《一次函数》教案
八年级《一次函数》教学设计

课堂总结,发展潜能篇一1.y=k某+b(k,b是常数,k≠0)是一次函数.2.一次函数包含了正比例函数,即正比例函数是一次函数在b=0时的特例一次函数的概念优秀教学设计篇二教学目标1、了解正比例函数y=k某的图象的特点。
2、会作正比例函数的图象。
3、理解一次函数及其图象的有关性质。
4、能熟练地作出一次函数的图象教学重点正比例函数的图象的特点。
教学难点一次函数的图象的性质。
教学过程:1、新课导入上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。
经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。
本节课我们进一步来研究一次函数的图象的其他性质。
2、讲授新课(1)首先我们来研究一次函数的特例,正比例函数有关性质。
请大家在同一坐标系内作出正比例函数y=某,y=某,y=3某,y=-2某的图象。
如图:3、议一议(1)正比例函数y=k某的图象有什么特点?(都经过原点)(2)你作正比例函数y=k某的图象时描了几个点?(至少两点)(3)直线y=某,y=某,y=3某中,哪一个与某轴正方向所成的锐角最大?哪一与某轴正方向所成的锐角最小?4、小结:正比例函数的图象有以下特点:(1)正比例函数的图象都经过坐标原点。
(2)作正比例函数y=k某的图象时,除原点外,还需找一点,一般找(1,k)点。
(3)在正比例函数y=k某图象中,当k>0时,k的值越大,函数图象与某轴正方向所成的锐角越大。
(4)在正比例函数y=k某的图象中,当k>0时,y的值随某值的增大而增大;当k<0时,y的值随某值的增大而减小。
5、做一做在同一直角坐标系内作出一次函数y=2某+6,y=-某,y=-某+6,y=5某的图象。
一次函数y=k某+b的图象的特点:分析:在函数y=2某+6中,k>0,y的值随某值的增大而增大;在函数y=-某+6中,y的值随某值的增大而减小。
一次函数的图象教案(优秀4篇)

一次函数的图象教案(优秀4篇)一次函数篇一〖教学目标〗◆1、理解正比例函数、一次函数的概念。
◆2、会根据数量关系,求正比例函数、一次函数的解析式。
◆3、会求一次函数的值。
〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。
◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。
〖教学过程〗比较下列各函数,它们有哪些共同特征?提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。
定义:一般地,函数叫做一次函数。
当时,一次函数就成为叫做正比例函数,常数叫做比例系数。
强调:(1)作为一次函数的解析式,其中中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中符合什么条件?(2)在什么条件下,为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?例1:求出下列各题中与之间的关系,并判断是否为的一次函数,是否为正比例函数:(1)某农场种植玉米,每平方米种玉米6株,玉米株数与种植面积之间的关系。
(2)正方形周长与面积之间的关系。
(3)假定某种储蓄的月利率是0.16%,存入1000元本金后。
本钱与所存月数之间的关系。
此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。
解:(1)因为每平方米种玉米6株,所以平方米能种玉米株。
得,是的一次函数,也是正比例函数。
(2)由正方形面积公式,得,不是的一次函数,也不是正比例函数。
(3)因为该种储蓄的月利率是0.16%,存月所得的利息为,所以本息和,是的一次函数,但不是的正比例函数。
练习:1.已知若是的正比例函数,求的值。
2.已知是的一次函数,当时,;当时,(1)求关于的一次函数关系式。
(2)求当时,的值。
例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至XX元部分的税率为10% (1)设全月应纳税所得额为元,且。
一次函数的图像和性质教案3篇

一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。
二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。
三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。
教学重点:一次函数图象的性质。
教学难点:通过图形探求性质以及分析图形的位置特征。
课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。
教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。
【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。
同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。
因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。
过(1,-)、(0,-3)两点画直线y=-x-3。
师:很好。
还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。
师:大家说说看,哪一种取法更好呢?众:乙的方法好。
师:对。
我们可以针对函数中不同的k和b的值,灵活取值。
教师要求学生画出这两函数的图象。
【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。
(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。
图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。
一次函数教案优秀3篇

一次函数教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!一次函数教案优秀3篇作为一位杰出的老师,就难以避免地要准备教学设计,教学设计是实现教学目标的计划性和决策性活动。
一次函数教案【优秀10篇】

一次函数教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!一次函数教案【优秀10篇】在数学的学习中等差求和公式是学习的重点的内容,以下内容是本店铺为您带来的10篇《一次函数教案》,亲的肯定与分享是对我们最大的鼓励。
《一次函数》数学教案

《一次函数》数学教案
标题:《一次函数》数学教案
一、教学目标
1. 知识与技能:理解并掌握一次函数的概念和性质;能够正确地表示一次函数,并进行简单计算。
2. 过程与方法:通过实例引入一次函数,让学生在观察、思考和讨论中理解和掌握一次函数的相关知识。
3. 情感态度与价值观:培养学生对数学的兴趣,提高他们的逻辑思维能力和解决问题的能力。
二、教学内容与重点难点
1. 教学内容:一次函数的概念、图象、性质及应用。
2. 重点:一次函数的概念、图象和性质。
3. 难点:一次函数的应用。
三、教学过程
1. 导入新课:通过生活中的实例(如出租车计费方式)引出一次函数的概念。
2. 新知探索:讲解一次函数的定义、图象和性质,并配以适当的例题进行解析。
3. 巩固练习:设计一系列习题,包括基础题、提高题和挑战题,帮助学生巩固所学知识。
4. 小结与作业:回顾本节课的重点内容,布置相关的课后作业。
四、教学策略
1. 创设情境:通过生活实例引发学生的兴趣,使他们更容易理解和接受新知识。
2. 启发引导:采用问题驱动的教学方式,引导学生主动思考,培养他们的探究精神。
3. 分层教学:针对不同层次的学生,设计不同的学习任务,满足他们的个性化需求。
五、教学评价
1. 形成性评价:通过课堂问答、小组讨论和作业批改等方式,及时了解学生的学习情况,给予反馈和指导。
2. 总结性评价:通过期中、期末考试等,对学生的学习成果进行全面的评估。
六、教学反思
在每次教学结束后,教师应反思自己的教学过程,总结经验,找出不足,以便更好地改进教学。
初二数学教案《一次函数》(优秀10篇)

初二数学教案《一次函数》(优秀10篇)一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
为您带来了10篇《初二数学教案《一次函数》》,如果能帮助到亲,我们的一切努力都是值得的。
一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容) 2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)(1)列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;(2)多长时间以后,小丸子的银行存款才能买随身听?分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱解:(1)(2)1680=500+90x解得x=13.…所以还需要14个月,小丸子才能买随身听例3、已知函数是正比例函数,求的值分析:本题考察的是正比例函数的概念解:说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上4、小结由学生对本节课知识进行总结,教师板书即可。
一次函数教案设计

一次函数教案设计一、教学目标1、知识与技能目标理解一次函数的概念,掌握一次函数的表达式。
能够根据已知条件,求出一次函数的解析式。
学会用待定系数法求一次函数的解析式。
2、过程与方法目标通过实际问题的引入,培养学生的数学建模能力和解决实际问题的能力。
经历探索一次函数图象和性质的过程,体会数形结合的思想方法。
3、情感态度与价值观目标激发学生对数学的兴趣,培养学生积极思考、勇于探索的精神。
让学生体会数学与生活的紧密联系,增强学生应用数学的意识。
二、教学重难点1、教学重点一次函数的概念和表达式。
用待定系数法求一次函数的解析式。
2、教学难点理解一次函数与正比例函数的关系。
一次函数图象的性质及其应用。
三、教学方法讲授法、讨论法、练习法、多媒体辅助教学法。
四、教学过程1、导入新课展示生活中常见的一些函数关系的例子,如汽车行驶的路程与时间的关系、电话费与通话时间的关系等。
引导学生思考这些例子中变量之间的关系,并提问:如何用数学式子来表示这些关系?2、讲解新课给出一次函数的定义:一般地,形如 y = kx + b(k,b 是常数,k ≠ 0)的函数,叫做一次函数。
当 b = 0 时,y = kx 叫做正比例函数,所以正比例函数是一种特殊的一次函数。
通过具体的例子,如 y = 3x + 2,y =-2x 等,让学生判断哪些是一次函数,哪些是正比例函数,并说明理由。
讲解用待定系数法求一次函数的解析式。
例如,已知一次函数的图象经过点(1,3)和(-2,-1),求这个一次函数的解析式。
设这个一次函数的解析式为 y = kx + b,将两个点的坐标代入解析式中,得到方程组,解方程组求出 k 和 b 的值,从而得到解析式。
3、课堂练习给出一些练习题,让学生判断哪些函数是一次函数,哪些是正比例函数。
给出一些已知点坐标求一次函数解析式的题目,让学生练习用待定系数法求解。
4、探究一次函数的图象和性质让学生在同一坐标系中画出 y = 2x,y = 2x + 1,y = 2x 1 的图象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一次函数》教案
教学目标
1、理解一次函数和正比例函数的概念.
2、能根据所给条件写出简单的一次函数表达式.
3、经历从实际问题中得到函数关系式这一过程,发展学生的数学应用能力.
教学重点
理解一次函数和正比例函数的概念.
教学难点
能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维能力.
教学过程
一、引入新课
展示一些与学生生活中有关的图片,如弹簧、橡皮筋等等的实物,请同学们思考一些问题.承接上节课函数的关系,让同学们感受到变量之间关系式通过多种形式表达出来的,感受到研究函数的必要性.生活中的实例,更能激发学生学习的激情,起到很好的导入新课的效果.
二、探究新知
例1某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x每增加1kg,弹簧长度y 增加0.5cm.
(1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹簧长度,并填入下表:
例2某辆汽车油箱有汽油60L,汽车每行驶50km耗油6L.
(1)完成下表:
(3)你能写出剩油量z与汽车形式路程x之间的关系吗?
例3我国自2011年9月1日起,个人工资、薪金所得税征收办法规定:月收入低于3500元的部分不收税;月收入超过3500元但低于5000元的部分征收3%的所得税……如果某人月收入
3860元.
(1)当月收入大于3500元而又小于5000元时,写出应缴纳所得税y(元)与月收入x
(元)之间的关系式.
(2)某人月收入为4160元,他应该缴纳所得税多少元?
(3)如果某人本月缴所得税19.2元,那么此人本月工资、薪金是多少以元?
一般地,若两个变量x,y间的关系式可以表示成y kx b(,k b为常数,k≠0)的形
b时,则y是x的式,则称y是x的一次函数(x是自变量,y为因变量).特别地,当0
正比例函数.
三、拓展练习
例1、写出下列各题中x与y之间的关系式,并判断:y是否为x的一次函数?是否为正比例函数?
(1)汽车以60千米/时的速度匀速行驶,行驶路程y(千米)与行驶时间x(时)之间的关系;
(2)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;
(3)一棵树现在高50厘米,每个月长高2厘米,x个月后这棵树的高度为y(厘米),则y 与x的关系.
例2:我国自2011年9月1日起,个人工资、薪金所得税征收办法规定:月收入低于3500元的部分不收税:月收入超过3500元但低于5000元的部分征收3%的所得税,如某人月收入38 60元,他应缴个人工资、薪金所得税为(3860-3500)×3%=10.8(元).
(1)当月收入大于3500元而又小于5000元时,写出应缴纳个人工资、薪金所得税y(元)与月收入x(元)之间的关系式.
(2)某人月收入为4160元,他应缴纳个人工资、薪金所得税多少元?
(3)如果某人本月应缴纳个人工资、薪金所得税19.2元,那么此人本月工资、薪金收入是多少元?
四、课堂小结
这节课我们学习了一类很有用的函数-一次函数,只要解析式可以表示成y kx b
b时的特(,k b为常数,k≠0)的形式的函数则称为一次函数.正比例函数是一次函数当0
殊情形.
五、布置作业
习题6.2。