高中物理第二章第3节圆周运动的实例分析2汽车过桥(过山车)中动力学问题同步练习

合集下载

2020高中物理第二章第3节圆周运动的实例分析1火车、汽车拐弯的动力学问题学案

2020高中物理第二章第3节圆周运动的实例分析1火车、汽车拐弯的动力学问题学案

火车、汽车拐弯的动力学问题一、考点突破:二、重难点提示:重点:1. 掌握火车、汽车拐弯时的向心力来源;2. 会用圆周运动的规律解决实际问题。

难点:能从供需关系理解拐弯减速的原理。

一、火车转弯问题1. 火车在水平路基上的转弯(1)此时火车车轮受三个力:重力、支持力、外轨对轮缘的弹力。

(2)外轨对轮缘的弹力提供向心力。

(3)由于该弹力是由轮缘和外轨的挤压产生的,且由于火车质量很大,故轮缘和外轨间的相互作用力很大,易损害铁轨。

2. 实际弯道处的情况:外轨略高于内轨道(1)对火车进行受力分析:火车受铁轨支持力N的方向不再是竖直向上,而是斜向弯道的内侧,同时还有重力G。

(2)支持力与重力的合力水平指向内侧圆心,成为使火车转弯所需的向心力。

【规律总结】转弯处要选择内外轨适当的高度差,使转弯时所需的向心力完全由重力G和支持力N来提供,这样外轨就不受轮缘的挤压了。

3. 限定速度v分析:火车转弯时需要的向心力由火车重力和轨道对它的支持力的合力提供。

F 合=mgtan α=rv m 2①由于轨道平面和水平面的夹角很小,可以近似地认为 tan α≈sin α=h/d ② ②代入①得:mg dh=r v m 2d rgh v思考:在转弯处:(1)若列车行驶的速率等于规定速度,则两侧轨道是否受车轮对它的侧向压力。

(2)若列车行驶的速率大于规定速度,则___轨必受到车轮对它向___的压力(填“内”或“外”)。

(3)若列车行驶的速率小于规定速度,则___轨必受到车轮对它向___的压力(填“内”或“外”)。

二、汽车转弯中的动力学问题1. 水平路面上的转弯问题:摩擦力充当向心力 umg=mv 2/r 。

由于摩擦力较小,故要求的速度较小,否则就会出现离心现象,发生侧滑,出现危险。

2. 实际的弯道都是外高内底,以限定速度转弯,受力如图。

Mgtanθ=Mv2/r v=θtanrg当v >θtanrg,侧向下摩擦力的水平分力补充不足的合外力;v <θtanrg,侧向上摩擦力的水平分力抵消部分过剩的合外力;v =θtanrg,沿斜面方向的摩擦力为零,重力和支持力的合力提供向心力。

物理沪科版2学案:第2章2.3圆周运动的案例分析含解析

物理沪科版2学案:第2章2.3圆周运动的案例分析含解析

2.3圆周运动的案例分析问题导学一、竖直面内的圆周运动实例分析活动与探究11.汽车过拱形桥桥顶时,可认为是圆周运动模型,那么汽车过拱形桥顶时动力学特点有哪些?2.过山车能从高高的圆形轨道顶部轰然而过,车却掉不下来,试分析其原因。

迁移与应用1一辆质量m=2.0 t的小轿车,驶过半径R=90 m的一段圆弧形桥面,重力加速度取g=10 m/s2。

求:(1)若桥面为凹形,汽车以20 m/s的速度通过桥面最低点时,对桥面压力是多大?(2)若桥面为凸形,汽车以10 m/s的速度通过桥面最高点时,对桥面压力是多大?(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?汽车通过凹形桥面时,桥面提供指向圆心的支持力,可视为轻绳模型;汽车通过凸形桥面时,桥面提供指向远离圆心的支持力,可视为轻杆模型,分析竖直面内圆周运动时要先确定是绳模型还是杆模型。

轻绳模型、轻杆模型特点如下:(1)绳类:如图所示,细绳系的小球或在轨道内侧运动的小球,在最高点时的临界状态为只受重力,由mg=m错误!,得v=错误!。

在最高点时:①v=错误!时,拉力或压力为零。

②v>错误!时,小球受向下的拉力或压力,并且随速度的增大而增大.③v<错误!时,小球不能达到最高点。

(实际上球未到最高点就脱离了轨道)即绳类的临界速度为v临=错误!.(2)杆类:如图所示,在细轻杆上固定的小球或在管形轨道内运动的小球,由于杆和管能对小球产生向上的支持力,所以小球能在竖直平面内做圆周运动的条件是在最高点的速度大于或等于零,小球的受力情况为:①v=0时,小球受向上的支持力N=mg。

②0<v<gR时,小球受向上的支持力且随速度的增大而减小。

③v=错误!时,小球只受重力。

④v>错误!时,小球受向下的拉力或压力,并且随速度的增大而增大。

即杆类的临界速度为v临=0。

注意:(1)在最高点,轻绳模型中物体的最小速度是错误!,而杆模型中在最高点物体的最小速度是零。

(2)绳模型中物体在最高点只可能受竖直向下的弹力,杆模型中物体在最高点可能受竖直向下的弹力,也可能受竖直向上的弹力.二、火车转弯问题活动与探究2列车实际拐弯处的向心力怎样获得?其圆周运动的圆心在哪里?转弯速度与轨道侧压力有什么关系?迁移与应用2火车在某个弯道当按规定运行速度40 m/s转弯时,内、外轨对车轮皆无侧压力,若火车在该弯道实际运行速度为30 m/s,则下列说法中正确的是( )A.仅内轨对车轮有侧压力B.仅外轨对车轮有侧压力C.内、外轨对车轮都有侧压力D.内、外轨对车轮均无侧压力火车转弯问题的解题策略(1)对火车转弯问题一定要搞清合力的方向,指向圆心方向的合外力提供物体做圆周运动的向心力,方向指向水平面内的圆心。

物理同步优化指导(教科版必修2)课件:第2章 第3节 圆周运动的实例分析

物理同步优化指导(教科版必修2)课件:第2章 第3节 圆周运动的实例分析

探究三 离心运动
关于离心运动 (1)有人说,物体做离心运动是由于受到“离心力”的作 用,你认为正确吗? 提示:不正确.物体做离心运动是因为当物体所受的合外 力突然消失或不足以提供向心力时,物体做远离圆心的运动, 物体并不受“离心力”,其运动方向也不是沿半径方向向外运 动,而是沿切线方向或沿曲率半径逐渐增大的曲线远离圆心.
(2)当火车行驶速度 v>v0= gRtan θ时,重力和支持力的 合力提供向心力不足,此时外侧轨道对轮缘有向里的侧向压 力;当火车行驶速度 v<v0= gRtan θ时,重力和支持力的合 力提供向心力过大,此时内侧轨道对轮缘有向外的侧向压力.
【题后总结】 火车转弯问题的两点注意 (1)合外力的方向:火车转弯时,火车所受合外力沿水平方 向指向圆心,而不是沿轨道斜面向下.因为火车转弯的圆周平 面是水平面,不是斜面,所以火车的向心力即合外力应沿水平 面指向圆心. (2)规定速度的唯一性:火车轨道转弯处的规定速率一旦确 定则是唯一的,火车只有按规定的速率转弯,内外轨才不受火 车的挤压作用.速率过大时,由重力、支持力及外轨对轮缘的 挤压力的合力提供向心力;速率过小时,由重力、支持力及内 轨对轮缘的挤压力的合力提供向心力.
提示:(1)对小铁球受力分析如图,重力与拉 力的合力提供向心力,所以 F 向=mgtan α
(2)由 mgtan α=mω2lsin α
得 ω=
g lcos α
(3)由 mgtan α=mlsivn2 α
得:v=sin α
gl cos α
(4)T=2ωπ=2π
lcos α g
三、火车转弯
1.铁路的弯道 (1)运动特点:火车在弯道上运动时可看作圆周运动,因而 具有__向__心__加__速__度__,由于其质量巨大,需要很大的向心力. (2)轨道设计:转弯处外轨略_高___ (选填“高”或“低”)于 内 轨 , 火 车 转 弯 时 铁 轨 对 火 车 的 支 持 力 FN 的 方 向 是 _垂__直__轨__道__向__上___,它与重力的合力指向_圆___心__,为火车转弯提 供一部分向心力.

高中物理必修二第二章圆周运动2.3圆周运动的实例分析(共13张)

高中物理必修二第二章圆周运动2.3圆周运动的实例分析(共13张)
3、应用与防止
【典例1】 如图所示,质量m=2.0×104 kg的汽车 以不变的速率先后驶过凹形桥面和凸形桥面,两 桥面的圆弧半径均为20 m.如果桥面承受的压力 不得超过3.0×105 N,则: (1)汽车允许的最大速度是多少? (2)若以所求速度行驶,汽车对桥面的最小压力是 多少?(g取10 m/s2)
mg tan m 2r
αl
T
r l sin
解得:
g
l cos
O rF
mg
cos g l 2
夹角与角速度和绳长有关,而与所乘坐的人体重无关
三、火车转弯
轮缘
问题3:火车在转弯时,若内外轨是相平的,铁 轨如何对火车提供水平方向的向心力?
外轨对轮缘的弹力为火车转
FN
弯提供向心力
设计方案有什么不足呢?
G F弹
优化方案
FN
F
外侧
mg
θ
内侧
例题:某铁路转弯处的圆弧半径是300m,两铁轨 之间的距离是1.435m。若规定火车通过这个弯道 的速度是72km/h,则内外铁轨的高度差应该是多 大才能使火车转弯是内外铁轨均不受轮缘的挤压?
解:对火车分析
mg tan m v2
R
解得:tan v2
【典例2】 在公路转弯处,常采用外高内低的斜面 式弯道,这样可以使车辆经过弯道时不必大幅减速, 从而提高通行能力且节约燃料.若某处有这样的弯 道,其半径为r=100 m,路面倾角为θ ,且tan θ =0.4,取g=10 m/s2. (1)求汽车的最佳通过速度,即不出现侧向摩擦力 时的速度. (2)若弯道处侧向动摩擦因数μ =0.5,且最大静摩 擦力等于滑动摩擦力,求汽车的最大速度.
gR

2019-2020年教科版物理必修二讲义:第2章+3. 圆周运动的实例分析及答案

2019-2020年教科版物理必修二讲义:第2章+3. 圆周运动的实例分析及答案

3. 圆周运动的实例分析一、汽车过拱形桥 1.向心力来源:重力和桥面的支持力的合力提供向心力.2.动力学关系(1)如图甲所示,汽车在凸形桥的最高点时,满足的关系为mg -N =m v 2R ,N =mg -m v 2R ,由牛顿第三定律可知汽车对桥面的压力大小等于支持力,因此汽车在凸形桥上运动时,对桥的压力小于重力.当v =gR 时,其压力为零.甲 乙(2)如图乙所示,汽车经过凹形桥的最低点时,满足的关系为N -mg =m v 2R ,N=mg +m v 2R ,汽车对桥的压力大小N ′=N .汽车过凹形桥时,对桥的压力大于重力.二、“旋转秋千”“旋转秋千”运动可简化为圆锥摆模型,如图所示.1.向心力来源:重力和悬线的拉力的合力提供.2.动力学关系mg tan_α=mω2r ,又r =l sin_α,则ω=g l cos α,周期T =2πl cos αg所以cos α=g ω2l,由此可知,α与角速度ω和绳长l 有关,在绳长l 确定的情况下,角速度ω越大,α越大.三、火车转弯1.火车在弯道上的运动特点火车车轮上突出的轮缘在铁轨上起到限定方向的作用,如果火车在水平路基上转弯,外侧对轮缘的弹力就是火车转弯的向心力,轮缘与外轨间的作用力很大,铁轨与轮缘极易受损,故实际在转弯处,火车的外轨略高于内轨. 2.向心力的来源根据轨道半径和规定的行驶速度适当选择内外轨的高度差,使转弯时所需的向心力几乎完全由重力和支持力的合力来提供.四、离心运动1.定义:物体沿圆周运动的切线方向飞出或远离圆心的运动.2.原因:合外力提供的向心力消失或不足.3.离心机械:利用离心运动的机械. 4.应用:脱水筒、离心机.1.思考判断(正确的打“√”,错误的打“×”)(1)汽车驶过凸形桥最高点时,对桥的压力可能等于零.( ) (2)汽车驶过凹形桥低点时,对桥的压力一定大于重力. ( )(3)体重越大的人坐在秋千上旋转时,缆绳与中心轴的夹角越小.( )(4)火车转弯时的向心力是车轨与车轮间的挤压提供的. ( )(5)火车按规定的速率转弯时,内外轨都不受火车的挤压作用.( )(6)做离心运动的物体一定不受外力作用. ( )(7)做圆周运动的物体只有突然失去向心力时才做离心运动.( )【提示】 (1)√ (2)√ (3)× (4)× (5)√ (6)× (7)×2.如图所示,在某次军事演习中,一辆战车以恒定的速度在起伏不平的路面上行进,则战车对路面的压力最大和最小的位置分别是( )A .A 点,B 点B .B 点,C 点 C .B 点,A 点D .D 点,C 点C [战车在B 点时由F N -mg =m v 2R 知F N =mg +m v 2R ,则F N >mg ,故对路面的压力最大,在C 和A 点时由mg -F N =m v 2R 知F N =mg -m v 2R ,则F N <mg 且R C >R A ,故F N C >F N A ,故在A 点对路面压力最小,故选C.]3.如图所示,“旋转秋千”中的两个座椅A 、B 质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是( )A .A 的速度比B 的大B .A 与B 的向心加速度大小相等C.悬挂A、B的缆绳与竖直方向的夹角相等D.悬挂A的缆绳所受的拉力比悬挂B的小D[在转动过程中,A、B两座椅的角速度相等,但由于B座椅的半径比较大,故B座椅的速度比较大,向心加速度也比较大,A、B项错误;A、B两座椅所需向心力不等,而重力相同,故缆绳与竖直方向的夹角不等,C项错误;根据F=mω2r 判断A座椅的向心力较小,所受拉力也较小,D项正确.]4.(多选)公路急转弯处通常是交通事故多发地带.如图所示,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处()A.路面外侧高内侧低B.车速只要低于v c,车辆便会向内侧滑动C.车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v c的值变小AC[汽车转弯时,恰好没有向公路内外两侧滑动的趋势,说明公路外侧高一些,支持力的水平分力刚好提供向心力,此时汽车不受静摩擦力的作用,与路面是否结冰无关,故选项A正确,选项D错误.当v<v c时,支持力的水平分力大于所需向心力,汽车有向内侧滑动的趋势,摩擦力向外侧;当v>v c时,支持力的水平分力小于所需向心力,汽车有向外侧滑动的趋势,在摩擦力大于最大静摩擦力前不会侧滑,故选项B错误,选项C正确.]1.轻绳模型如图所示,轻绳系的小球或在轨道内侧运动的小球,在最高点时的临界状态为只受重力,由mg=m v2r,得v=gr.即绳类模型中小球在最高点的临界速度为v临=gr.在最高点时:(1)v=gr时,拉力或压力为零.(2)v>gr时,物体受向下的拉力或压力,并且随速度的增大而增大.(3)v<gr时,物体不能达到最高点.(实际上球未到最高点就脱离了轨道)2.轻杆模型如图所示,在细轻杆上固定的小球或在管形轨道内运动的小球,由于杆和管能对小球产生向上的支持力,所以小球能在竖直平面内做圆周运动的条件是在最高点的速度大于或等于零,即杆类模型中小球在最高点的临界速度为v临=0.在最高点时:(1)v=0时,小球受向上的支持力N=mg.(2)0<v<gr时,小球受向上的支持力且随速度的增大而减小.(3)v=gr时,小球只受重力.(4)v>gr时,小球受向下的拉力或压力,并且随速度的增大而增大.【例1】(多选)如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图像如图乙所示.则()甲 乙A .小球的质量为aR bB .当地的重力加速度大小为R bC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等思路点拨: 由于杆既可以提供支持力,又可以提供拉力,故小球通过最高点时的速度可以不同,则通过F -v 2图像,可得到小球通过最高点时杆的弹力和小球速度大小的定量关系,从而找到解题的突破口.ACD [对小球在最高点进行受力分析,速度为零时,F -mg =0,结合图像可知a -mg =0;当F =0时,由牛顿第二定律可得mg =m v 2R ,结合图像可知mg=mb R ,联立解得g =b R ,m =aR b ,选项A 正确,B 错误.由图像可知b <c ,当v 2=c 时,根据牛顿第二定律有F +mg =mc R ,则杆对小球有向下的拉力,由牛顿第三定律可知,选项C 正确;当v 2=2b 时,由牛顿第二定律可得mg +F ′=m ·2b R ,可得F ′=mg ,选项D 正确.]竖直平面内圆周运动的分析方法物体在竖直平面内做圆周运动时:1.明确运动的模型,是轻绳模型还是轻杆模型.2.明确物体的临界状态,即在最高点时物体具有最小速度时的受力特点.3.分析物体在最高点及最低点的受力情况,根据牛顿第二定律列式求解.1.(多选)如图所示,质量为m 的物体,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直固定放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的动摩擦因数为μ,则物体在最低点时,下列说法正确的是( )A .受到向心力为mg +m v 2RB .受到的摩擦力为μm v 2RC .受到的摩擦力为μ⎝ ⎛⎭⎪⎫mg +m v 2R D .受到的合力方向斜向左上方CD [体在最低点时受到重力mg 、支持力F N 和摩擦力F f ,如图所示,其沿径向的合力F n 提供向心力,F n =m v 2R ,A 错误.由F n =F N -mg ,得F N =mg +m v 2R ,则物体受到的滑动摩擦力F f =μF N =μ⎝ ⎛⎭⎪⎫mg +m v 2R ,B 错误,C 正确.F f 水平向左,故物体受到的合力斜向左上方,D 正确.]物体在球壳最低点的受力分析1.明确圆周平面火车转弯处的铁轨,虽然外轨高于内轨,但整个外轨是等高的,整个内轨是等高的.因而火车在行驶的过程中,中心的高度不变,即火车中心的轨迹在同一水平面内.故火车的圆周平面是水平面,而不是斜面.火车的向心加速度和向心力均沿水平方向指向轨道的圆心.2.受力特点在实际的火车转弯处,外轨高于内轨,火车所受支持力的方向斜向上,火车所受支持力与重力的合力可以提供向心力.3.速度与轨道压力的关系(1)若火车转弯时,火车所受支持力与重力的合力充当向心力,则mg tan θ=m v20R,如图所示,则v0=gR tan θ,其中R为弯道半径,θ为轨道平面与水平面的夹角(tan θ≈hL,h为内外轨高度差,L为内外轨间距),v0为转弯处的规定速度.此时,内外轨道对火车均无挤压作用;(2)若火车行驶速度v0>gR tan θ,外轨对轮缘有侧压力;(3)若火车行驶速度v0<gR tan θ,内轨对轮缘有侧压力.【例2】有一列重为100 t的火车,以72 km/h的速率匀速通过一个内外轨一样高的弯道,轨道半径为400 m.(g取10 m/s2)(1)试计算铁轨受到的侧压力大小;(2)若要使火车以此速率通过弯道,且使铁轨受到的侧压力为零,我们可以适当倾斜路基,试计算路基倾斜角度θ的正切值.思路点拨:解答本题时可按以下思路进行分析:[解析](1)外轨对轮缘的侧压力提供火车转弯所需要的向心力,所以有N=m v2r=105×202400N=105 N.由牛顿第三定律可知铁轨受到的侧压力大小等于105 N.(2)火车的重力和铁轨对火车的弹力的合力提供向心力,如图所示,则mg tan θ=m v2r由此可得tan θ=v2rg=0.1.[答案](1)105 N(2)0.1火车转弯问题的两点注意(1)合外力的方向:火车转弯时,火车所受合外力沿水平方向指向圆心,而不是沿轨道斜面向下.因为,火车转弯的圆周平面是水平面,不是斜面,所以火车的向心力即合外力应沿水平面指向圆心.(2)规定速度的唯一性:火车轨道转弯处的规定速率一旦确定则是唯一的,火车只有按规定的速率转弯,内外轨才不受火车的挤压作用.速率过大时,由重力、支持力及外轨对轮缘的挤压力的合力提供向心力;速率过小时,由重力、支持力及内轨对轮缘的挤压力的合力提供向心力.2.(多选)铁路转弯处的弯道半径r 是根据地形决定的.弯道处要求外轨比内轨高,其内外轨高度差h 的设计不仅与r 有关,还与火车在弯道上的行驶速率v 有关.下列说法正确的是( )A .v 一定时,r 越小则要求h 越大B .v 一定时,r 越大则要求h 越大C .r 一定时,v 越小则要求h 越大D .r 一定时,v 越大则要求h 越大AD [设轨道平面与水平方向的夹角为θ,由mg tan θ=m v 2r ,得tan θ=v 2gr ,又因为tan θ≈sin θ=h l ,所以h l =v 2gr .可见v 一定时,r 越大,h 越小,故A 正确,B 错误;当r 一定时,v 越大,h 越大,故C 错误,D 正确.]1.离心运动的实质:质是物体惯性的表现.做圆周运动的物体,总是有沿着圆周切线飞出去的趋向,之所以没有飞出去,是因为受到指向圆心的力.2.离心运动、近心运动的判断:物体做离心运动还是近心运动,由实际提供的向心力F 与所需向心力(m v 2r 或mrω2)的大小关系决定.(如图所示)(1)若F =mrω2(或m v 2r )即“提供”满足“需要”,物体做圆周运动. (2)若F >mrω2(或m v 2r ),即“提供”大于“需要”,物体做半径变小的近心运动.(3)若F<mrω2(或m v2r),即“提供”不足,物体做离心运动.(4)若F=0,物体做离心运动,并沿切线方向飞出.【例3】如图所示是摩托车比赛转弯时的情形.转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动.对于摩托车滑动的问题,下列论述正确的是()A.摩托车一直受到沿半径方向向外的离心力作用B.摩托车所受外力的合力小于所需的向心力C.摩托车将沿其线速度的方向沿直线滑去D.摩托车将沿其半径方向沿直线滑去B[摩托车只受重力、地面支持力和地面的摩擦力作用,没有离心力,选项A 错误;摩托车正常转弯时可看作是做匀速圆周运动,所受的合力等于向心力,如果向外滑动,说明提供的向心力即合力小于需要的向心力,选项B正确;摩托车将沿曲线做离心运动,选项C、D错误.]分析离心运动需注意的问题1.物体做离心运动时并不存在“离心力”,“离心力”的说法是因为有的同学把惯性当成了力.2.离心运动并不是沿半径方向向外远离圆心的运动.3.摩托车或汽车在水平路面上转弯,当最大静摩擦力不足以提供向心力时,即F max<m v 2r,做离心运动.3.如图所示,在光滑的水平面上,小球在拉力F作用下做匀速圆周运动,若小球到达P点时F突然发生变化,下列关于小球运动的说法正确的是()A.F突然消失,小球将沿轨迹Pa做离心运动B.F突然变小,小球将沿轨迹Pa做离心运动C.F突然变大,小球将沿轨迹Pb做离心运动D.F突然变小,小球将沿轨迹Pc逐渐靠近圆心A[F突然消失时,小球将沿该时刻线速度方向,即沿轨迹Pa做离心运动,选项A正确;F突然变小时,小球将会沿轨迹Pb做离心运动,选项B、D均错误;F突然变大时,小球将沿轨迹Pc做近心运动,选项C错误.]1.通过阅读课本,几个同学对生活中的圆周运动的认识进行交流.甲说:“洗衣机甩干衣服的道理就是利用了水在高速旋转时会做离心运动.”乙说:“火车转弯时,若行驶速度超过规定速度,则内轨与车轮会发生挤压.”丙说:“汽车过凸形桥时要减速行驶,而过凹形桥时可以较大速度行驶.”丁说:“我在游乐园里玩的吊椅转得越快,就会离转轴越远,这也是利用了离心现象.”你认为正确的是()A.甲和乙B.乙和丙C.丙和丁D.甲和丁D[甲和丁所述的情况都是利用了离心现象,D正确;乙所述的情况,外轨会受到挤压,汽车无论是过凸形桥还是凹形桥都要减速行驶,A、B、C选项均错.]2.(多选)如图所示,在匀速转动的洗衣机脱水桶内壁上,有一件湿衣服随圆桶一起转动而未滑动,则()A.衣服随圆桶做圆周运动的向心力由静摩擦力提供B.圆桶转速增大,衣服对桶壁的压力也增大C.圆桶转速足够大时,衣服上的水滴将做离心运动D.圆桶转速增大以后,衣服所受摩擦力也增大BC[衣服做圆周运动的向心力由桶壁的弹力提供,A错误.转速增大,衣服对桶壁压力增大,而摩擦力保持不变,B正确,D错误.转速足够大时,衣服上的水滴做离心运动,C正确.]3.(多选)火车在铁轨上转弯可以看做是做匀速圆周运动,火车速度提高易使外轨受损.为解决火车高速转弯时使外轨受损这一难题,你认为理论上可行的措施是()A.减小弯道半径B.增大弯道半径C.适当减小内外轨道的高度差D.适当增加内外轨道的高度差BD[当火车速度增大时,可适当增大转弯半径或适当增大轨道倾角,以减小外轨所受压力.]4.如图所示为模拟过山车的实验装置,小球从左侧的最高点释放后能够通过竖直圆轨道而到达右侧.若竖直圆轨道的半径为R,要使小球能顺利通过竖直圆轨道,则小球通过竖直圆轨道的最高点时的角速度最小为()A.gRB .2gR C.gR D.RgC [小球能通过竖直圆轨道的最高点的临界条件为重力提供向心力,即mg =mω2R ,解得ω=gR ,选项C 正确.]5.如图所示,小球A 质量为m ,固定在长为L 的轻细直杆一端,并随杆一起绕杆的另一端点O 在竖直平面内做圆周运动,如果小球经过最高位置时,杆对小球的作用力大小等于小球的重力.求:(1)小球的速度大小; (2)当小球经过最低点时速度为6gL ,此时,求杆对球的作用力的大小和球的向心加速度的大小.[解析] (1)小球A 在最高点时,对球受力分析:重力mg ,拉力F =mg 或支持力F =mg根据小球做圆周运动的条件,合外力等于向心力,得mg ±F =m v 2L① F =mg ②解①②两式,可得v =2gL 或v =0.(2)小球A 在最低点时,对球受力分析:重力mg 、拉力F ′,设向上为正方向根据小球做圆周运动的条件,合外力等于向心力,F ′-mg =m v ′2L ,解得F ′=mg+m v′2L=7mg,故球的向心加速度a=v′2L=6g. [答案](1)2gL或0(2)7mg6g。

2017_2018学年高中物理第二章匀速圆周运动第3节圆周运动的实例分析教学案教科版

2017_2018学年高中物理第二章匀速圆周运动第3节圆周运动的实例分析教学案教科版

第3节圆周运动的实例分析1.汽车通过拱形桥的运动可看做竖直平面内的圆周运动,在拱形桥的最高点,汽车对桥的压力小于汽车的重力。

2.旋转秋千、火车转弯、鸟或飞机盘旋均可看做在水平面上的匀速圆周运动,其竖直方向合力为零,水平方向合力提供向心力。

3.当合外力提供的向心力消失或不足时,物体将沿圆周运动的切线方向飞出或远离圆心而去的运动叫做离心运动。

一、汽车过拱形桥二、“旋转秋千”“旋转秋千”运动可简化为圆锥摆模型,如图2­3­1所示。

图2­3­11.向心力来源物体做匀速圆周运动的向心力由物体所受的重力和悬线对它的拉力的合力提供。

2.动力学关系mg tan_α=mω2r,又r=l sin_α,则ω=gl cos α,周期T=2πl cos αg,所以cos α=gω2l,由此可知,α角度与角速度ω和绳长l有关,在绳长l确定的情况下,角速度ω越大,α越大。

三、火车转弯1.运动特点火车转弯时实际是在做圆周运动,因而具有向心加速度,由于其质量巨大,所以需要很大的向心力。

2.向心力来源在修筑铁路时,要根据弯道的半径和规定的行驶速度,适当选择内外轨的高度差,使转弯时所需的向心力几乎完全由重力G和支持力N的合力提供。

如图2­3­2所示。

图2­3­2四、离心运动1.定义物体沿圆周运动的切线方向飞出或远离圆心而去的运动。

2.原因合外力提供的向心力消失或不足。

3.应用(1)离心机械:利用离心运动的机械。

(2)应用:洗衣机的脱水筒;科研生产中的离心机。

1.自主思考——判一判(1)汽车行驶至凸形桥顶时,对桥面的压力等于车的重力。

(×)(2)汽车过凹形桥底部时,对桥面的压力一定大于车的重力。

(√)(3)汽车过凸形桥或凹形桥时,向心加速度的方向都是向上的。

(×)(4)“旋转秋千”的缆绳与中心轴的夹角与所乘坐人的体重无关。

(√)(5)做离心运动的物体一定不受外力作用。

【最新】教科版高中物理必修2第二章第3节圆周运动的实例分析(49张ppt)

【最新】教科版高中物理必修2第二章第3节圆周运动的实例分析(49张ppt)
第二章 匀速圆周运动 2.3 圆周运动的实例分析
实例1:汽车过拱桥的问题
汽车在拱桥上以速度v前进,桥面的圆弧半径为R,求汽车过桥的最高点时对 桥面的压力?
解析:
a:选汽车为研究对象 b:对汽车进行受力分析:受到重力和 桥对车的支持力 c:上述两个力的合力提供向心力、且 mv 2 向心力方向向下 F向=G-F1= d:建立关系式: r
①受力分析 ②若铁轨不受侧向压力 什么力提供向心力?
N
由G和N的合力提供
FN r m F合O θ ω mg
竖直方向:FN cosθ=mg 水平方向:F合=mω2r
θ
FN O R θ m mg F合 O' ω
竖直方向:FN cosθ=mg 水平方向:F合=mω2 R sinθ
F合=mg tanθ
实例3:“水流星”模型
杂技演员表演“水流星”节目,我们发现不管 演员怎样抡,水都不会从杯里洒出,甚至杯子在 竖直面内运动到最高点时,已经杯口朝下,水也 不会从杯子里洒出。这是为什么?(教材35页发展空间)
G
2
方法技巧
汽车过凹形桥与凸形桥的动力学分析
(1)汽车通过凹形桥的最底端时做圆周运动,支持力克服重力提供向心力,即 v2 v2 可得 N m g m ,由此可知当汽车通过最低点时速度 N mg m R R 越快,对桥面的压力越大。 (2)汽车通过凸形桥的最高点时做圆周运动,重力克服支持力提供向心力,即 v2 v2 可得 N m g m ,由此可知当汽车通过最高点时速度 mg N m R R 越快,对桥面的压力越小。 (3)汽车通过凸形桥最高点行驶速度最大时,恰好只有重力提供向心力,即
f切
N
N外
外轨
G
内轨

高中物理第二章3圆周运动的实例分析教案1教科版必修2

高中物理第二章3圆周运动的实例分析教案1教科版必修2

第3节圆周运动的实例分析本节教材分析(1)三维目标一、知识与技能1.知道如果一个力或几个力的合力的效果是使物体产生向心加速度,那么这个力或这个合力就是做匀速圆周运动的物体所受的向心力.会在具体问题中分析向心力的来源.2.能理解运用匀速圆周运动的规律分析和处理生产和生活中的具体实例.3.知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度.二、过程与方法1.通过对匀速圆周运动实例的分析,渗透理论联系实际的观点,提高学生分析和解决问题的能力.2.通过匀速圆周运动的规律在变速圆周运动中使用,渗透特殊性和一般性之间的辩证关系,提高学生的分析能力.3.通过对离心现象的实例分析,提高学生综合应用知识解决问题的能力.三、情感态度与价值观1.通过对几个实例的分析,使学生明确具体问题必须具体分析,理解物理与生活的联系,学会用合理、科学的方法处理问题.2.通过对离心现象的应用和防止的实例分析,使学生明白事物都是一分为二的,要学会用一分为二的观点来看待问题.3.养成良好的思维习惯,形成科学的价值观.(2)教学重点找出向心力的来源,理解并掌握在匀速圆周运动中合外力提供向心力,能用向心力公式解决有关圆周运动的实际问题。

(3)教学难点理解做匀速圆周运动的物体受到的向心力是由某几个力的合力提供的,而不是一种特殊的力;向心力来源的寻找;临界问题中临界条件的确定。

(4)教学建议1、培养学生分析向心力来源的能力,分析问题时,要首先引导学生对做周围运动的物体进行受力情况分析,并让学生清楚地认识到求出物体沿半径方向受到的合外力,就是提供给物体做圆周运动的向心力.2、培养学生运用物体知识解决实际问题的能力.通过例题的分析与讨论(结合动画或课件),引导学生从中领悟掌握运用向心力公式的思路和方法.即:第一:根据物体受力情况分析向心力的来源,做匀速圆周运动的物体.第二:运用向心力公式计算做圆周运动所需的向心力.第三:由物体实际受到的力提供了它所需要的向心力,列出方程求解.3、可多举一些实例让学生分析.向心力可由重力、弹力、摩擦力等单独提供,也可由它们的合力提供.4、在讲述汽车过拱桥的问题时,汽车做的是变速圆周运动,对此要根据牛顿第二定律的瞬时性向学生指出:在变速圆周运动中,物体在各位置受到的向心力分别产生了物体通过各位置的向心加速度,向心力公式仍是适用的.但要注意,对于物体做匀速圆周运动的情况,只有在物体通过最高点和最低点时,向心力才是合外力.同时,还可以向学生指出:此问题中出现的汽车对桥面的压力大于或小于车重的现象,是发生在圆周运动中的超重或失重现象.新课导入设计导入一巩固知识导入新课师:复习匀速圆周运动的知识点(提问)①描述匀速圆周运动快慢的各个物理量及其相互关系.②从动力学角度回答对匀速圆周运动的认识.师:学以致用是学习的最终目的,本节课通过几个具体实例的探讨来深入理解相关知识点并学会应用.导入二1、复习提问:向心加速度a的公式怎样写?根据牛顿第二定律F=ma可得,对应的向心力公式有哪几个?2、引入:在生活当中很多圆周运动的实例:骑自行车、摩托车转弯,汽车、火车转弯,飞机作俯冲运动、汽车过拱桥等都是圆周运动或圆周运动的一部分,这些运动的向心力的来源是什么?这节课我们就来讨论在实际生活中的圆周运动几个问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

—————————— 新学期 新成绩 新目标 新方向 ——————————
第3节 圆周运动的实例分析2 汽车过桥(过山车)中动力学问题
(答题时间:30分钟)
1. 质量为m 的汽车,额定功率为P ,与水平地面间的摩擦数为μ,以额定功率匀速前进一段时间后驶过一圆弧形半径为R 的凹桥,汽车在凹桥最低点的速度与匀速行驶时相同,则汽车对桥面的压力N 的大小为( ) A. N=mg B. 2()m P N R mg
μ=
C. 21[()]P N m g R mg μ=+
D. 21[()]P N m g R mg μ=- 2. 当汽车行驶在凸形桥时,为使通过桥顶时减小汽车对桥的压力,司机应( )
A. 以尽可能小的速度通过桥顶
B. 增大速度通过桥顶
C. 使通过桥顶的向心加速度尽可能小
D. 和通过桥顶的速度无关
3. 在云南省某些地方到现在还要依靠滑铁索过江,若把这滑铁索过江简化成如图所示的模型,铁索的两个固定点A 、B 在同一水平面内,AB 间的距离为L=80m ,绳索的最低点离AB 间的垂直距离为H=8m ,若把绳索看做是圆弧,已知一质量m=52kg 的人借助滑轮(滑轮质量不计)滑到最低点的速度为10m/s ,那么( )
A. 人在整个绳索上运动可看成是匀速圆周运动
B. 可求得绳索的圆弧半径为100m
C. 人在滑到最低点时,滑轮对绳索的压力为570N
D. 在滑到最低点时人处于失重状态
4. 乘坐游乐园的翻滚过山车时,质量为m 的人随车一起在竖直平面内旋转,下列说法正.确.
的是( ) A. 车的加速度方向时刻在变化,但总是指向圆心
B. 人在最高点时对座位仍可能产生压力,但是速度可以为零
C. 车的线速度方向时刻在变化,但总在圆周切线方向上
D. 人在最低点时对座位的压力大于mg
5. 如图所示,过山车的轨道可视为竖直平面内半径为R 的圆轨道。

质量为m 的游客随过山车一起运动,当游客以速度v 经过圆轨道的最高点时( )
A. 处于超重状态
B. 向心加速度方向竖直向下
C. 速度v的大小一定为gR
D. 座位对游客的作用力为
2 v m
R
6. 如图,m为在水平传送带上被传送的小物体(可视为质点),A为终端皮带轮,已知皮带轮半径为r,传送带与皮带轮之间不打滑,则要使小物体被水平抛出,A轮转动()
A. gr
B. gr
C.
1
2
g
r
π
D. 周期越小越好,最大值为2
T gr
=
7. 如图所示,拱桥的外半径为40m。

问:
(1)当重1t的汽车通过拱桥顶点的速度为10m/s时,车对桥顶的压力多少牛?(2)当汽车通过拱桥顶点的速度为多少时,车对桥顶刚好没有压力?(g=10m/s2)
1. C 解析:汽车以恒定功率启动行驶,满足:P=fv=μmgv ,所以mg P v μ=。

在凹形桥
最低点时,根据牛顿第二定律得,
,则汽车对桥面的压力等于支持力,N=F=。

故C 正确。

2. B 解析:当汽车驶在凸形桥时,重力和前面对汽车的支持力提供向心力,则
,解得:,根据牛顿第三定律可知:汽车对桥的压力等
于桥顶对汽车的支持力,为使通过桥顶时汽车对桥的压力减小,可以增大速度通过桥顶,故B 正确,A 、C 错误;向心加速度小,桥顶对汽车的支持力就大,故C 错误。

3. C 解析:人借助滑轮下滑过程中,其重力势能在减小,速度大小是变化的,因此人在整个绳索上运动不能看成匀速圆周运动;设圆弧的半径为r ,由几何关系,有:
222)2
()(r L H r =+-,解得m 104=r ;人在滑到最低点时,根据牛顿第二定律得:r
v m mg F N 2
=-,解得N 570=N F ;人在滑到最低点时,具有向上的加速度,人对绳索的压力大于重力,因此人处于超重状态,所以正确选项为C 。

4. CD 解析:只有在匀速圆周运动时,加速度方向才指向圆心,A 错;人在最高点时速度不能是0,最小速度是gR ,B 错;人在最低点时,座位对人的支持力与人的重力的合力提供向心力,因此座位对人的支持力大于人的重力。

CD 正确。

5. B 解析:据题意,当车过最高点时由2
N v mg F m ma R
+==加速度向下,属于失重
状态,故A 选项错误,而B 选项正确;此时速度大小为:v ≥C 选项错误;游客受到座位的作用力为:2
N v F m mg R
=-,故D 选项错误。

6. BC 解析:当物体对轮子的压力为零时,物体做平抛运动,根据mg=r
mv 2
得,v=gr ,知线速度越大越好,最小值为gr ,角速度越大越好,最小角速度r
g r v ==ω,故A 错误,B 正确;转速n=r
g ππω212=,知转速越大越好,最小为r g π21,故C 正确;周期越小越好,周期最大值T=g
r πωπ22=,故D 错误。

7. 解:(1)小车受到的mg 和N 的合力提供向心力
带入数据得: N=7500N
由牛顿第三定律得:小车对桥的压力N '=N=7500N
(2)当重力完全充当向心力时,车对桥顶没有作用力,即,解得v=20m/s。

相关文档
最新文档