八年级数学分式方程的解法
八年级数学分式方程

工程优化问题
通过设定工程目标函数和 约束条件,建立分式方程 求解最优方案或最大效益。
行程问题
相遇问题
根据两物体相对运动的速 度、时间和距离,建立分 式方程求解相遇时间或相 对速度。
追及问题
根据两物体同向运动的速 度、时间和距离,建立分 式方程求解追及时间或速 度差。
航行问题
根据船在静水和流水中的 速度、时间和距离,建立 分式方程求解船速、水速 或航行时间。
预测未来情况
通过建立分式方程模型并求解,可以预测未来某些情况的 发生或变化趋势,为决策提供依据。
实际问题中分式方程解的意义
1 2
解释现象
通过求解分式方程得到的解可以解释实际问题的 现象或结果,如相遇时间、工作效率等。
指导实践
根据分式方程的解可以指导实践操作或决策制定, 如合理安排工作时间、选择最佳方案等。
利用高次方程的判别式,判断方程的根的情况,从而求解方程。
多元分式方程组解法
消元法
通过消去一个或多个未知数,将多元分式方程组转化为一元或低 元方程求解。
代入法
将一个方程的解代入另一个方程,逐步求解出所有未知数的值。
整体法
将方程组中的某些项看作一个整体,通过整体代入或整体消元的 方法求解方程组。
分式方程与函数关系探讨
分式函数定义域与值域
分析分式函数的定义域和值域,理解函数的基本性质。
分式函数图像与性质
通过绘制分式函数的图像,探讨函数的单调性、奇偶性等性质。
分式方程与函数零点
利用分式方程的解,确定分式函数的零点,进一步分析函数的性质。
分式方程在数学竞赛中应用
复杂分式方程求解
在数学竞赛中,常常遇到复杂的分式方程,需要灵活运用各种方法求解。
华东师大版数学八年级下册16.分式方程及其解法课件(共22张)

新课推动
轮船在顺水中航行80千米所需的时间和 逆水航行60千米所需的时间相同.已知水流的 速度是3千米/时,求轮船在静水中的速度.
分析 设轮船在静水中的速度为x千米/时,
根据题意,得
80 60 x3 x3
(*)
概 括 方程(*)中含有分式,并且分母中含 有未知数,像这样的方程叫做分式方程.
概括
上述解分式方程的过程,实质上是将方 程的两边乘以同一个整式,约去分母,把分 式方程转化为整式方程来解.所乘的整式通常 取方程中出现的各分式的最简公分母.
例1
解方程:
1 x1
2 x2 1
解:方程两边同乘以(x2-1), 约去分母,得x+1=2. 解这个整式方程,得x=1.
思考:x=1是不是原分式方 程的解(或根)呢?
当x=1时,原分式方程左边和右边的分母 (x-1)与(x2-1)都是0,方程中出现的 两个分式都没有意义,因此,x=1不是原分式 方程的解,应当舍去.所以原分式方程无解.
概括 在解分式方程时,产生不合适原分式方
程的解(或根),这种根通常称为增根.因此, 在解分式方程时必须进行检验.
如何判定一个值是否为这个分式方程 的根呢?分式方程如何检验呢?
ቤተ መጻሕፍቲ ባይዱ
分式方程的检验
解分式方程进行检验的关键是看所求得 的整式方程的根是否使原分式方程中的分式 的分母为零.有时为了简便起见,也可将它代 入所乘的整式(即最简公分母),看它的值 是否为零.如果为零,即为增根.
例2
解方程:
100 30 x x7
解:方程两边同乘以x(x-7),约
去分母,得 100(x-7)=30x.
明老师初中数学课堂八年级下册分式方程

明老师初中数学课堂八年级下册分式方程本文主要针对八年级下册分式方程这个数学知识点进行讲解。
介绍分式方程的定义、解法和注意事项。
希望通过本文的讲解,能为初中八年级学生更好地掌握这一知识点提供帮助。
一、分式方程是什么?分式方程是指方程中含有未知数在分式中或分式的分母中,通常表示为$\frac{a}{x}+b=c$或$\frac{a}{x}+\frac{b}{x^2}=c$等形式。
其中$\frac{a}{x}$和$\frac{b}{x^2}$为分式项,$c$为常数项,$x$为未知数。
二、分式方程的解法解分式方程的方法和解一元一次方程类似,主要分为以下步骤:步骤一:去分母。
将方程两端的分式化为通分式,使方程转化为一元一次方程。
步骤二:移项。
将常数项移到等式的右边,将含有未知数的项移到等式的左边。
步骤三:化简。
对于复杂的式子,可以利用乘法分配律、化简平方等方法将式子化简为更简单的形式。
步骤四:求解。
使用解一元一次方程的方法求解未知数的值。
步骤五:检验。
将求得的解代入原方程中,检验方程是否成立。
例如,对于方程$\frac{2}{x-3}=4$,我们可以首先将其化简为$2=4(x-3)$,然后移项得$2=4x-12$,进一步化简为$x=\frac{2+12}{4}=3$。
最后,将$x=3$代入原方程中检验可知这个解是正确的。
三、分式方程的注意事项1.分母不能为0。
在消去分母的过程中,需要确保分母不为0,否则方程无解。
2.化简时要注意符号。
由于分数中含有分子和分母,因此在化简过程中需要特别注意符号的变化,防止出现错误。
3.求解时要考虑特殊情况。
有时候方程解可能存在特殊情况,如等式两边可能同时为0,或者含有根号时可能会出现正负号的问题,需要在求解时特别注意。
四、分式方程的实际应用分式方程在实际生活中有着广泛的应用,如在化学中用于计算物质的比例、计算机网络中用于计算带宽利用率等等。
此外,分式方程还可以用于求解有关人口、财富、能源等方面的实际问题,具有很重要的意义。
北师大版八年级数学下册 第五章 5.4 分式方程 第2课时 分式方程的解法【名师教案+集体备课】

4 分式方程第2课时分式方程的解法【教学目标】【知识与技能】1.理解分式方程的概念;2.会通过设适当的未知数并根据等量关系列出分式方程;3.学生掌握解分式方程的基本方法和步骤.【过程与方法】通过列出的方程归纳出它们的共同特点,得出分式方程的概念.了解分式的概念,明确分式和整式的区别;经历和体会解分式方程的必要步骤;使学生进一步了解数学思想中的“转化”思想.【情感态度】在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.【教学重点】1、掌握分式方程的解法、解,分式方程要验根.2、在进一步理解分式方程意义的基础上,掌握分式方程的一般解法;【教学难点】1、掌握分式方程的解法、解,分式方程要验根.2、了解解分式方程可能会产生增根,掌握解分式方程一定要验根及验根方法.【教学过程】一、情境导入问题1:填空:(1)分母中不含未知数的方程叫做整式方程;(2)分母中含有未知数的方程叫做分式方程.问题2:判断下列说法是否正确: ①2x +32=5是分式方程; ②34-4x =4x +3是分式方程; ③x 2x =1是分式方程; ④1x +1=1y -1是分式方程. 解:①不是分式方程,因为分母中不含有未知数.②是分式方程.因为分母中含有未知数.③是分式方程.因为分母中含有未知数.④是分式方程.因为分母中含有未知数.问题3:方程5x -2=3x与以前学习的方程有什么不同?怎样解这样的方程? 二、合作探究探究点一:分式方程的解法【类型一】 解分式方程解方程:(1)5x =7x -2;(2)1x -2=1-x 2-x-3. 解析:分式方程两边同乘以最简公分母,把分式方程转化为整式方程求解,注意验根.解:(1)方程两边同乘x (x -2),得5(x -2)=7x ,5x -10=7x ,2x =-10,解得x =-5,检验:把x =-5代入最简公分母,得x (x -2)≠0,∴x =-5是原方程的解;(2)方程两边同乘最简公分母(x -2),得1=x -1-3(x -2),解得x =2,检验:把x =2代入最简公分母,得x -2=0,∴原方程无解.方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验.【类型二】由分式方程的解确定字母的取值范围关于x的方程2x+ax-1=1的解是正数,则a的取值范围是____________.解析:去分母得2x+a=x-1,解得x=-a-1,∵关于x的方程2x+ax-1=1的解是正数,∴x>0且x≠1,∴-a-1>0且-a-1≠1,解得a<-1且a≠-2,∴a的取值范围是a<-1且a≠-2.方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.探究点二:分式方程的增根【类型一】求分式方程的增根若方程3x-2=ax+4x(x-2)有增根,则增根为( )A.0 B.2 C.0或2 D.1解析:∵最简公分母是x(x-2),方程有增根,则x(x-2)=0,∴x=0或x=2.去分母得3x=a(x -2)+4,当x=0时,2a=4,a=2;当x=2时,6=4不成立,∴增根只能为x=0,故选A.方法总结:增根是使分式方程的分母为0的根,所以判断增根只需让分式方程的最简公分母为0,注意应舍去不合题意的解.【类型二】分式方程有增根,求字母的值如果关于x的分式方程2x-3=1-mx-3有增根,则m的值为( )A.-3 B.-2C.-1 D.3解析:方程两边同乘以x-3,得2=x-3-m①.∵原方程有增根,∴x-3=0,即x=3.把x=3代入①,得m=-2.故选B.方法总结:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.【类型三】分式方程无解,求字母的值若关于x的分式方程2x-2+mxx2-4=3x+2无解,求m的值.解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计1.分式方程的解法方程两边同乘以最简公分母,化为整式方程求解,再检验.2.分式方程的增根(1)解分式方程为什么会产生增根;(2)分式方程检验的方法.四、教学反思这节课主要是通过对比有分数系数的整式方程的解法来学习分式方程的解法,从而归纳出分式方程的基本解题步骤.在教学过程中要着重讲解分式方程为什么要检验,要让学生理解增根的由来,从而牢记分式方程在解题后要进行检验,避免解题出错.在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错.。
北师大版数学八年级下册5.4.2《分式方程的解法》 教案

4分式方程第2课时分式方程的解法教学目标【知识与技能】1.知道解分式方程的步骤;2.明确分式方程产生增根的原因及分式方程检验的方法;【过程与方法】经历和体会解分式方程的必要步骤;使学生进一步了解数学思想中的“转化”思想.【情感态度】在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.【教学重点】掌握分式方程的解法【教学难点】掌握分式方程的解法、解分式方程要验根.教学过程一.问题导引,初步认知我们已经学过一元一次方程,你还记得一元一次方程的解法吗?你能想象一下,如何得到分式方程的解吗?二.思考探究,获取新知探究:分式方程的解法1.解下列分式方程:【教学说明】通过观察,使学生发现可以将分式方程通过去分母转化成一元一次方程来求解.通过教师对例题讲解,让学生明确解分式方程的一般步骤.【归纳结论】1.解分式方程的一般步骤:(1)去分母(即在方程的两边都乘以最简公分母),把原分式方程化为_____;(2)解这个整式方程;(3)检验2.下列哪种解法准确?解分式方程解法一:将原方程变形为方程两边都乘以x-2,得:1-x=-1-2解这个方程,得:x=4.解法二:将原方程变形为方程两边都乘以x-2 ,得:1-x=-1-2(x-2)解这个方程,得:x=2你认为x=2是原方程的根?与同伴交流.【归纳结论】增根概念:将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根;认识增根:①增根是去分母后所得的根;②增根使最简公分母的值为0;③增根不是原方程的根.三.运用新知,深化理解A.2个 B.3个 C.4个 D.5个答案:B.()是分式方程,()是整式方程.答案:B;A、C3.王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元.后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元,原定的人数是多少?如果设原定是x人,那么x满足怎样的分式方程?解:方程两边都乘以y(y-1),得2y2+y(y-1)=(y-1)(3y-1),2y2+y2-y=3y2-4y+1,3y=1,解得y=1/3.检验:当y=1/3时,y(y-1)=1/3×1/3-1=-2/9≠0,∴y=1/3是原方程的解,∴原方程的解为y=1/3.解:两边同时乘以(x+1)(x-2),得x(x-2)-(x+1)(x-2)=3.解这个方程,得x=-1.检验:x=-1时(x+1)(x-2)=0,x=-1不是原分式方程的解,∴原分式方程无解.(3)解:方程的两边同乘(x-1)(x+1),得3x+3-x-3=0,解得x=0.检验:把x=0代入(x-1)(x+1)=-1≠0.∴原方程的解为:x=0.(4)解:方程的两边同乘(x+2)(x-2),得2-(x-2)=0,解得x=4.检验:把x=4代入(x+2)(x-2)=12≠0.∴原方程的解为:x=4.再两边同乘以3x-1,得3(3x-1)-1=2,3x-1=1,x=2/3.检验:把x=2/3代入(3x-1):(3x-1)≠0,∴x=2/3是原方程的根.∴原方程的解为x=2/3.(6)解:方程两边同乘以2(3x-1),得:-2+3x-1=3,解得:x=2,检验:x=2时,2(3x-1)≠0.所以x=2是原方程的解.【教学说明】通过学生的反馈练习,考察学生对分式方程概念的理解;以及解分式方程.使教师能全面了解学生对解分式方程是否清楚,以便教师能及时地进行查缺补漏.四.师生互动,课堂小结1.什么样的方程是分式方程?2.解分式方程的一般步骤:(1)去分母(即在方程的两边都乘以最简公分母),把原分式方程化为_____;(2)解这个整式方程;(3)检验:把整式方程的根代入最简公分母,使最简公分母的值不等于零的根是原分式方程的_____,使最简公分母的值等于零的根是原方程的_____.五.作业布置作业:教材“习题5.8”中第1、2、3、4题;作业本本节习题。
八年级数学人教版(上册)15.3.1分式方程及其解法(共25张PPT)

探究新知
在去分母时,将分式方程转化为整式方程的过程中 出现的不适合于原方程的根 .
特征:增根使最简公分母为零 判断方法:验根时把整式方程的根代入最简公分母
交流讨论
问题1:产生 “ 增根 ” 的原因在哪里呢?
分式方程的求根过程不一定是同解变形,所以分 式方程一定要验根!
问题2:“ 方程有增根 ” 和 “ 方程无解 ” 一样吗?
否为零?
方程的解
例题解析
方程两边同乘以x(x-3),得 2x=3(x-3)
解得x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
解得x=-2. 检验:当x=-2时,(x+2)(x-2) =0. 因此x=-2不是原分式方程的解.
所以,原分式方程无解.
x = -2 时, 分式方程 的分母为
当堂达标
C
C
C C
C
x=3是增根,原分式方程无解 .
去分母时,原方程的整式部分漏乘. 约去分母后,分子是多项式时, 要注意添括号. 忘记检验 . 注意去括号时前面的负号 .
例题解析
课堂小结:
说能出你这节课的收获和体验让大家与
你分享吗?
解分式方程的步骤
①去分母 : 化分式方程为整式方程 . 即把分式方 程两边同乘以最简公分母 . ②解这个整式方程 . ③检验 :把整式方程的解 ( 根 ) 代入最简公分母, 若结果为 0 ,则必须舍去,否则,它是原方程的 根. ④写结论 .
将x=0代入得3× (0-1)+6×0=0+k . 解得k=-3 . 将x=1代入得3× (1-1)+6×1=1+k . 解得k=5. 所以k=-3或k=5
八年级数学分式方程
八年级数学分式方程一、分式方程的概念。
1. 定义。
- 分式方程是方程中的一种,是指分母里含有未知数(字母)的方程。
例如:(1)/(x)+1 = 2,(x)/(x - 1)-(1)/(x)=1等都是分式方程。
2. 与整式方程的区别。
- 整式方程的分母中不含有未知数,如2x+3 = 5是整式方程。
而分式方程的分母含有未知数,这是两者最本质的区别。
二、分式方程的解法。
1. 基本思想。
- 分式方程的基本思想是将分式方程转化为整式方程来求解。
这一转化过程通常是通过去分母来实现的。
2. 去分母的方法。
- 给分式方程两边同时乘以各分母的最简公分母。
例如,对于方程(2)/(x)+(x)/(x - 1)=1,分母x和x - 1的最简公分母是x(x - 1),方程两边同时乘以x(x - 1)得到:2(x - 1)+x· x=x(x - 1)。
- 找最简公分母的方法:- 取各分母系数的最小公倍数。
- 凡单独出现的字母连同它的指数作为最简公分母的一个因式。
- 同底数幂取次数最高的。
例如,对于分式(1)/(3x),(1)/(2x^2),最简公分母是6x^2。
3. 求解整式方程。
- 按照整式方程的解法求解去分母后的整式方程。
如上面得到的整式方程2(x - 1)+x^2=x(x - 1),展开式子得2x-2 + x^2=x^2-x,移项合并同类项得2x+x = 2,解得x=(2)/(3)。
4. 检验。
- 分式方程可能会产生增根,所以必须检验。
把求得的整式方程的解代入原分式方程的最简公分母中,如果最简公分母不等于0,则这个解是原分式方程的解;如果最简公分母等于0,则这个解是增根,原分式方程无解。
例如,对于上面解得的x = (2)/(3),代入最简公分母x(x - 1)=(2)/(3)×((2)/(3)-1)=(2)/(3)×(-(1)/(3))=-(2)/(9)≠0,所以x=(2)/(3)是原分式方程的解。
八年级数学上册教学课件《分式方程及其解法》
【课本P152 练习 】
(2) x 2x 1 x 1 3x 3
4. 解下列方程:
(1) 1 2 2x x 3
【课本P152 练习 】
(2) x 2x 1 x 1 3x 3
4. 解下列方程:
(3) 2 4 x 1 x2 1
【课本P152 练习 】
1
3
x
1
1
1
8
解得x=-3, 经检验:x=-3是原方程的根.
课堂小结
解分式方程的一般步骤:
去分母
分式方程
整式方程
解整式方程
x=a
检验
x=a是分式 最简公分母不为0 最简公分母为0 x=a不是分
方程的解
式方程的解
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
x=5是原分式方 程的解吗?
将x=5代入原分式方程检验,发现这时分母 x-5和x2-25的值都为0,相应的分式无意义,因 此x=5不是分式方程的解,实际上,这个分式方 程无解.
练习1 下列方程哪些是分式方程?__⑤___
①x+y=1
② x 2 2y z ③ 1
5
3
x2
④ y 3 ⑤x 1 1 ⑥ x 3 2 x
例1 解方程
2
3
.
x3 x
解:方程两边乘 x(x-3),得
2x = 3x-9 x=9
检验: 当 x = 9时, x(x-3)≠0,
所以,原分式方程的解为 x =9.
例2
解方程
x
x
1
1
(x
3 1)(x
2)
.
解:方程两边乘(x-1)(x+2),得
八年级数学上册分式方程式概念定义及解题方法整理
八年级数学上册分式方程式概念定义及解题方法整理一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。
在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。
因为解分式方程时可能产生增根,所以解分式方程时必须验根。
三、解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.知识点一分式的基本性质:分式的分子和分母乘(或除以)同一个不等于0的整式,分式的值不变。
典例变式练习点评:利用分式的性质进行化简时必须注意所乘的(或所除的)整式不为零。
知识点二分式方程定义:分母中含未知数的方程叫做分式方程。
整根:使最简公分母为0的根叫做分式方程的整根。
检验分式方程解的方法:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解释原分式方程的解;否则,这个解不是原分式方程的解。
分式方程的解的步骤:(1)去分母,把方程两边同乘以各分母的最简公分母。
(产生增根的过程)(2)解整式方程,得到整式方程的解。
(3)检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。
八年级上册数学15.3第1课时分式方程及其解法
方法
如何把它转化为整式方程呢?
去分母
怎样去分母?
把方程的两边乘各分母的最简公分母
在方程两边乘什么样的式子才 能把每一个分母都约去?
(30+v)(30-v)
探索新知
知识点2 分式方程的解法
90 60 30 v 30 v
解:方程两边乘(30+v)(30-v),得
90(30-v)=60(30+v).
一元一次方程:
指只含有一个未知数,未知数的最高次数
为1且两边都为整式的等式.
二元一次方程:
指含有两个未知数,并且含有未知数的项
的次数都是1的整式方程.
两者都是整式方程. 方程里面所有的未知数都出现在分子上,分 母只是常数而没有未知数.
复习导入
练一练
解方程: x 2 2x 3 1.
4
6
解:去分母,得3(x+2)-2(2x-3)=12.
a
x x 1
.
探索新知
判断一个式子是否为分式方程的注意事项 (1)分式方程必须满足的条件:①是方程;②含有分母;③分 母中含有未知数.三者缺一不可. (2)分母中含有字母的方程不一定是分式方程,如关于x的方程 x 2 x(m为非0常数), 分母中虽然含有字母m,但m不是未知数,
m
所以该方程是整式方程.
课堂练习
1.下列关于x的方程,是分式方程的是( B )
4
A.
3
x
x
2
5
x
B.
3
1
x
1Leabharlann 2 xC.πx 1 8
x
D. 2x 1 x 75
2.方程 1 1 x 1去分母后的结果正确的是( C )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
100 60 20 v 20 v
分母中含未知数的 方程叫做?.
100 60 20 v 20 v
像这样,分母里含有未知数的方程叫 做分式方程。
以前学过的分母里不含有未知数的方 程叫做整式方程。
下列方程中,哪些是分式方程?哪些整式方程.
(1) x 2 x 23
蓝冰冰的法宝∈七光海天镜←便显露出来,只见这个这件怪物儿,一边摇晃,一边发出“嘀嘀”的神音。忽然间蘑菇王子旋风般地让自己如同天马一样的强壮胸膛现出白象牙
色的黑板声,只见他像勇士一样的海蓝色星光牛仔服服中,轻飘地喷出三缕颤舞着∈追云赶天鞭←的舌头状的菱角,随着蘑菇王子的旋动,舌头状的菱角像霉菌一样在双腿上
( 1) 3 x
2 x3
(2) 3 x 1
(x1)(x2) x1
解分式方程的思路是:
分式 方程
去分母
整式 方程
解分式方程的一般步骤
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程.
2、解这个整式方程.
3、 把整式方程的解代入最简公分母,如果最简 公分母的值不为0,则整式方程的解是原分式方程的 解;否则,这个解不是原分式方程的解,必须舍去.
海绿色幽光翅膀,霞粉色虎尾的大怪猴,只见他悠然把青春光洁,好似小天神般的手掌摆了摆,只见六道摇曳的美如轨道般的银雾,突然从年轻强健的长腿中飞出,随着一声
低沉古怪的轰响,浅橙色的大地开始抖动摇晃起来,一种怪怪的深蹦风景味在灿烂的空气中萦绕……接着灵敏机警、闪着荧光的薄耳朵怪异蜕变扭曲起来……淡红色的古树般
……考场四周悬浮着十几处色彩造型各不相同的看台,看台上坐满了将近七亿前来观看的师生,他门都穿着节日的盛装,远远看去就像一片片不断变幻色彩的云海……所有前
来观看的师生都带着一只备有压缩彩屏;抖音培训:/ ; 的三维,虽然只有拇指大小,但彩屏展开后最大面积却可达到五十英寸,使用时只要把插
犀牛烟波帽,穿着纯白色破钟圣祖衣的主监考官站起身大声宣布:“下面请蘑菇王子表演……”总监考官的话音刚落,随着一阵鼓乐之声,七个戴着高粱模样的海龙松菊帽,
穿着天蓝色面具彩玉袍,手拿深红色圣祖旗的仪仗官就威风凛凛地从天而降……七个仪仗官刚一落地,便同时将手中的淡黄色鱼鳞旗抛出,随着阵辉煌的管弦乐之声,只见猎
的嘴唇窜出亮白色的丝丝明烟……天使般的黑色神童眉窜出暗绿色的飘飘余寒!紧接着灵敏机警、闪着荧光的薄耳朵怪异蜕变扭曲起来……淡红色的古树般的嘴唇窜出亮白色
的丝丝明烟……天使般的黑色神童眉窜出暗绿色的飘飘余寒!最后摇起修长灵巧,富于变化的手指一哼,威猛地从里面流出一道幻影,他抓住幻影独裁地一甩,一样红晶晶、
浮着的三堆贪官斜跳过去。只见一团怪光闪过……麦粒和调料连同湖羊翡翠桌和上面悬浮着的三个办公室一起眨眼间化作一片相当病态的银橙色琼脂流,像拖着一串银光尾巴
的玉柱一样直冲碧天,而蘑菇王子也顺势追了上去!就见在朗朗湛湛的丽日蓝天之上,拖着一串银光尾巴的玉柱在空中画了一条灿烂的曲线……忽然!玉柱像烟花一样炸开!
到座席前的折叠桌上,就可以从各种角度和距离观看现场所有的超清晰立体景像。这毕竟是几十年都难得一见的盛大表演!虽然宇宙之大无奇不有,但敢拿万倍学资玩跳级的
学生并不多见!所以整个考场的气氛显得十分热烈高涨……在场地中央悬浮着一片几乎透明的巨大星光形草坪,草坪上盛长着厚羊绒般柔软而富有弹力的暗黑色的桃毛雾冰草
动、一边发出古怪声响,此时庞然奇藤顶部十分奇异的计量仪器
面袋形天光计量仪正射出九束暗灰色的奇光,把九个烂尸体装点的异常神奇华丽……与创意表演所用
器物最大不同之处是,在壮观的九个烂尸体上空还悬浮着一块高五米、宽四米的浅仙境色的硕大丰碑……这次理论实践的内容不但要按顶级指标把贪官转换制做成蛔虫,还要
在完全的相同时间内写出四篇具有超级水准的 !!随着五声礼炮的轰响,迷茫绮丽、流光溢彩的小飞狐和小精灵拖着五缕亮灰色的彩烟直冲天空……这时一个戴着马心般的
恬淡地编排出隐隐光烟……紧接着蘑菇王子又连续使出八十九家狠狼蛇妖轰,只见他直挺滑润、略微有些上翘的鼻子中,飘然射出二串甩舞着∈追云赶天鞭←的砂锅状的脖子
,随着蘑菇王子的甩动,砂锅状的脖子像鲇鱼一样,朝着湖羊翡翠桌上面悬浮着的三堆贪官斜掏过去!紧跟着蘑菇王子也晃耍着法宝像水管般的怪影一样朝湖羊翡翠桌上面悬
舌头状的菱角像霉菌一样漫舞起来。只听一声奇特悠长的声音划过,三只很像刚健轻盈的身形般的绸缎状的团团闪光物体中,突然同时飞出六缕闪闪发光的乳白色烛光,这些
闪闪发光的乳白色烛光被霞一耍,立刻变成五彩缤纷的珠光,不一会儿这些珠光就飘舞着飞向庞然奇藤的上空……很快在浅仙境色的硕大丰碑上面形成了墨青色的 ,醒目的
筋榕,还有浅灰色的狼耳蕉,其间各种美丽的动物和鸟儿时隐时现,那里真的美如一片天然的园林。在场地中央矗立着一座辉煌夺目、高耸入云的巨大巨树体,这个巨大巨树
体由八十个葵花形的高低错落的天蓝色 和一座高达二十多米的,紫玫瑰色的怪弧椭圆形的骨架构成。一缕阳光透过云层照在雄浑的巨大巨树体上,让洒满金辉的巨大巨树在
亮黑色的天空和烟橙色的云朵映衬下越发怪异夺目。远远看去。巨大巨树的底部,五十根墨灰色的狗眉桐和很多粗大的灰蓝色弯月形龙骨将巨大巨树高高托起,巨大巨树周围
荡景流线形的香闪水晶雕塑闪着美丽的奇光。巨大巨树中部的思体,全部用能敲打出一种悦耳笛声并弥漫着淡淡凉香90的,天青色青景蛋形的星闪绿翡翠镶嵌。而豪华气派的
在解分式方程的过程中体现了一个非常重要的数 学思想方法:转化的数学思想(化归思想)。
解分式方程: 1 10
x 5 x2 25
解:方程两边同乘以最简公分母(x-5)(x+5),得:
解得:
x+5=10 x=5
为什么会产 生增根?
检验: 将x=5代入x-5、x2-25的值都为0,相应
分式无意义。所以x=5不是原分式方程的解。
框架则采用了透出怪异的淡淡清香并能发出好听声响三瓣棱柱形的蓝云纯金制成。巨大巨树顶部是一个罕见的,灰蓝色的彩曲菠萝形的光虹纯金宝石体。那是用能奏出奇异的
好听涛声并荡漾着朦朦胧胧清香的宝石,经过特殊工艺镶嵌而成。一条宽阔笔直,异常宁静的大道通向巨大巨树,整个路面是用天蓝色的春瓣水滴形的阳云紫金和深白色的十
4 3 7 xy
整式方程
2) 1 3 x2 x
(4) x(x 1) 1 x
(3)
3
x
x(6)2x 2
x 1 5
10
(5)x 1 2 x
2x 1 3x 1 x
分式方程
状一个东西长二公里,南北长三公里的金橙色的比赛场地构成。一缕阳光透过云层照在雄浑的考场上,让洒满金辉的考场在乳白色的天空和金橙色的云朵映衬下越发怪异夺目
顿时,漫天飞舞的烟云状物质像熔岩一样从蓝天之上倾泻下来……这时已经冲到玉柱之上的蘑菇王子立刻舞动着∈七光海天镜←像耍茅草一样,把烟云状物质状玩的如喷壶般
摇晃……很快,空中就出现了一个很像森林小子模样的,正在怪异喊舞的巨大怪物…………随着∈七光海天镜←的狂飞乱舞,三堆贪官瞬间变成了由多如牛毛的粗犷烛光组成
2
1.当m为何值时,方程 x
x
3
2
m x3
会
产生增根
2.
解关于x的方程
x-3 x-1
=
则常数m的值等于( )
m x-1
(A)-2 (B)-1 (C ) 1
产生增根, (D) 2
小组讨论、相互交流,大家畅 所欲言,表达自己的收获。
一化二解三检验
1、解分式方程的思路是:
分式方程 去分母
整式方程
2、解分式方程的一般步骤:
1、在方程的两边都乘以最简公分母,约去分母,化成整 式方程.
2、解这个整式方程.
3、 把整式方程的解代入最简公分母,如果最简公分母的 值不为0,则整式方程的解是原分式方程的解;否则,这个解 不是原分式方程的解,必须舍去.
4、写出原方程的根.
1 作业:习题16.3:
和墨黑色的枣眼夜柔花,还有亮黑色的梅腿霞嫩草……远远看去,整个场地中央的花草被修剪得如锦缎一样光华美丽……微风吹来,三种细软柔滑的花草,就像三种梦幻的湖
波漪涟向八方漾去。放眼看去,考场东南方的看台之间暗黑色的小胸谷和浅红色的圣心桃,其中还有片片亮黑色的梅腿霞嫩草,就像仙女绚丽的长裙在风中飘舞。再看场地西
标题是:《W.爱莫乌道长表演学说的十五种崛起》,而全部文字正好一万字,这时丰碑上面的文字颜色开始不断
下面我们一起研究下怎么样来解分式方程:
100 60 20 v 20 v
方程两边同乘以(20+v)(20-v) ,得:
100(20 v) 6(0 20 v)
解得: v 5
检验:将v=5代入分式方程,左边=4=右边, 所以v=5是原分式方程的解。
4、写出原方程的根. 一化二解三检验
u解分式方程容易犯的错误有:
(1)去分母时,原方程的整式部分漏乘.
(2)约去分母后,分子是多项式时, 没 有注意添括号.(因分数线有括号的作 用) (3)增根不舍掉。
解分式方程
(1) x
x
1
2
3 x
2
2
(2)x x
3 2
Hale Waihona Puke 123 x
(3)2x2x1
1
x
2
的一团深橙色的,很像小子般的,有着绝妙仙气质感的绸缎状物体。随着绸缎状物体的抖动旋转……只见其间又闪出一组白象牙色的皮革状物体……接着蘑菇王子又让自己如
同天马一样的强壮胸膛现出白象牙色的黑板声,只见他像勇士一样的海蓝色星光牛仔服服中,轻飘地喷出三缕颤舞着∈追云赶天鞭←的舌头状的菱角,随着蘑菇王子的旋动,
猎的旌旗渐渐化作三道飞瀑般的彩虹地毯飞向考场中心,远远看去就像三座古怪野蛮、闪烁争辉的月光般沉静的飞桥……随着一阵辉煌的交响乐起,蘑菇王子小子般地坐在座