光电子技术第一章
光电子技术(第5版)第一章 光辐射与发光光源

同的黑体的温度;
➢ 色温度并非热辐射光源本身的温度;
➢ 色温度相同的热辐射光源的连续谱也可能不相似,若规定的
波长不同,色温度往往也不相同;
➢ 非热辐射光源,色温度只能给出这个光源光色的大概情况,
一般来说,色温高代表蓝、绿光成分多些,色温低则表示橙
光电子技术(第5版)
第一章
本章内容
1.1 电磁波谱与光辐射
1.2 辐度学与光度学基本知识
1.3 热辐射基本定律
1.4 激光基本原理
1.5 典型激光器
1.6 光频电磁波的基本理论和定律
1.1.1 电磁波的性质与电磁波谱
EH k
横波特性
电场、磁场、传播方向构成右手螺旋系
偏振特性
电场、磁场分别在各自平面内振动
T 2698μm K
➢
时,
维恩公式与普朗克公式的误差小于1%。
M v (T )
0 得到
➢ 单色辐射出射度最大值对应的波长λm,由
mT 2897.9(μm K)
1.3.7 斯忒藩-玻尔兹曼定律
➢ 黑体的辐射出射度
0
0
M eb (T ) M eb (T )d
黑体:物体在任何温度下,对任何波长
的辐射能的吸收比都等于1,即αλ (T)
恒等于1。
1.3.2 基尔霍夫辐射定律
• 在同样的温度下,各种不同物体对相同波长的单色辐射
出射度与单色吸收比之比值都相等,并等于该温度下黑
体对同一波长的单色辐射出射度。
M e1 (T ) M e 2 (T )
e1 (T ) e 2 (T )
光电子技术全套课件

光电子技术精品课程
§3 纵模的概念
光电子技术精品课程
§3 纵模的概念
光电子技术精品课程
§4 光腔的损耗
开腔的损耗及其描述
光子在腔内的平均寿命
无源谐振腔的Q值 无源腔的本征振荡模式带宽
光电子技术精品课程
§4 光腔的损耗
光电子技术精品课程
§4 光腔的损耗
光电子技术精品课程
§4 光腔的损耗
光电子技术精品课程
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术精品课程
§5 开腔模式的物理概念及分析方法
光电子技术 精品课程
电子科学与技术 精密仪器与光电子工程学院
光电子技术 精品课程
激 光 原 理
第二章 光腔理论的一般问题
电子科学与技术 精密仪器与光电子工程学院
§1 腔与模
光腔的构成和分类
模的概念
腔的作用
光电子技术精品课程
§1 腔与模
光电子技术精品课程
§2 共轴球面腔的稳定性条件
传输矩阵
共轴球面腔的稳定性条件
§7 方形镜共焦腔的自再现模
光电子技术精品课程
§8 方形镜共焦腔的行波场
厄米 - 高斯光束
振幅分布和光斑尺寸
模体积
等相位面的分布
远场发散角
光电子技术精品课程
§8 方形镜共焦腔的行波场
光电子技术精品课程
光电子技术复习要点

第一章 绪论1. 光电子技术(optoelectronic technology )准确地应该称为信息光电子技术,是电子技术与光子技术相结合而形成的一门新兴的综合性的交叉学科,主要研究光与物质中的电子相互作用及其能量相互转换的相关技术,涉及光显示、光存储、激光等领域,是未来信息产业的核心技术。
2. 本课程主要讲了四大部分分别是:激光光源、光波的传输、光波的调制与控制、光波的探测。
第二章 激光原理与半导体光源1. 世界上第一台激光器是1960年梅曼制作的红宝石激光器。
2. 原子从高能级向低能级跃迁时,相当于光的发射过程;而从低能级向高能级跃迁时,相当于光的吸收过程;两个相反的过程都满足玻尔条件:n m n m E E h E E hνν-=-=或。
3. 处于热平衡状态的原子体系,设其热平衡绝对温度为T ,则原子体系的各能级上粒子数目的分布将服从波尔兹曼分布律:exp(/)n n N E kT ∝-,其中N n 为在能级E n 上的粒子数,k 为波尔兹曼常数, k=1.3807×10-23 J·K -1。
即,随着能级增高,能级上的粒子数N n 按指数规律减少。
4. 爱因斯坦在玻尔工作的基础上于1916年发表《关于辐射的量子理论》。
该文提出的受激光辐射理论是激光理论的核心基础。
在这篇论文中,爱因斯坦将光与物质的作用分为三种过程:受激吸收、自发辐射、受激辐射。
5. 在二能级系统中,粒子在高能级E 2 能级上停留的平均时间称为粒子在该能级上的平均寿命,简称寿命6. 下面三个图分别描述了二能级系统中光与物质的作用的三种过程:它们可以由下面三个方程描述:对于受激辐射过程(E2→E1 ):21212()dN B u v N dt= 对于受激吸收过程(E1→E2):12121()dN B u v N dt= 对于自发辐射过程(E2→E1 ):21212dN A N dt = 其中u(v)为辐射场中单色辐射能量密度:()()30348(),exp 1h u v T c c hv kT πνγν==-7. 二能级系统中,当(N 2/N 1)>1时,高能级E 2上的粒子数N 2大于低能级E 1上的粒子数N 1,出现所谓的“粒子数反转分布”情况,它是形成激光的必要条件之一。
光电子技术复习

光电⼦技术复习第⼀章1、光电⼦技术的定义光电⼦技术是光学技术与电⼦技术结合的产物,是电⼦技术在光频波段的延续和发展。
是研究光(特别是相⼲光)的产⽣、传输、控制和探测的科学技术。
2、电磁波的性质1.电磁波的电场和磁场都垂直于博得传播⽅向,三者相互垂直,电磁波是横波,和传播⽅向构成右⼿螺旋关系。
2.沿给定⽅向传播的电磁波,电场和磁场分别在各⾃平⾯内振动,称为偏振。
3.空间个点磁场电场都做周期性变化,相位同时达到最⼤或最⼩。
4.任意时刻,在空间任意⼀点,H E µε=5.电磁波真空中传播速度为001µε=c ,介质中的为εµ1=v3、⾊温的概念规定两波长处具有与热辐射光源的辐射⽐率相同的⿊体的温度。
4、辐射度学与光度学的基本物理量作业:1、2第⼆章⼀、光波在⼤⽓中的传播1、光波在⼤⽓中传播时,引起的光束能量衰减和光波的振幅和相位起伏因素光波在⼤⽓中传播时,⼤⽓⽓体分⼦及⽓溶胶的吸收和散射会引起的光束能量衰减,空⽓折射率不均匀会引起的光波振幅和相位起伏2、⼤⽓分⼦散射的定义、特点;瑞利散射的定义和特点定义:当光线穿过地球周围的⼤⽓时,它的⼀些能量向四⾯⼋⽅反射。
特点:波长较短的光容易被散射,波长较长的光不容易被散射。
瑞利散射定义:在可见光和近红外波段,辐射波长总是远⼤于分⼦的线度,这⼀条件下的散射为瑞利散射。
瑞利散射特点:波长越长,散射越弱;波长越短,散射越强烈。
所以天空呈蓝⾊。
3、⼤⽓⽓溶胶的定义、瑞利散射、⽶-德拜散射;⼤⽓⽓溶胶:⼤⽓中有⼤量的粒度在0.03 µm到2000 µm之间的固态和液态微粒,它们⼤致是尘埃、烟粒、微⽔滴、盐粒以及有机微⽣物等。
由这些微粒在⼤⽓中的悬浮呈胶溶状态,所以通常⼜称为⼤⽓⽓溶胶。
瑞利散射:散射粒⼦的尺⼨远⼩于光波长时,散射光强。
⽶德拜散射:散射粒⼦的尺⼨⼤于等于光波长时,散射光强对波长的依赖性不强。
⼆、光波在电光晶体中的传播1、电光效应的定义及分类电光效应:在外电场作⽤下,晶体的折射率发⽣变化的现象。
第一章光电子技术

第一章填空1.以黑体作为标准光源,其他热辐射光源发射光的颜色如果与黑体在某一温度下的辐射光的颜色相同,则黑体的这一温度称为该热辐射光源的色温。
2.低压钠灯的单色性较好,常用作单色光源。
3.激光器一般是由工作物质、谐振腔和泵浦源组成的。
4.气体激光器的工作物质是气体或金属蒸汽。
5.半导体激光器亦称激光二极管。
6.光纤激光器的工作物质主要是稀土参杂的光纤。
7.一切能产生光辐射的辐射源称为光源。
8.单位时间内通过某截面的所有波长的总电磁辐射能又称辐射功率,单位W。
9.以辐射的形式发射、传播或接收的能量,单位为J 。
10.按入眼的感觉强度进行度量的辐射能大小称为光能。
11.单位时间内通过某截面的所有光波长的光能成为光通量。
12.发光强度单位为坎德拉。
13.光照度单位lx。
14.热辐射光源是使发光物体升温到足够高而发光的光源。
15.LD的发光光谱主要是由激光器的纵模决定。
16.半导体激光器的重要特点就是它具有直接调制的能力,从而使它在光通信中得到了广泛的应用。
三.简答1.可见光的波长、频率和光子的能量范围分别是多少?波长:380~780nm 400~760nm频率:385T~790THz 400T~750THz能量:1.6~3.2eV2.发光二极管的优点?效率高、光色纯、能耗小、寿命长、可靠耐用、应用灵活、绿色环保。
3.气体放电光源的特点?效率高、结构紧凑、寿命长、辐射光谱可选择4.半导体激光器特点?体积小、重量轻、易调制、功效低、波长覆盖广、能量转换效率高。
5.光体放点的发光机制?气体在电场作用下激励出电子和离子,成为导电体。
离子向阴极、电子向阳极运动,从电场中得到能量,它们与气体原子或分子碰撞时会激励出新的电子离子,也会使气体原子受激,内层电子跃迁到高能级。
受激电子返回基态时,就辐射出光子来。
6.激光的特点?激光的高亮度、高方向性、高单色性和高度时间空间相干性是前述一般光源所望尘莫及的,它为光电子技术提供了极好的光源。
光电子学基础知识(1)

三种跃迁过程(受激辐质时,在物质内部也可能发生与受激 吸收相反的过程。爱因斯坦根据量子理论指出,当辐射场照射物 质而粒子已经处在高能级E2 上时,这时会发生一个十分重要的过 程——受激辐射过程。如果外来光的频率正好等于( E2 -E1)/h , 由于受到入射光子的激发, E2 能级上的粒子会跃迁而回到E1 能级 上去,同时又放出一个光子来,这个光子的频率、振动方向、相 位都与外来光子一致。这是一个十分重要的概念,它为激光的产 生奠定了理论基础。
激光的基本原理、特性和应用 ——爱因斯坦公式
B21uT (v) N2 A21 N2 B12uT (v) N1
A21 N 2 A21 uT (v) B12 N1 B21 N 2 B12 N1 N 2 B21
普朗克黑体 辐射公式
4 8h 3 uT (v) 0 , T 3 c c exphv kT 1
三种跃迁过程(自发辐射)
E2
h
E1
若原子处于高能级E2上,在停留一个极短的时间后就会自发地 向低能级E1跃迁,如图所示,并发射出一个能量为hv的光子。为描 述这种自发跃迁过程引入自发辐射跃迁几率A21,它的意义是在单位 时间内,E2能级上N2个粒子数中自发跃迁的粒子数与N2的比值。如 果E2能级下只有E1能级,则在dt时间内,由高能级E2自发辐射到低 能级E1的粒子数记作dN21:
1) 根据麦氏方程推导, 电磁波在真空中的速度为
c
1
0 0
3.1074108 m s
当时通过实验测得的真空中的光速也为
3108 m s
c
2) 根据麦氏方程: 电磁波在介质中的速度为 v
光电子技术 第1章 光源

1.1 辐射度学与光度学的基础知识 1.2 热辐射光源 1.3 气体放电光源 1.4 激光器 1.5 发光二极管(LED)
一切能产生光辐射的辐射源都称为光源 ➢ 天然光源 ➢ 人造光源
电磁波谱
按照发光机理, 热辐射光源白太炽阳灯、、黑卤体钨辐灯射器 需类光要用便光光光机场正源要特源源理合确。了性的的、,选解、分发重以用各适类:光源发 激 气光 光 体二 器 放极 电 固 光半 染 气管 光纤体 导 料 体源激激 体 激 激光光 激 光 光 氘 氙 金 汞 钠器器 光 器 器 灯 灯 属 灯 灯器 卤化物灯
1.4 激光器
20世纪激光的诞生标志着人类 对光子的掌握和利用进入了一个
崭新的阶段。
1.4.1 激光器概述
基激 本光 结器 构的
激 机光 理形
成
•电泵浦或光泵浦; •造成工作物质中粒子数反转分布 , 自发辐射引发受激辐射; •谐振腔对辐射光波选频放大。
辐射量的光谱密度,辐射量随波长的变化率。
e ()
de
d
光谱辐射通量e ()与波长的关系
e 0 e ()d
其它辐射度量都有类似关系。
二、光度的基本物理量
1.光谱光视效率V(λ): 人眼对各种光波长的 相对灵敏度
详见表1.1
2.光度量 光度量与辐射度量是一一对应的。
辐射度量是客观物理量, 光度量体现了人的视觉特性。
卤钨灯
石英泡壳;泡壳内充入微量卤族元素或其化合物 (如溴化硼);形成卤钨循环。
色温3200K以上,辐射光谱为0.25~3.5μm。 发光效率可达30lm/W(为白炽灯的2~3倍),
作仪器白光源.
1.3 气体放电光源
基 泡壳:用玻璃或石英等材料制造;
光电子发光与显示技术 第一章 阴极射线管显示PPT课件

❖ 在技术创新方面,这一时期的CRT电视品种已彻底告别黑白电视进入彩色世 界,并由模拟向数字化迈进,显示器由球面转向平面,以至于大屏幕等离子、 背投、立体、高清晰度等彩电技术大量涌现,创新的步伐越走越快。
▪ 荧光粉层完成显像管内的光电转换功能,黑白显像管要求在电子 轰击下荧光粉发白光,一般采用颜色互补的两种荧光粉混合起来 发白光。如将发蓝光的ZnS[Ag]与发黄光的ZnS、CdS[Ag]以55: 45的比例混合制得P4荧光粉,或直接采用单一白色荧光粉。荧光 粉的另一个重要参数是余辉时间,余辉时间定义为亮度减少到 1/10时所用的时间,余辉时间长于0.1秒的叫长余辉荧光粉,介于 0.1~0.001秒的称为中余辉荧光粉,短于0.001秒的称为短余辉荧 光粉。余辉太长运动画面会有拖影,余辉太短平均亮度降低,电 视采用中余辉荧光粉,示波器等则采用长余辉荧光粉。
一束发散角不大的带电粒子束,当它们在磁场B的方向上具有大致相同的速度分量时, 它们有相同的螺距。经过一个周期它们将重新会聚在另一点,这种发散粒子束会聚到一 点的现象与透镜将光束聚焦现象十分相似,因此叫磁聚焦。
光电子技术精品课程
3.静电偏转
偏转角度在30度和53度两种
光电子技术精品课程
4.磁偏转
飞出聚焦系统的电子束立即进入偏转区,在偏转磁场作用下发生偏转
光电子技术精品课程
光电子技术精品课程
对穿过其间的电子束产生水平方向的作用力F,在屏幕上产生左右偏转。为得到比较 均匀的磁场,通过计算,线圈匝按余弦规律分布。因行输出管的输出功率较大,需 要较大的电流流过行偏转线圈,在偏转线圈外部套有铁氧体磁环,使磁力线通过磁 环形成闭合回路,可使内部磁场强度提高,磁环同时起屏蔽作用。为减小漏磁场线 匝形状做成马鞍形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二部分: 激光器诞生及发展
1917年:爱因斯坦在《关于辐射的量子理论》中,提出光的 受激辐射及光放大的概念,为激光器的产生提供理论基础。 1954年 美国汤斯以制冷的氨分子作为工作物质,研制成了 微波激射器。稍后,苏联巴索夫和普洛霍洛夫以氟化铯为工作 物质制成了微波激射器(MASER)。
1960年12月研制氦氖激光器,1962年半导体激光器, 1964二氧化碳激光器,1965年YAG激光器。
1961年,我国第一台红宝石激光器
1960年,诞生第一台红宝石激光器
望远镜式激光测距仪
第三部分:低损耗光纤和长寿命激光二极管问世
1.光纤通信 1966年,英籍华人高锟等提出了实现低损耗光纤的可能。 1970年,美国研制出损耗为20dB/km的石英光纤和室温下 连续工作的激光二极管,使光纤通信成为现实,这一年被公 认为“光纤通信元年”。
光电显示
从CRT向LCD(液晶)、 PDP(等离子体)、 LED(发光二极管)和激光显 示发展。
1.3 信息光电子技术与器件
按信息传递的各个环节划分
光源
信息加载 或光控制
光传输
光信号 接收
处理 存储
光源器件 光调制器件 光传输器件 光探测器件
各部分器件见图1-1.
光显示器件 光存储器件
1.4 光电子技术应用
80年代初,日本,美国,英国相继建成全国干线光纤通信网
90年代初,光纤放大器和光波分复用技术诞生。
21世纪,以智能化超高速计算机系统和全光网络为代表的超 高速、超大容量信息处理和传输成为未来信息科学发展的两 个重大方向。
各种光纤Biblioteka 2.光纤传感技术及应用利用光纤中传输的光波对外界环境的敏感性,制成测量温 度、应力、流量、电流、电压等传感器。
第一章 绪论
1.1 光电子技术 1.2 光电子技术发展简史 1.3 信息光电子技术与器件 1.4 光电子技术应用
1.1 光电子技术
光电子技术是光子技术与电子技术相结合而形成的一门技术
电子的特性 电子技术的研究对象 电子与物质的相互作用
电子在自由空间或物质中的运动与控制
光子技术的研究对象
光子(光)的特性 光子与物质的相互作用 光子在自由空间或物质中的运动与控制
50年代:可见光波段的硫化镉(CdS),硒化镉(CdSe)光 敏电阻和短波、红外硫化铝光电探测器投入使用。
美国将探测器用于代号为响尾蛇的空-空导弹。
红外探测器自60年代以来快速发展,50多年来美、英、 法等大力开发了中波(3-5μm)和长波(8-14μm)红外多元探 测器,并广泛应用于夜视、侦察和制导系统等领域。
每隔几年光通信技术就上升到一个新台阶,由最初的第一 代城市局间中继的光通信系统,发展到了以DWDM与掺铒 光纤放大器相结合的第四代光通信系统和以光孤子为信息载 体的第五代光纤通信系统。传输速率由当初的Mbit/s发展到 当今的10Tbit/s以上。
金属发射带电粒子----外光电效应。 1890年:勒纳对带电粒子的电荷质比的测定,证明带电粒
子是电子,由此弄清了外光电效应的实质。
1929年:科勒制成银氧铯光电阴极,出现光电管。
1939年:苏联人兹沃雷制成实用的光电倍增管。
30年代末:PbS红外探测器问世,室温下探测到3μm。
40年代:出现了用半导体材料制成的温差型红外探测器和 测辐射热计。
光纤传感技术的应用
导线周围的磁场与电流有关, 光的偏振面与磁场有关。
重庆大佛寺长江大桥采用 光纤法珀应变传感器测量 昼夜温差变化及季节温差 变化时,桥梁主梁的内部 应变。
第四部分:光存储和显示 光存储技术:1972年荷兰飞利浦公司演示了模拟式激光视盘。 1982年飞利浦公司同日本索尼公司合作,推出了第一台数字 式激光唱机。 目前CD、VCD、DVD迅速进入千家万户。光存 储容量不断提高,已达到或超过衍射极限,并向三维体存储发 展。
1958年 汤斯和肖诺将微波受激辐射的原理推广到红外和可 见光波段,提出谐振腔,引入了激光的概念。
1960年 梅曼研制成功了世界的一台激光器——红宝石激光 器。随后,各种固体、气体、液体、半导体激光器相继出现。 同时从第一台激光器诞生之日起,人们就开始探索激光的应 用,激光的军事应用被优先考虑。
1961年 第一台激光测距仪问世。
无人侦察机频繁出动,它装备了 合成孔径雷达和高分辨率CCD 摄像机。
一种无人侦察机
激光摧毁导弹
激光制导打 击目标
红外夜视仪 激光制导导弹
激光武器是利用高能量密度激光束代替子弹的新型武 器,是武器装备发展历程中继冷兵器、火器和核武器等之 后又一个重要里程碑。它以光束作战的迅速反应能力,外 科手术式杀伤的高效作战方式。以及特别适合于反卫星和 破坏敌方信息系统,使其成为新一代主战兵器。
1. 军事方面的应用 光电子技术像其它高新技术一样,始终受到军方的高度重视,
在军事方面的应用不可忽视。 激光作为武器在军事上应用的形式千变万化,但是基本上可
以分为三个主要部分:追踪、寻的系统(即正确判定攻击目标 的位置和性质的系统);发射实施摧毁性打击的高能激光系统; 辅助的控制和通信系统。
1991年的海湾战争,广泛使用各种星载、机载和车载光电 子装备,包括高分辨可见光和红外侦察照相机、激光半主动制 导航弹、红外成像制导导弹、红外夜视、夜间低空导航和目标 侦察红外系统、激光测距和目标指示器、激光致盲武器、激光 光点跟踪器、激光告警器、红外对抗装置等。
光电子技术的研究对象:光与物质中的电子相互作用及其 能量相互转换的相关技术,也是光波段的电子技术。
以光源激光化、传输波导化、手段电子化、现代电子学中 的理论模型和电子学处理方法光学化为特征。
1.2 光电子技术发展简史
第一部分: 光电探测器 1873年:英国人史密斯发现了硒的光电导特性。 1888年:德国人赫兹观察到紫外线照射到金属上时,能使
2. 激光器及其应用 (1) 光通信 激光器+光纤 (a)巨大的传输带宽。单根光纤的可用频带几乎达到 200THz,又可以波分复用,巨大的传输带宽和传输容量是 任何其它传输介质所无法提供的。
(b)极低的传输损耗。在1.55um波段已降到0.2db/km, 加上掺铒光纤放大器的应用可有效补偿损耗。
(c)抗强电磁干扰,不向外辐射电磁波,可提高保密性,也 不会产生电磁污染。(d)成本低,资源丰富。