圆周运动中的动力学问题

合集下载

曲线运动精讲精练:11.圆周运动的动力学问题

曲线运动精讲精练:11.圆周运动的动力学问题

圆周运动的动力学问题一、向心力1.作用效果:产生向心加速度,只改变速度的方向,不改变速度的大小.2.大小:F=m v2r=mω2r=m4π2rT2=mωv=4π2mf2r3.方向:总是沿半径方向指向圆心,时刻在改变,即向心力是一个变力.4.来源:向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供.二、圆周运动、向心运动和离心运动1.匀速圆周运动与非匀速圆周运动两种运动具体比较见下表:2.(1)本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向.(2)受力特点(如图所示)①当F=mrω2时,物体做匀速圆周运动;②当F=0时,物体沿切线方向飞出;③当F<mrω2时,物体逐渐远离圆心,F为实际提供的向心力.④当F>mrω2时,物体逐渐向圆心靠近,做向心运动.三、圆周运动动力学分析思路1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.2.向心力的确定(1)先确定圆周运动的轨道所在的平面,确定圆心的位置.(2)再分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力.3.解决动力学问题要注意三个方面的分析(1)几何关系的分析,目的是确定圆周运动的圆心、半径等.(2)运动分析,目的是表示出物体做圆周运动所需要的向心力.(3)受力分析,目的是利用力的合成与分解知识,表示出物体做圆周运动时,外界所提供的向心力.4.几种常见的向心力来源(1)飞机在水平面内的圆周运动,如图1所示;(2)火车转弯,如图2所示;(3)圆锥摆,如图3所示;。

圆周运动的动力学问题

圆周运动的动力学问题

尖子生补充19 圆周运动1.某电视台举办了一期群众娱乐节目,其中有一个环节是让群众演员站在一个旋转较快的大平台边缘上,向大平台圆心处的球筐内投篮球。

如果群众演员相对平台静止,则下面各俯视图中哪幅图中的篮球可能被投人球筐(图中箭头指向表示投篮方向)( )2.关于互成角度的两个分运动和它们的合运动的性质,下列说法中正确的是( ) A .两个匀速直线运动的合运动的轨迹必是直线B .两个匀变速直线运动的合运动的轨迹可能是曲线,也可能是直线。

C .一个匀变速直线运动和一个匀速直线运动的合运动的轨迹一定是直线D .两个初速度为零的匀变速直线运动的合运动的轨迹一定是直线3.如图所示,一个质量为m 的质点以速度A v 从A 点水平射出,以速度B v 经过B 点,不计空气阻力,则下列正确的说法是( )A .若质点以速度-B v 从B 点射出,它将刚好以速度-A v 经过A 点. B .若质点以大于B v 的速度从B 点射出,它也有可能经过A 点.C .若质点以小于B v 的速度从B 点射出,它也有可能经过A 点.D .若质点以速度-A v 从B 点射出时还受到竖直向上大小为2 mg 的恒力,则它将刚好以速度-B v 经过A 点.4.如图所示,细杆的一端与小球相连,可绕过O 点的水平轴自由转动,细杆长0.5m ,小球质量为3.0kg ,现给小球一初速度使它做圆周运动,若小球通过轨道最低点a 处的速度为v a=4m/s ,通过轨道最高点b 处的速度为v b =1m/s ,g 取10m/s 2,则杆对小球作用力的情况( )A .最高点b 处为拉力,大小为24NB .最高点b 处为支持力,大小为24NC .最低点a 处为压力,大小为126ND .最低点a 处为拉力,大小为126N 5.(2012年2月济南检测)如图所示,两个3/4竖直圆弧轨道固定在同一水平地面上,半径R 相同,左侧轨道由金属凹槽制成,右侧轨道由金属圆管制成,均可视为光滑。

2025版新教材高中物理第六章圆周运动2向心力专项2圆周运动的动力学问题课时作业新人教版必修第二册

2025版新教材高中物理第六章圆周运动2向心力专项2圆周运动的动力学问题课时作业新人教版必修第二册

专项2 圆周运动的动力学问题1.(多选)如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m ,运动半径为R ,角速度大小为ω,重力加速度为g ,则座舱 ( )A .运动的周期为2πRωB .线速度的大小为ωRC .受摩天轮作用力的大小始终为mgD .所受合力的大小始终为m ω2R2.[2024·福建福州四中高一下期中]将一平板折成如图所示形态,AB 部分水平且粗糙,BC 部分光滑且与水平方向成θ角,板绕竖直轴OO′匀速转动,放在AB 板E 处和放在BC 板F 处的物块均刚好不滑动,两物块到转动轴的距离相等,最大静摩擦力可认为等于滑动摩擦力,则物块与AB 板的动摩擦因数为 ( )A .μ=tan θB .μ=1tan θC .μ=sin θD .μ=cos θ3.如图,一同学表演荡秋千.已知秋千的两根绳长均为10 m ,该同学和秋千踏板的总质量约为50 kg .绳的质量忽视不计.当该同学荡到秋千支架的正下方时,速度大小为8 m /s ,此时每根绳子平均承受的拉力约为 ( )A .200 NB .400 NC .600 ND .800 N4.[2024·河南许昌高一下期中]如图所示,光滑水平面上,轻绳连接的甲、乙两小球始终在一条直线上绕共同的圆心O 做匀速圆周运动,甲、乙两球视为质点,轻绳的长度为L ,不计空气的阻力,下列说法正确的是( )A .若甲、乙两球质量之比为k∶1,则甲、乙两球的周期之比为k∶1B .若甲、乙两球质量之比为k∶1,则甲、乙两球到圆心O 的距离之比为k∶1C .若甲、乙两球质量之比为k∶1,相等时间内甲、乙两球走过的弧长之比为k∶1D .若甲、乙两球的质量分别为m 、2m ,甲球的角速度为ω,则轻绳的拉力为23mω2L5.[2024·四川南充高级中学高一下月考]如图所示,在粗糙水平木板上放一个物块,使木板和物块一起在竖直平面内沿逆时针方向做匀速圆周运动,ab 为水平直径,cd 为竖直直径,在运动中木板始终保持水平,物块相对于木板始终静止,则( )A .物块始终受到三个力作用B .物块受到的合外力始终指向圆心C .在c 、d 两个位置,物块所受支持力F N 相同,摩擦力F f 为零D .在a 、b 两个位置物块所受摩擦力供应向心力,支持力F N =06.[2024·安徽太和一中高一下期末](多选)如图所示,半径为R 的半球形容器固定在水平转台上,转台绕过容器球心O 的竖直轴线以角速度ω匀速转动.质量不同的小物块A 、B 随容器转动且相对器壁静止,A 、B 和球心O 点连线与竖直方向的夹角分别为α和β,α>β.则( )A .当B 所受摩擦力为零时,其角速度为ωB =gR cos βB .若A 不受摩擦力,则整体转动的角速度为ωA =gR cos αC .A 、B 受到的摩擦力可能同时为零D .若ω增大,A 、B 受到的摩擦力可能都增大专项2 圆周运动的动力学问题 [提实力]1.答案:BD解析:依据匀速圆周运动周期公式可得T =2πω,A 错误;依据v =ωr ,可知座舱的线速度大小v =ωR ,B 正确;当座舱在最低点时,座舱受到摩天轮的作用力大于重力,C 错误;座舱做匀速圆周运动,合力供应向心力,即F n =mω2R ,D 正确.2.答案:A解析:设两物体到竖直轴OO ′的距离均为r ,平板转动的角速度为ω,对BC 部分上的物块受力分析,重力和支持力的合力供应向心力,且合力方向水平向左,有m 1g tan θ=m 1ω2r ,对AB 部分上的物块受力分析,最大静摩擦力供应向心力,即μm 2g =m 2ω2r ,联立解得E 处的物块与AB 板的动摩擦因数μ=tan θ,故A 正确.3.答案:B解析:设当该同学荡到秋千支架正下方时每根绳子的拉力为F T ,对该同学和秋千踏板组成的整体进行受力分析,结合牛顿其次定律有F 合=2F T -mg =m v 2l,若重力加速度取10 m/s 2,则解得F T =410 N ,B 正确.4.答案:D解析:两球做匀速圆周运动,相等时间内转过的角度相等,则甲、乙的角速度和周期相同,两球的周期之比为1∶1,故A 错误;甲、乙两球的向心力都是由绳的拉力供应且大小相等,有m 甲ω2r 甲=m 乙ω2r 乙,结合m 甲m 乙=k 可得r 甲r 乙=1k,即甲、乙两球到圆心O 的距离之比为1∶k ,故B 错误;由v =ωr 可得v 甲=ωr 甲、v 乙=ωr 乙,则有v 甲v 乙=r 甲r 乙=1k,即相等时间内甲、乙走过的弧长之比为1∶k ,故C 错误;若甲、乙两球的角速度为ω,质量分别为m 、2m ,设轻绳的拉力为F ,由牛顿其次定律F =mω2r 甲、F =2mω2r 乙,可得r 甲=F mω2、r 乙=F2mω2,结合r 甲+r 乙=L ,综合解得F =23mω2L ,故D 正确.5.答案:B解析:物块在最高点受重力和支持力两个力作用,靠两个力的合力供应向心力,故A 错误;物块做匀速圆周运动,靠合外力供应向心力,可知合外力始终指向圆心,故B 正确;在最高点和最低点,摩擦力为零,靠重力和支持力的合力供应向心力,在位置c ,依据牛顿其次定律得mg -F N c =m v 2R ,所以F N c <mg ,在位置d ,依据牛顿其次定律得F N d -mg =m v 2R ,所以F N d >mg ,在a 、b 两位置,重力和支持力平衡,靠静摩擦力供应向心力,故C 、D 错误.6.答案:ABD解析:当B 所受摩擦力恰为零时,物块B 和球心连线与竖直方向的夹角为β,受力如图所示,依据牛顿其次定律得mg tan β=mrω2B ,r =R sin β,解得ωB = g R cos β,选项A 正确;同理可知,若A 不受摩擦力,则整体转动的角速度为ωA =gR cos α,选项B 正确;由A 、B 选项分析可知,ωA 和ωB 不行能相等,即A 、B 受到的摩擦力不行能同时为零,选项C 错误;若ω缓慢增大,则A 、B 受到的摩擦力方向可能会发生改变,当A 、B 所受的摩擦力都沿切线向下时,随着ω增加,摩擦力都会增大,选项D 正确.。

圆周运动的动力学问题

圆周运动的动力学问题

课题:圆周运动的动力学问题教学目1。

理解掌握向心力的来源及圆周运动的动力学问题是牛顿定律的具体应用2•掌握圆周运动的动力学问题处理方法。

重点、难点:圆周运动的动力学问题的处理方法教学方法:讲练结合 教学过程一、描述匀速圆周运动线速度方向改变快慢的物理量 42r方向:总是指向圆心,时刻在变化(a 是一个变加速度)注意:a 与r 是成正比还是反比,要看前提条件,若3相同,a 与r 成正比;若 v 相同,a 与r 成反比。

二、质点做匀速圆周运动的条件:质点具有初速度,并且始终受到跟线速度方 向垂直,时刻指向圆心,大小恒定的合外力(即向心力)的作用。

广2大小:F mJ m 2r mar向心力 方向:总是指向圆心,时刻在变化(F 是一个变力)-作用:产生向心加速度,只改变速度的方向,不改变速度的大小,因 此向心力对做圆周运动的物体不做功。

注意:(1)由于匀速圆周运动仅是速度方向变化而速度大小不变,故仅存在向 心加速度,因此向心力就是做匀速圆周运动的物体所受外力的合力。

(2) 一个物体不论在哪个平面内做匀速圆周运动,其合外力在任何时刻必指 向圆心,且大小不变。

(3) 向心力不是和重力、弹力、摩擦力相并列的一种类型的力,是根据力的效果命名的在分析做圆周运动的质点受力情况时, 切不可在物体的相互作用力 (重力、弹力摩擦力、万有引力)以外再添加一个向心力。

二、一般的圆周运动(非匀速圆周运动)速度的大小有变化,向心力和向心加速度的大小也随着变化,禾I 」用公式求圆周 上某一点或某一时刻的向心力和向心加速度的大小,必须用该点的瞬时速度 值。

重点分析:1、力的合力或分力都可以作为向心力,如下表所示:向心力不是一种特殊的 力,重力(引力)、弹力、摩擦力等每种力以及这些匀速圆周运动实例 T向心力厂 2y 大小:a — 2r 4 2] r向心加速度l2、Fn=man仅是牛顿第二定律在匀速圆周运动中的应用,也就是说,匀速圆周运动同样遵循牛顿运动定律,匀速圆周运动的瞬时特性可以与一个匀加速直线运动相对应,如下表所示:【例1】在一个水平转台上放有A、B、C三个物体,它们跟台面间的摩擦因数相同,A的质量为2m,B、C各为m, A、B离转轴均为r、c为2r,贝UA、若A、B、C三物体随转台一起转动未发生滑动,A、C的向心加速度比B大B、若A、B、C三物体随转台一起转动未发生滑动,B把受的摩擦力最小(2)C 、 当转台转速增加时,C 最先发生滑动D 、 当转台转速继续增加时,A 比B 先滑动【解析】A 、B 、C 三物体随转台一起转动时,它们的角速度都等于转台的角速 度,设为3,根据向心加速度的公式a 2r 已知r A =r B <r c ,把以三物体向心加 速度的大小关系为a A =a B <s c , A 错。

2024年高考物理一轮复习(新人教版) 第4章 第3讲 圆周运动

2024年高考物理一轮复习(新人教版) 第4章 第3讲 圆周运动

g lcos
θ=
gh,所以小球 A、B 的角速度相等,
线速度大小不相等,故 A 正确,B 错误;
对题图乙中 C、D 分析,设绳与竖直方向的夹角为 θ,小球的质量为 m,绳上拉力为 FT,则有 mgtan θ=man,FTcos θ=mg,得 an=gtan θ,FT =cmosgθ,所以小球 C、D 所需的向心加速度大小相等,小球 C、D 受 到绳的拉力大小也相等,故 C、D 正确.
当转速较大,FN指向转轴时, 则FTcos θ+FN′=mω′2r 即FN′=mω′2r-FTcos θ 因ω′>ω,根据牛顿第三定律可知,小球对杆的压力 不一定变大,C错误; 根据F合=mω2r可知,因角速度变大,则小球所受合外力变大,D正确.
例5 (2022·全国甲卷·14)北京2022年冬奥会首钢滑雪大跳台局部示意图
例7 如图所示,质量相等的甲、乙两个小球,在光滑玻璃漏斗内壁做 水平面内的匀速圆周运动,甲在乙的上方.则 A.球甲的角速度一定大于球乙的角速度
√B.球甲的线速度一定大于球乙的线速度
C.球甲的运动周期一定小于球乙的运动周期 D.甲对内壁的压力一定大于乙对内壁的压力
对小球受力分析,小球受到重力和支持力,它们的合力提供向心力,
√B.弹簧弹力的大小一定不变
C.小球对杆压力的大小一定变大
√D.小球所受合外力的大小一定变大
对小球受力分析,设弹簧弹力为FT,弹簧与水平方向 的夹角为θ, 则对小球竖直方向有 FTsin θ=mg,而 FT=kcMosPθ-l0 可知θ为定值,FT不变,则当转速增大后,小球的高度 不变,弹簧的弹力不变,A错误,B正确; 水平方向当转速较小,杆对小球的弹力FN背离转轴时,则FTcos θ- FN=mω2r 即FN=FTcos θ-mω2r

【高考物理】圆周运动的动力学临界问题

【高考物理】圆周运动的动力学临界问题

圆周运动的动力学临界问题圆周运动动力学的临界问题——比如小球过竖直平面内圆周轨道最高点、物块随水平桌面转动而不外滑等,很多同学在最初接触这个问题时,都感觉很难理解,各种情形下的结论也常常混淆,究其根本,问题还是出在对圆周运动的径向动力学的理解不深入,对圆周运动动力学临界问题的类型和分析技巧不熟悉。

一、圆周运动的动力学之供需关系问题圆周运动的临界问题的正确分析,需要从供需匹配角度深入理解圆周运动的径向动力学——供需匹配,物体就做圆周运动,供需不匹配,物体就要离开圆周轨道做离心、近心运动。

我们以一个具体的例子来说明这个问题。

如图2-12-1所示,光滑水平桌面上,用一根细绳拴着一个小球绕O 点做圆周运动,则由圆周运动动力学可知,小球所受径向合力,即绳中拉力满足rv m F 2=。

现若将绳从O 点完全松开,绳中张力变为0,即0=F ,则小球将由于惯性而沿原圆周轨道切线方向做直线运动离开圆周轨道;若并不是完全放松,而只是适当的减小一些绳中拉力,即rv m F 2<,则绳中拉力虽然没能够将小球拉回原来的圆周轨道,但也将小球的轨迹拉弯了——夹在沿切线的直线和原圆周轨道之间,做离心运动;若不仅没松开绳,而且还用更大的力拉绳,即rv m F 2>,则小球将被绳拉到原圆周轨道内侧来,做近心运动。

圆周运动径向动力学的供需匹配问题,可以从上述例子中总结出来:1、径向合力为零:0n =F ,物体沿切线方向做直线运动。

2、径向合力不为零:0n ≠F ,物体偏离切线方向向径向合力一侧做曲线运动。

(1)径向合力小于所需的向心力:r m rv m F 22n ω=<,物体相对原圆周轨道做离心运动;(2)径向合力等于所需的向心力:r m rv m F 22n ω==,物体沿原圆周轨道继续做圆周运动;(3)径向合力大于所需的向心力:r m rv m F 22n ω=>,物体相对原圆周轨道做近心运动。

进一步可以这样理解:物体由于惯性,总有沿着切线做离心运动的趋势;物体转动的线速度、角速度越大,离心运动的趋势越大,越有可能做离心运动;线速度、角速度越小,离心运动的趋势越小,越有可能被径向合力拉近圆心而做近心运动;只有径向合力正好等于所需向心力大小时,径向合力刚好抵消物体的离心运动趋势,物体才能沿固定半径轨道做圆周运动。

用相对速度解决圆心是动点的圆周运动的动力学问题

用相对速度解决圆心是动点的圆周运动的动力学问题

用相对速度解决圆心是动点的圆周运动的动力学问题
圆周运动是一种常见的运动,其显著的特点是物体沿着一定速度外发指向一个圆弧形路径旋转。

针对圆心是动点的圆周运动的动力学问题,可以采用相对速度的方法来解决。

首先,需要确定相对于重力中心的速度,也就是物体的两个运动状态:直线运动和圆心运动。

需要分析两个运动状态的不同来确定相对于重力中心的速度关系,而这可以采用力学推导确定,即利用它们之间的受力修正值来解决。

接下来,利用受力修正值对圆心运动进行改正,由此得出该系统的“重力中心差分”,即相对于重力中心的相对速度差异。

通过改变重力中心差分值,可以得出与其它物体的相对速度,最后得出圆心是动点的圆周运动的动力学解。

上述说明的方法是解决圆周运动的一种较为常见的方法,即采用相对速度的方法。

这种方法可以确定物体圆心运动的速度,使该运动的普遍性和可操作性得到了进一步的改善和提高,为解决圆周运动的动力学问题提供了一种新的方法。

专题四高一圆周运动的动力学问题

专题四高一圆周运动的动力学问题

专题四:圆周运动的动力学问题1.如图所示,置于圆形水平转台边缘的小物块随转台缓慢加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动。

现测得转台半径R=1。

0 m,离水平地面的高度H=0.8 m,物块平抛落地过程水平位移的大小s=0。

8 m.设物体所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2。

求:(1)物块做平抛运动的初速度大小v;(2)物块与转台间的动摩擦因数μ。

2.如图一辆质量为500kg的汽车静止在一座半径为50m的圆弧形拱桥顶部.(取g=10m/s2)⑴此时汽车对圆弧形拱桥的压力是多大?⑵如果汽车以6m/s的速度经过拱桥的顶部,则汽车对圆弧形拱桥的压力是多大?⑶汽车以多大速度通过拱桥的顶部时,汽车对圆弧形拱桥的压力恰好为零?3.如图所示,有一长为L的细线,细线的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在竖直面内做完整的圆周运动。

已知水平地面上的C点位于O点正下方,且到O点的距离为1.9L。

不计空气阻力。

求:(1)小球通过最高点A时的速度v A(2)小球通过最低点B时,细线对小球的拉力T(3)若小球运动到最低点B时细线恰好断裂,小球落地点到C点的距离。

4.绳子系着装有水的小水桶,在竖直平面内做圆周运动,水的质量m=0。

5Kg,绳长1m,若不考虑桶的尺寸,求:①桶通过最高点时至少要有多大的速度水才不会流出?②若水在最高点速度为V=5m/s,水对桶的压力是多少?(g=10m/s2)15.如图所示,半径为R,内径很小的光滑半圆管竖直放置。

两个质量均为m的小球a、b以不同的速度进入管内,a通过最高点A时,对管壁上部的压力为3mg,b通过最高点A时,对管壁下部的压力为0。

75mg,求a、b两球落地点间的距离。

6.如图,光滑水平桌面上,弹簧一端固定在O点,另一端系一质量的小球,使小球绕O 点做匀速圆周运动。

已知弹簧原长,劲度系数,小球做圆周运动的角速度,求小球做匀速圆周运动时弹簧长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动中的动力学问题
1、一细绳穿过一光滑的、不动的细管,两端分别拴着质量为m 和M 的小球A 、B 。

当小
球A 绕管子的中心轴转动时,A 球摆开某一角度,此时A 球到上管口的绳长为L ,如图
4-3-5所示。

细管的半径可以忽略。

试求:
(1)小球A 的速度和它所受的向心力;
(2)小球A 转动的周期。

2、(2012·黄山模拟)用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图4-3 -6所示,设小球在水平面内做匀速圆周运动的角速度为ω,细线的张力为FT ,则FT
随ω2变化的图像是图4-3-7中的( )
图4-3-7
3.如图4-3-8所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,
有两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,
则( )
A .球A 的线速度必定等于球
B 的线速度
B .球A 的角速度必定小于球B 的角速度
C .球A 的运动周期必定小于球B 的运动周期
D .球A 对筒壁的压力必定大于球B 对筒壁的压力
4(2012·重庆模拟)如图4-3-9所示,
半径为R 、内径很小的光滑半圆管竖直放
置,两个质量均为m 的小球A 、B 以不同的
速度进入管内。

A 通过最高点C 时,对管壁
上部压力为3mg ,B 通过最高点C 时,对管壁
下部压力为0.75mg ,求A 、B 两球落地点间的距离。

5、如图4-3-10所示,半径为R 的光滑圆形轨道竖直固定放置,小球m 在圆形轨道内侧做
圆周运动,对于半径R 不同的圆形轨道,小球m 通过轨道最高点时都恰好与轨道间没有
相互作用力。

下列说法中正确的是 ( )
①半径R 越大,小球通过轨道最高点时的速度越大
②半径R 越大,小球通过轨道最高点时的速度越小
③半径R 越大,小球通过轨道最低点时的角速度越大
④半径R 越大,小球通过轨道最低点时的角速度越小
A.①③
B.②④
C.①④
D.②③。

相关文档
最新文档