼近每对数据点间的曲线。在样条术语中,这 些数据点称之为断点。因为,两点只能决定一条直线,而在两点间的曲线可用无限多的三 次多项式近似。因此,为使结果具有唯一性。在三次样条中,增加了三次多项式的约束条 件。通过限定每个三次多项式的一阶和二阶导数,使其在断点处相等,就可以较好地确定 所有内部三次多项式。此外,近似多项式通过这些断点的斜率和曲率是连续的。然而,第 一个和最后一个三次多项式在第一个和最后一个断点以外,没有伴随多项式。因此必须通 过其它方法确定其余的约束。最常用的方法,也是函数 spline 所采用的方法,就是采用非 扭结(not-a-knot)条件。这个条件强迫第一个和第二个三次多项式的三阶导数相等。对最后 一个和倒数第二个三次多项式也做同样地处理。 基于上述描述,人们可能猜想到,寻找三次样条多项式需要求解大量的线性方程。实 际上,给定 N 个断点,就要寻找 N-1 个三次多项式,每个多项式有 4 个未知系数。这样, 所求解的方程组包含有 4*(N-1)个未知数。把每个三次多项式列成特殊形式,并且运用各种 约束,通过求解 N 个具有 N 个未知系数的方程组,就能确定三次多项式。这样,如果有 50 个断点,就有 50 个具有 50 个未知系数的方程组。幸好,用稀疏矩阵,这些方程式能够简 明地列出并求解,这就是函数 spline 所使用的计算未知系数的方法。
0 7.0000 0.0007 -0.0083 0.0042 0.3542 0.1635 4.9136 0.9391
1.0000 8.0000 0.0007 0.1068 0.0072 -0.2406 0.1925 0 1.2088
2.0000 9.0000 0.0010 -0.1982 0.0109 4.2439 0.2344 0.1263 1.5757

Matlab Spline 三次样条插值多项式表达式问题

Matlab Spline 三次样条插值多项式表达式问题

如何运用MATLAB 三次样条插值的问题,今天做作业,突然想用Matlab搞搞。

题目如下:清华大学出版社的《数值分析(第5版)》P49,20题。

x=[0.25 0.3 0.39 0.45 0.53];y=[ 0.5 0.5477 0.6245 0.6708 0.7280 ]pp=csape(x,y,'second',[0,0.0]);disp(pp.coefs);其中COEFS的含义是在Xi-Xi+1区间上的多项式是,例如COEFS数组第一行的意思是在X=0.25到X=0.3的区间上时表达式是-6.2652*(X-0.25)^3+0.9697*(X-0.25)^1+0.5;-6.2652 0.0000 0.9697 0.50001.8813 -0.9398 0.9227 0.5477-0.4600 -0.4318 0.7992 0.62452.1442 -0.5146 0.7424 0.6708关于csape的用法引用自:/ck436/blog/item/6fe40c46400d3c046b63e52b.htmlcsape,是计算在各种边界条件下的三次样条插值。

pp = csape(x,y,conds)其中conds主要有以下的选项variational(自然边界条件,首末点二阶导数均为0),second (指定首末点的二阶导数),periodic(周期性边界条件,首末点的0~2阶导数相等),complete (给定导数情况,默认)function pp = csape(x,y,conds,valconds)%pp=csape(x,y,'变界类型','边界值'),生成各种边界条件的三次样条插值. 其中,(x,y)为数据向量%边界类型可为:'complete',给定边界一阶导数.% 'not-a-knot',非扭结条件,不用给边界值.% 'periodic',周期性边界条件,不用给边界值.% 'second',给定边界二阶导数.% 'variational',自然样条(边界二阶导数为0)% .%例考虑数据% x | 1 2 4 5% ---|-------------% y | 1 3 4 2%边界条件S''(1)=2.5,S''(5)=-3,% x=[1 2 4 5];y=[1 3 4 2];% pp=csape(x,y,'second',[2.5,-3]);pp.coefs % xi=1:0.1:5;yi=ppval(pp,xi);% plot(x,y,'o',xi,yi);。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档