数据拟合与最小二乘法-课件(PPT·精选)
最小二乘法

最小二乘法基本原理:成对等精度测得一组数据,试找出一条最佳的拟合曲线,使得这条曲线上的各点值与测量值的平方和在所有的曲线中最小。
我们用最小二乘法拟合三次多项式。
最小二乘法又称曲线拟合,所谓的“拟合”就是不要求曲线完全通过所有的数据点,只要求所得的曲线反映数据的基本趋势。
曲线的拟合几何解释:求一条曲线,使所有的数据均在离曲线的上下不远处。
第一节 最小二乘法的基本原理和多项式拟合 一 最小二乘法的基本原理从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差i i i y x p r -=)((i=0,1,…,m) 的大小,常用的方法有以下三种:一是误差i i i y x p r -=)((i=0,1,…,m)绝对值的最大值im i r ≤≤0max ,即误差 向量T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=mi ir 0,即误差向量r 的1—范数;三是误差平方和∑=mi ir02的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=mi i r 02来 度量误差i r (i=0,1,…,m)的整体大小。
数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即∑=m i ir 02=[]∑==-mi ii y x p 02min)(从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最小的曲线 )(x p y =(图6-1)。
函数)(x p 称为拟合 函数或最小二乘解,求拟合函数)(x p 的方法称为曲线拟合的最小二乘法。
在曲线拟合中,函数类Φ可有不同的选取方法.6—1二 多项式拟合假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一Φ∈=∑=nk k k n x a x p 0)(,使得[]min )(00202=⎪⎭⎫⎝⎛-=-=∑∑∑===mi mi n k i k i k i i n y x a y x p I (1)当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘拟合多项式。
第3章曲线拟合的最小二乘法计算方法

最小二乘拟合,特别是多项式拟合,是最流行的数据处理 方法之一.它常用于把实验数据(离散的数据)归纳总结为经 验公式(连续的函数),以利于进一步的推演分析或应用.
1
结束
§3.2 线性拟合和二次拟合函数
1. 线性拟合
计 已知数据点为 ( xi , yi ), i 1,2,..., n
算 用直线 p( x) a bx作为近似曲线,均方误差为
计
i xi yi xi yi xi2 xi2yi xi3
xi4
0 3 5 15 9 45 27
81
算
1 5 2 10 25 50 125 625
方
2 6 1 6 36 36 216 1296
法
3 8 2 16 64 128 512 4096
课
4 10 4 40 100 400 1000 10000
件
Y ln y, A ln a Y A bx
8
i
xi
0
1
yi
Yi
15.3
2.7279
xi2
xiYi
1
2.7279
1
2
20.5
3.0204
4
6.0408
计
2
3
27.4
3.3105
9
9.9315
算
3
4
36.6
3.6000
16
14.4000
方
4
5
49.1
3.8939
25
19.4695
法
5
6
65.6
4
例1 设5组数据如下表,用一多项式对其进行拟合。
x 3 5 6 8 10
计
第三章 模型拟合.ppt

• 假设我们想对一数据点集拟合幂曲线 y A xN , 用 记A的估计,n记N的估计,方程 y xn
两边取对数得ln y ln nln x
(3-8)
由方程(3-5)和(3-6)解出斜率n和截距
ln ,有
n 5 (ln xi)(ln yi) - ( ln xi)( ln yi) 5 (lnxi)2 ( lnxi)2
• 在此意义上,解释性的模型是理论推动的,而 预测模型是数据推动的。
• 建模者可能发现在同一问题中需要拟合一个模 型,同时还需要进行插值。一个给定类型的最 佳拟合模型可能被证明是难于控制的甚至是不 可能的。
• 建模者希望用插值曲线近似并能贴近所代替的 函数的基本特征,这种类型的插值通常称为逼 近。
比例常数c,虽然不是很明显,但在 k ex 形式
的指数曲线族中,已得到的模型不是极小化原 始数据点的,极小化绝对偏差和的指数曲线。
• 建模者必须认识到这个破坏,并且应该 用图解核查模型,从图解中做出预测或
结论,这里提及的是原始数据的y对x的 图而不是变换变量的图。
• 如果建模者使用变换时不是很小心,他可能会 选中一个相当差的模型。
i 1
(3-3)
最小二乘法几何解释
• 考虑三个点的情况。以 Ri yi f (xi) 记观测到的 和预测的值间的绝对偏差,i=1,2,3.将 Ri 考虑为 偏差向量的一个数量分量,那么向量
RR1 i R2 j R3 k 代表了观测值和预测值间产生
的偏离。这一偏离向量的长度给定为
类平方和中的最小者。
这必然有d12
d2 2
...
d2 m
c2 1
c2 2
计算方法 第三章曲线拟合的最小二乘法20191103

§2 多项式拟合函数
例3.1 根据如下离散数据拟合曲线并估计误差
x 1 23 4 6 7 8 y 2 36 7 5 3 2
解: step1: 描点
7
*
step2: 从图形可以看出拟
6 5
*
合曲线为一条抛物线:
4
y c0 c1 x c2 x2
3 2 1
* *
* * *
step3: 根据基函数给出法
法
18
定理 法方程的解是存在且唯一的。
证: 法方程组的系数矩阵为
(0 ,0 ) (1 ,0 )
G
(0
,1
)
(1 ,1 )
(0 ,n ) (1 ,n )
(n ,0 )
(
n
,
1
)
(n ,n )
因为0( x),1( x), ...,n( x)在[a, b]上线性无关,
所以 G 0,故法方程 GC F 的解存在且唯一。
第三章 曲线拟合的最小二乘法
2
最小二乘拟合曲线
第三章 曲线拟合的最小二乘
2021/6/21
法
3
三次样条函数插值曲线
第三章 曲线拟合的最小二乘
2021/6/21
法
4
Lagrange插值曲线
第三章 曲线拟合的最小二乘
2021/6/21
法
5
一、数据拟合的最小二乘法的思想
已知离散数据: ( xi , yi ), i=0,1,2,…,m ,假设我们用函
便得到最小二乘拟合曲线
n
* ( x) a*j j ( x) j0
为了便于求解,我们再对法方程组的导出作进一步分析。
第三章 曲线拟合的最小二乘
最小二乘法PPT课件

模型2(幂函数模型)
线性模型并未得到广泛的接受,要改进结果,能够 想到的自然首先是幂函数模型,即令L=kBa,对此式 取对数,得 到lnL=lnk+a lnB。将原始数据也取对数, 问题即转化了线性模型,可用最小二乘法求出参数。 几十年前英国和爱尔兰采用的比较举重成绩优劣 的 Austin公式:L′=L/B3/4就是用这一方法求得的。
67.5
135
146.1(5) 144.8(5) 144.7(6) 145.8(5)
75
145
145.0(6) 145.0(3) 145.0(5) 145.0(6)
42.5
162.5 151.3(1) 152.2(1) 153.5(1) 152.1(1)
体重 抓举成绩 (公斤) (公斤)
Austin( 幂函数)
经典公式
O’ Carroll
Vorobyev
52
105
138.2(7) 134.0(8) 139.7(8) 138.8(7)
56
117.5 146.3(4) 142.8(6) 145.7(4) 146.6(4)
60
125
147.8(3) 145.0(3) 146.2(3) 147.7(3)
和挺举。52 表中给出了1到09 1977年底为14止1 九个
重量级的56世界纪录。120.5
151
60
130
161.5
显然,运动67员.5 体重越大,他1能41举.5 起的重量也越1大80,但举重
成绩和运动75员体重到底是怎1样57关.5 系的,不同量1级95运动员的 成绩又如何比较优劣呢?运动成绩是包括生理条件、心理 因素等等众82多.5 相关因素共同1作70用的结果,要建20立7.精5 确的模
《数据拟合方法》PPT课件

n
n
记 J(a1,a2,am)
2 i
[f(xi)yi]2
i1
i1
nm
[ akrk(xi)yi]2 (2) i1 k1
问题归结为,求 a1,a2, …am 使 J(a1,a2, …am) 最小。
最小二乘法的求解:预备知识
超定方程组:方程个数大于未知量个数的方程组
r11a1r12a2 r1mamy1 (nm) rn1a1rn2a2rnmamyn
第一步:先选定一组函数 r1(x), r2(x), …rm(x), m<n, 令
f(x)=a1r1(x)+a2r2(x)+ …+amrm(x)
(1)
其中 a1,a2, …am 为待定系数。
第二步: 确定a1,a2, …am 的准则(最小二乘准则):
使n个点(xi,yi) 与曲线 y=f(x) 的距离i 的平方和最小 。
即 Ra=y
其中
r11 r12 r1m
a1
y1
R ,
a
,
y
rn1 rn2 rnm
am
yn
超定方程一般是不存在解的矛盾方程组。
n
如果有向量a使得
(ri1a1ri2a2 rim amyi)2达到最小,
i1
则称a为上述超定方程的最小二乘解。
最小二乘法的求解
所以,曲线拟合的最小二乘法要解决的问题,实际上就是 求以下超定方程组的最小二乘解的问题。
(x)
( x ) ...
(x)
0
0
11
n
n
a a a y y ( , ,...,
0
1
m
*
) (
第5章-1 曲线拟合(线性最小二乘法)讲解

求所需系数,得到方程: 29.139a+17.9b=29.7076 17.9a+11b=18.25
通过全选主元高斯消去求得:
a=0.912605
b=0.174034
所以线性拟合曲线函数为: y=0.912605x+0.174034
练习2
根据下列数据求拟合曲线函数: y=ax2+b
x 19 25 31 38 44 y 19.0 32.3 49.0 73.3 97.8
∑xi4 a + ∑xi2 b = ∑xi 2yi
∑xi2 a + n b = ∑yi
7277699a+5327b=369321.5 5327a+5b=271.4
曲线拟合的最小二乘法
1.曲线拟合的意思
Y
.
.
.
.
y=ax+b y=ax2+bx+c
X
y=ax+b y=ax2+bx+c 就是未知函数的拟合曲线。
2最小二乘法原理
观测值与拟合曲线值误差的平方和为最小。
yi y0 y1 y2 y3 y4…… 观测值 y^i y^0 y^1 y^2 y^3 y^4…… 拟合曲线值
拟合曲线为: y=(-11x2-117x+56)/84
x
yHale Waihona Puke 1.61 1.641.63 1.66
1.6 1.63
1.67 1.7
1.64 1.67
1.63 1.66
1.61 1.64
1.66 1.69
1.59 1.62
最小二乘估计课件(43张)

30
2.已知变量 x,y 有如下对应数据:
x
1
2
3
4
y
1
3
4
5
(1)作出散点图;
(2)用最小二乘法求关于 x,y 的回归直线方程.
栏目导航
[解] (1)散点图如下图所示.
31
栏目导航
(2) x =1+2+4 3+4=52, y =1+3+4 4+5=143,
4
i∑=1xiyi=1+6+12+20=39, i∑=41x2i =1+4+9+16=30, b=393-0-4×4×52×521243=1130,
(1)判断它们是否有相关关系,若有相关关系,请作一条拟合直 线;
(2)用最小二乘法求出年龄关于脂肪的线性回归方程.
栏目导航
25
[思路探究] (1)作出散点图,通过散点图判断它们是否具有相关 关系,并作出拟合直线;
(2)利用公式求出线性回归方程的系数 a,b 即可.
栏目导航
26
[解] (1)以 x 轴表示年龄,y 轴表示脂肪含量(百分比),画出散 点图,如下图.
32
栏目导航
a=143-1130×52=0, 故所求回归直线方程为 y=1130x.
33
栏目导航
34
1.求回归直线的方程时应注意的问题 (1)知道 x 与 y 呈线性相关关系,无需进行相关性检验,否则应首先进 行相关性检验.如果两个变量之间本身不具有相关关系,或者说,它们之
间的相关关系不显著,即使求出回归方程也是毫无意义的,而且用其估计
栏目导航
8
2.下表是 x 与 y 之间的一组数据,则 y 关于 x 的线性回归方程 y
=bx+a 必过( )
x