2015年中考模拟数学试题
广东省深圳市宝安区中考数学模拟试题(含解析)-人教版初中九年级全册数学试题

某某省某某市宝安区2015届中考数学模拟试题一、选择题(本部分共12小题,每小题3分,共36分.)1.4的平方根是()A.2 B.﹣2 C.±2D.162.2011年8月12日,第26届世界大学生夏季运动会将在某某开幕.本届大运会的开幕式举办场地和主要分会场某某湾体育中心总建筑面积达256520m2.数据256520m2用科学记数法(保留三个有效数字)表示为()A.2.565×105m2B.0.257×106m2C.2.57×105m2D.25.7×104m23.下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.3ab﹣2ab=1 B.x4•x2=x6C.(x2)3=x5D.3x2÷x=2x5.下列说法正确的是()A.一个游戏的中奖概率是,则做5次这样的游戏一定会中奖B.为了解某某中学生的心理健康情况,应该采用普查的方式C.事件“小明今年中考数学考95分”是可能事件D.若甲组数据的方差S=0.01,乙组数据的方差S=0.1,则乙组数据更稳定6.如图,已知BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,则∠BDC的度数是()A.20° B.25° C.30° D.40°7.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元9.若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.10.如图,直径为10的⊙A上经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A.B.C.D.11.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=4,将△ABC绕点B按顺时针方向转动一个角到△A′BC′的位置,使点A、B、C′在同一条直线上,则图中阴影部分的周长是()A.4π+4B.4πC.2π+4D.2π12.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB 交于点E.若OD=2,则△OCE的面积为()A.2 B.4 C.2D.4二、填空题(本题共4小题,每小题3分,共12分.)13.因式分解:a3﹣4a=.14.如图,在⊙O中,圆心角∠AOB=12O°,弦,则OA= cm.15.在数据1,2,3,1,2,2,4中,众数是.16.在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为.三、解答题(满分52分)17.计算:()﹣1﹣|﹣2+tan45°|+(﹣1.41)0.18.先化简,再求值:,其中x=2.19.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)样本中D级的学生人数占全班学生人数的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人.20.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.21.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试定出用车厢节数x表示总费用y的公式.(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?22.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.23.如图1,已知抛物线y=ax2﹣2ax+4与x轴交于A、B两点,与y轴交于点C,且OB=OC.(1)求抛物线的函数表达式;(2)若点P是线段AB上的一个动点(不与A、B重合),分别以AP、BP为一边,在直线AB的同侧作等边三角形APM和BPN,求△PMN的最大面积,并写出此时点P的坐标;(3)如图2,若抛物线的对称轴与x轴交于点D,F是抛物线上位于对称轴右侧的一个动点,直线FD与y轴交于点E.是否存在点F,使△DOE与△AOC相似?若存在,请求出点F的坐标;若不存在,请说明理由.2015年某某省某某市宝安区中考数学模拟试卷参考答案与试题解析一、选择题(本部分共12小题,每小题3分,共36分.)1.4的平方根是()A.2 B.﹣2 C.±2D.16【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.2011年8月12日,第26届世界大学生夏季运动会将在某某开幕.本届大运会的开幕式举办场地和主要分会场某某湾体育中心总建筑面积达256520m2.数据256520m2用科学记数法(保留三个有效数字)表示为()A.2.565×105m2B.0.257×106m2C.2.57×105m2D.25.7×104m2【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于256520有6位,所以可以确定n=6﹣1=5.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:256520m2=2.57×105m2,故选:C.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3.下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是中心对称图形,是轴对称图形,故本选项错误.故选B.【点评】此题将汽车标志与对称相结合,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.4.下列运算正确的是()A.3ab﹣2ab=1 B.x4•x2=x6C.(x2)3=x5D.3x2÷x=2x【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【解答】解:A、应为3ab﹣2ab=ab,故选项错误;B、x4•x2=x6,正确;C、应为(x2)3=x6,故选项错误;D、应为3x2÷x=3x,故选项错误.故选B.【点评】本题主要考查了同底数幂的乘法、除法运算,幂的乘方的性质,熟练掌握运算性质和法则是解题的关键.5.下列说法正确的是()A.一个游戏的中奖概率是,则做5次这样的游戏一定会中奖B.为了解某某中学生的心理健康情况,应该采用普查的方式C.事件“小明今年中考数学考95分”是可能事件D.若甲组数据的方差S=0.01,乙组数据的方差S=0.1,则乙组数据更稳定【考点】概率的意义;全面调查与抽样调查;方差;随机事件.【分析】分别利用方差以及众数和中位数以及全面调查与抽样调查的概念,判断得出即可.【解答】解:A、一个游戏的中奖概率是,则做5次这样的游戏不一定会中奖,故此选项错误;B、为了解某某中学生的心理健康情况,应该采用抽样调查的方式,故此选项错误;C、事件“小明今年中考数学考95分”是可能事件,此选项正确;D、若甲组数据的方差S=0.01,乙组数据的方差S=0.1,则甲组数据更稳定,故此选项错误;故选:C.【点评】此题主要考查了方差以及众数和中位数以及全面调查与抽样调查等知识,正确区分它们的定义是解题关键.6.如图,已知BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,则∠BDC的度数是()A.20° B.25° C.30° D.40°【考点】圆周角定理;圆心角、弧、弦的关系.【分析】由BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC的度数.【解答】解:∵ =,∠AOB=60°,∴∠BDC=∠AOB=30°.故选C.【点评】此题考查了圆周角定理.此题比较简单,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.7.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】数形结合.【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集.【解答】解:解x+1≥﹣1得,x≥﹣2;解x<1得x<2;∴﹣2≤x<2.故选D.【点评】本题考查了利用数轴表示不等式解集得方法.也考查了解不等式组的方法.8.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元【考点】一元一次方程的应用.【专题】销售问题.【分析】根据题意假设出商品的进货价,从而可以表示出提高后的价格为(1+100%)x,再根据以6折优惠售出,即可得出符合题意的方程,求出即可.【解答】解:设进货价为x元,由题意得:(1+100%)x•60%=60,解得:x=50,故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据ab>0及一次函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【解答】解:∵ab>0,∴分两种情况:(1)当a>0,b>0时,一次函数y=ax+b数的图象过第一、二、三象限,反比例函数图象在第一三象限,选项C符合;(2)当a<0,b<0时,一次函数的图象过第二、三、四象限,反比例函数图象在第二、四象限,无符合选项.故选C.【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.10.如图,直径为10的⊙A上经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A.B.C.D.【考点】圆周角定理;解直角三角形.【分析】首先根据圆周角定理,判断出∠OBC=∠ODC;然后根据CD是⊙A的直径,判断出∠COD=90°,在Rt△COD中,用OD的长度除以CD的长度,求出∠ODC的余弦值为多少,进而判断出∠OBC的余弦值为多少即可.【解答】解:如图,延长CA交⊙A与点D,连接OD,,∵同弧所对的圆周角相等,∴∠OBC=∠ODC,∵CD是⊙A的直径,∴∠COD=90°,∴cos∠ODC===,∴cos∠OBC=,即∠OBC的余弦值为.故选:C.【点评】(1)此题主要考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(2)此题还考查了特殊角的三角函数值的求法,要熟练掌握.11.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=4,将△ABC绕点B按顺时针方向转动一个角到△A′BC′的位置,使点A、B、C′在同一条直线上,则图中阴影部分的周长是()A.4π+4B.4πC.2π+4D.2π【考点】弧长的计算;旋转的性质.【分析】先根据Rt△AB C中,∠C=90°,∠A=30°,AB=4求出BC及AC的长,再根据弧长的计算公式求出、的长,那么阴影部分的周长=AC+的长+A′C′+的长,将数值代入计算即可.【解答】解:∵Rt△ABC中,∠C=90°,∠A=30°,AB=4,∴∠ABC=60°,BC=AB=2,AC=BC=2,∴∠CBC′=∠ABA′=180°﹣60°=120°,∴的长==π,的长==,∴阴影部分的周长=AC+的长+A′C′+的长=2++2+π=4π+4.故选A.【点评】本题考查的是旋转的性质,弧长的计算,含30度角的直角三角形性质的应用,根据题意得出阴影部分的周长=AC+的长+A′C′+的长是解答此题的关键.12.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E.若OD=2,则△OCE的面积为()A.2 B.4 C.2D.4【考点】反比例函数综合题.【专题】计算题;压轴题.【分析】连接AC,已知OD=2,CD⊥x轴,根据OD×CD=xy=4求CD,根据勾股定理求OC,根据菱形的性质,S△OCE=S△OAC=OA×CD求解.【解答】解:连接AC,∵OD=2,CD⊥x轴,∴OD×CD=xy=4,解得CD=2,由勾股定理,得OC==2,由菱形的性质,可知OA=OC,∵OC∥AB,∵△OCE与△OAC同底等高,∴S△OCE=S△OAC=×OA×CD=×2×2=2.故选C.【点评】本题考查了反比例函数的综合运用.关键是求菱形的边长,讲所求三角形的面积进行转化.二、填空题(本题共4小题,每小题3分,共12分.)13.因式分解:a3﹣4a= a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.如图,在⊙O中,圆心角∠AOB=12O°,弦,则OA= 2 cm.【考点】垂径定理;解直角三角形.【分析】过点O作OC⊥A B,根据垂径定理,可得出AC的长,再由余弦函数求得OA的长.【解答】解:过点O作OC⊥AB,∴AC=AB,∵AB=2cm,∴AC=cm,∵∠AOB=12O°,OA=OB,∴∠A=30°,在直角三角形OAC中,cos∠A==,∴OA==2cm,故答案为2.【点评】本题考查了垂径定理和解直角三角形,是基础知识要熟练掌握.15.在数据1,2,3,1,2,2,4中,众数是 2 .【考点】众数.【分析】根据众数的定义就可以求解.【解答】解:众数是一组数据中出现次数最多的数据,本组数据中3和4各出现1次,1出现2次,2出现3次.出现次数最多的是2,所以众数是2.故填2.【点评】本题属于基础题,考查了众数的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.16.在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 2.4 .【考点】勾股定理的逆定理;矩形的性质.【专题】几何综合题;压轴题;动点型.【分析】根据已知得当AP⊥BC时,AP最短,同样AM也最短,从而不难根据相似比求得其值.【解答】解:∵四边形AFPE是矩形∴AM=AP,AP⊥BC时,AP最短,同样AM也最短∴当AP⊥BC时,△ABP∽△CAB∴AP:AC=AB:BC∴AP:8=6:10∴当AM最短时,AM=AP÷2=2.4.【点评】解决本题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.三、解答题(满分52分)17.计算:()﹣1﹣|﹣2+tan45°|+(﹣1.41)0.【考点】特殊角的三角函数值;实数的性质;零指数幂;负整数指数幂.【专题】计算题.【分析】把()﹣1==3,tan45°=1代入计算,任何不等于0的数的0次幂都等于1.【解答】解:原式==3﹣(2﹣)+1=2+.【点评】传统的小杂烩计算题,特殊角的三角函数值也是常考的.涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.18.先化简,再求值:,其中x=2.【考点】分式的化简求值.【专题】计算题.【分析】先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.再把x的值代入求值.【解答】解:原式=,当x=2时,原式=1.【点评】主要考查了分式的化简求值,其关键步骤是分式的化简.要熟悉混合运算的顺序,正确解题.19.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)样本中D级的学生人数占全班学生人数的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人.【考点】扇形统计图;用样本估计总体;条形统计图.【专题】图表型.【分析】(1)利用A类有10人,占总体的20%,求出总人数,再求出D级的学生人数;(2)利用各部分占总体的百分比之和为1,即可求出D级的学生人数占全班学生人数的百分比;(3)利用A级所占的百分比即可求出A级所在的扇形的圆心角度数;(4)用样本估计总体,利用样本中A、B级所占的百分比及可求出A级和B级的学生人数.【解答】解:(1)读图可得:A类有10人,占总体的20%,所以总人数为10÷20%=50人,则D级的学生人数为50﹣10﹣23﹣12=5人.据此可补全条形图;(2)在扇形统计图中,因为各部分占总体的百分比之和为1,所以D级的学生人数占全班学生人数的百分比是1﹣46%﹣24%﹣20%=10%;(3)读扇形图可得:A级占20%,所在的扇形的圆心角为360°×20%=72°;(4)读扇形图可得:A级和B级的学生占46%+20%=66%;故九年级有500名学生时,体育测试中A级和B级的学生人数约为500×66%=330人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,并且扇形统计图能直接反映部分占总体的百分比大小.20.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OE.根据OB=OE得到∠OBE=∠OEB,然后再根据BE是△ABC的角平分线得到∠OEB=∠EBC,从而判定OE∥BC,最后根据∠C=90°得到∠AEO=∠C=90°证得结论AC是⊙O的切线.(2)连接OF,利用S阴影部分=S梯形OECF﹣S扇形EOF求解即可.【解答】解:(1)连接OE.∵OB=OE∴∠OBE=∠OEB∵BE是∠ABC的角平分线∴∠OBE=∠EBC∴∠OEB=∠EBC∴OE∥BC∵∠C=90°∴∠AEO=∠C=90°∴AC是⊙O的切线;(2)连接OF.∵sinA=,∴∠A=30°∵⊙O的半径为4,∴AO=2OE=8,∴AE=4,∠AOE=60°,∴AB=12,∴BC=AB=6,AC=6,∴CE=AC﹣AE=2.∵OB=OF,∠ABC=60°,∴△OBF是正三角形.∴∠FOB=60°,CF=6﹣4=2,∴∠EOF=60°.∴S梯形OECF=(2+4)×2=6.S扇形EOF==∴S阴影部分=S梯形OECF﹣S扇形EOF=6﹣.【点评】本题考查了切线的判定与性质及扇形面积的计算,解题的关键是连接圆心和切点,利用过切点且垂直于过切点的半径来判定切线.21.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试定出用车厢节数x表示总费用y的公式.(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?【考点】一元一次不等式组的应用.【专题】应用题.【分析】(1)这列货车挂A型车厢x节,则挂B型车厢(40﹣x)节,从而可得出y与x的表达式;(2)设A型车厢x节,则挂B型车厢(40﹣x)节,根据所装的甲货物不少于1240吨,乙货物不少于880吨,可得出不等式组,解出即可.【解答】解:(1)y=0.6x+0.8(40﹣x)=﹣0.2x+32;(2)设A型车厢x,节,则挂B型车厢(40﹣x)节,由题意得:,解得:24≤x≤26,故有三种方案:①A、B两种车厢的节数分别为24节、16节;②A型车厢25节,B型车厢15节;③A型车厢26节,B型车厢14节.【点评】本题考查了一元一次不等式的应用,解答本题的关键是仔细审题,根据所装货物的不等关系,列出不等式组,难度一般.22.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.【考点】相似三角形的判定与性质;等腰直角三角形;矩形的性质;正方形的性质.【专题】证明题;动点型.【分析】(1)依题意可知AD=AE,∠DAE=90°,则∠DEA=45°,在△ERG中,RG⊥DE,则∠FRA=45°,可证AF=AR;(2)①当四边形PRBC是矩形时,则有PR∥BC,AF∥PR,可证△EAF∽△ERP,利用相似比求AR,而AR=DP=t,由此求t的值;②当△PRB是等腰三角形时,PC=2BR,列方程求t的值.【解答】(1)证明:如图,在正方形ABCD中,AD=AB=2,∵AE=AB,∴AD=AE,∴∠AED=∠ADE=45°,又∵FG⊥DE,∴在Rt△EGR中,∠GER=∠GRE=45°,∴在Rt△ARF中,∠FRA=∠AFR=45°,∴∠FRA=∠RFA=45°,∴AF=AR;(2)解:①如图,当四边形PRBC是矩形时,则有PR∥BC,∴AF∥PR,∴△EAF∽△ERP,∴,即:由(1)得AF=AR,∴,解得:或(不合题意,舍去),∴,∵点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,∴(秒);②若PR=PB,过点P作PK⊥AB于K,设FA=x,则RK=BR=(2﹣x),∵△EFA∽△EPK,∴,即: =,解得:x=±﹣3(舍去负值);∴t=(秒);若PB=RB,则△EFA∽△EPB,∴=,∴,∴BP=AB=×2=∴CP=BC﹣BP=2﹣=,∴(秒).综上所述,当PR=PB时,t=;当PB=RB时,秒.【点评】本题考查了正方形、矩形、等腰直角三角形的性质,相似三角形的判定与性质.关键是利用相似比列方程求解.23.如图1,已知抛物线y=ax2﹣2ax+4与x轴交于A、B两点,与y轴交于点C,且OB=OC.(1)求抛物线的函数表达式;(2)若点P是线段AB上的一个动点(不与A、B重合),分别以AP、BP为一边,在直线AB的同侧作等边三角形APM和BPN,求△PMN的最大面积,并写出此时点P的坐标;(3)如图2,若抛物线的对称轴与x轴交于点D,F是抛物线上位于对称轴右侧的一个动点,直线FD与y轴交于点E.是否存在点F,使△DOE与△AOC相似?若存在,请求出点F的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)令x=0得,y=4,求出点C(0,4),根据OB=OC=4,得到点B(4,0)代入抛物线表达式求出a的值,即可解答;(2)过点M作MG⊥x轴于G,过点N作NH⊥x轴于H,设P(x,0),△PMN的面积为S,分别表示出PG=,MG=,PH=,NH=,根据S=S梯形MGHN﹣S△PMG﹣S△PNH=,利用二次函数的性质当x=1时,S有最大值是,即可解答;(3)存在点F,使得△DOE与△AOC相似.有两种可能情况:①△DOE∽△AOC;②△DOE∽△COA,先求出点E的坐标,再求出直线DE的解析式,利用方程组求出点F的坐标,即可解答.【解答】解:(1)令x=0得,y=4,∴C(0,4)∴OB=OC=4,∴B(4,0)代入抛物线表达式得:16a﹣8a+4=0,解得a=∴抛物线的函数表达式为(2)如图2,过点M作MG⊥x轴于G,过点N作NH⊥x轴于H,由抛物线得:A(﹣2,0),设P(x,0),△PMN的面积为S,则PG=,MG=,PH=,NH=∴S=S梯形MGHN﹣S△PMG﹣S△PNH===∵,∴当x=1时,S有最大值是∴△PMN的最大面积是,此时点P的坐标是(1,0)(3)存在点F,使得△DOE与△AOC相似.有两种可能情况:①△DOE∽△AOC;②△DOE∽△COA由抛物线得:A(﹣2,0),对称轴为直线x=1,∴OA=2,OC=4,OD=1①若△DOE∽△AOC,则∴,解得OE=2∴点E的坐标是(0,2)或(0,﹣2)若点E的坐标是(0,2),则直线DE为:y=﹣2x+2解方程组得:,(不合题意,舍去)此时满足条件的点F1的坐标为(,)若点E的坐标是(0,﹣2),同理可求得满足条件的点F2的坐标为(,)②若△DOE∽△COA,同理也可求得满足条件的点F3的坐标为(,)满足条件的点F4的坐标为(,)综上所述,存在满足条件的点F,点F的坐标为:。
2015中考模拟 青岛版九年级数学上册第2章解直角三角形中考原题训练

2015中考模拟青岛版九年级数学上册第2章解直角三角形中考原题训练(附答案)一.选择题(共20小题).B.C.D.2.(2013•贵阳)如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于().B.C.D.3.(2014•威海)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B.C.D.4.(2014•湖州)如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是().2D.42.D.6.(2014•凉山州)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()7.(2014•泰州)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是().1,1,C.1,1,D.1,2,8.(2014•滨州)在Rt△ACB中,∠C=90°,AB=10,sinA=,cosA=,tanA=,则BC的长为()9.(2014•连云港)如图,若△ABC和△DEF的面积分别为S1、S2,则()A.S1=S2B.S1=S2C.S=S D.S1=S210.(2014•丽水)如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是().m D.m11.(2014•德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()A.4米B.6米C.12米D.24米12.(2014•百色)从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米13.(2014•临沂)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为()A.20海里B.10海里C.20海里D.30海里14.(2014•绵阳)如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为().40海里B.40海里C.40海里15.(2014•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km16.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()D.50米A.100米B.50米C.米17.(2014•深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250B.600﹣250 C.350+350D.50018.(2014•西宁)如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,()在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)19.(2014•安顺)如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于().B.C.D.20.(2014•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.二.填空题(共4小题)21.(2014•铜仁)cos60°=_________.22.(2014•济宁)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为_________.23.(2014•株洲)孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为_________米(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475).24.(2013•泰安)如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为_________海里(取,结果精确到0.1海里).三.解答题(共6小题)25.(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.26.(2014•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A 处,另一端在OP上滑动,将窗户OM按图示方向向内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)27.(2014•聊城)如图,美丽的徒骇河宛如一条玉带穿城而过,沿河两岸的滨河大道和风景带成为我市的一道新景观.在数学课外实践活动中,小亮在河西岸滨河大道一段AC上的A,B两点处,利用测角仪分别对东岸的观景台D进行了测量,分别测得∠DAC=60°,∠DBC=75°.又已知AB=100米,求观景台D到徒骇河西岸AC的距离约为多少米(精确到1米).(tan60°≈1.73,tan75°≈3.73)28.(2014•烟台)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.29.(2014•莱芜)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)30.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)2015中考模拟青岛版九年级数学上册第2章解直角三角形中考原题训练(附答案)参考答案与试题解析一.选择题(共20小题).B.C.D.首先画出图形,进而求出AB的长,再利用锐角三角函数求出即可.解:如图所示:∵∠C=90°,AC=12,BC=5,∴AB===13,则sinA==.故选:D.此题主要考查了锐角三角函数关系以及勾股定理等知识,正确记忆锐角三角函数关系是解题关键.2.(2013•贵阳)如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于().B.C.D.锐角三角函数的定义;坐标与图形性质.过P作PE⊥x轴于E,根据P(12,5)得出PE=5,OE=12,根据锐角三角函数定义得出tanα=,代入求出即可.解:过P作PE⊥x轴于E,∵P(12,5),∴PE=5,OE=12,∴tanα==,故选C.本题考查了锐角三角函数的定义的应用,注意:在Rt△ACB中,∠C=90°,则sinB=,cosB=,tanB=.3.(2014•威海)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是().B.C.D.作AC⊥OB于点C,利用勾股定理求得AC和AO的长,根据正弦的定义即可求解.解:作AC⊥OB于点C.则AC=,AO===2,则sin∠AOB===.故选:D.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,4.(2014•湖州)如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是().2D.4计算题.根据锐角三角函数定义得出tanA=,代入求出即可.解:∵tanA==,AC=4,∴BC=2,故选:A.本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA=,cosA=,tanA=.2.D.根据特殊角的三角函数值计算即可.解:原式=()2+×=+=2.故选:A.此题比较简单,解答此题的关键是熟记特殊角的三角函数值.6.(2014•凉山州)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°的度数.解:由题意,得cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°.故选:C.此题考查了特殊角的三角形函数值及绝对值、偶次方的非负性,属于基础题,关键是熟记一些特殊角的三7.(2014•泰州)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据.1,1,C.1,1,D.1,2,D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”8.(2014•滨州)在Rt△ACB中,∠C=90°,AB=10,sinA=,cosA=,tanA=,则BC的长为()解直角三角形.根据三角函数的定义来解决,由sinA==,即可得BC.解:∵∠C=90°,AB=10,∴sinA=,∴BC=AB×=10×=6.故选:A.本题考查了解直角三角形和勾股定理的应用,注意:在Rt△ACB中,∠C=90°,则sinA=,cosA=,tanA=.9.(2014•连云港)如图,若△ABC和△DEF的面积分别为S1、S2,则().S1=S2B.S1=S2C.S1=S2∠DEH=180°﹣140°=40°,在Rt△ABG中,DH=DE•sin40°=8sin40°,S1=8×5sin40°÷2=20sin40°,S2=5×8sin40°÷2=20sin40°.则S1=S2.故选:C.10.(2014•丽水)如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是()A.9m B.6m C.m D.m在Rt△ABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.解:在Rt△ABC中,BC=5米,tanA=1:;∴AC=BC÷tanA=3米,∴AB==6米.故选:B.此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.11.(2014•德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为().4米B.6米C.12米D先根据坡度的定义得出BC的长,进而利用勾股定理得出AB的长.解:在Rt△ABC中,∵i==,AC=12米,∴BC=6米,根据勾股定理得:AB==6米,故选:B.此题考查了解直角三角形的应用﹣坡度坡角问题,勾股定理,难度适中.根据坡度的定义求出BC的长是解12.(2014•百色)从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是().(6+6)米B.(6+3)米C.(6+2)米D在Rt△ABC求出CB,在Rt△ABD中求出BD,继而可求出CD.解:在Rt△ACB中,∠CAB=45°,AB⊥DC,AB=6米,∴BC=6米,在Rt△ABD中,∵tan∠BAD=,∴BD=AB•tan∠BAD=6米,∴DC=CB+BD=6+6(米).故选:A.本题考查仰角俯角的定义,要求学生能借助仰角俯角构造直角三角形并解直角三角形,难度一般.13.(2014•临沂)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为().10海里C.20海里D∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC===,∴BC=20海里.故选:C.本题考查了解直角三角形的应用﹣方向角问题.解题的难点是推知△ABC是等腰直角三角形.14.(2014•绵阳)如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为().40海里B.40海里C.40海里过点P作垂直于AB的辅助线PC,利三角函数解三角形,即可得出答案.解:过点P作PC⊥AB于点C,由题意可得出:∠A=30°,∠B=45°,AP=80海里,故CP=AP=40(海里),则PB==40(海里).故选:A.此题主要考查了方向角问题以及锐角三角函数关系等知识,得出各角度数是解题关键.15.(2014•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km几何图形问题.过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选:C.本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.16.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()A.100米B.50米C.D.50米米计算出∠CBM的度数,进而得到CM长,最后利用勾股定理可得答案.解:过B作BM⊥AD,∵∠BAD=30°,∠BCD=60°,∴∠ABC=30°,∴AC=CB=100米,∵BM⊥AD,∴∠BMC=90°,∴∠CBM=30°,∴CM=BC=50米,∴BM=CM=50米,故选:B.此题主要考查了解直角三角形的应用,关键是证明AC=BC,掌握直角三角形的性质:30°角所对直角边等17.(2014•深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高().600﹣250B.600﹣250 C.350+350D.500构造两个直角三角形△ABE与△BDF,分别求解可得DF与EB的值,再利用图形关系,进而可求出答案.解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.本题考查俯角、仰角的定义,要求学生能借助坡比、仰角构造直角三角形并结合图形利用三角函数解直角18.(2014•西宁)如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,()在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)的长,则BC即可得到.解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴==.设BD=5k(米),AD=12k(米),则AB=13k(米).∵AB=13(米),∴k=1,∴BD=5(米),AD=12(米).在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8(米),∴BC=10.8﹣5≈5.8(米).故选:D.本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.19.(2014•安顺)如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于()A.B.C.D.求解.解:根据题意:在Rt△ABC中,∠C=90°,∠A=30°,∵EF⊥AC,∴EF∥BC,∴∵AE:EB=4:1,∴=5,∴=,设AB=2x,则BC=x,AC=x.∴在Rt△CFB中有CF=x,BC=x.则tan∠CFB==.故选:C.本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻边比斜边;正切等于对边20.(2014•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.计算题.根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tan∠B.解:∵sinA=,∴设BC=5x,AB=13x,则AC==12x,故tan∠B==.故选:D.本题考查了互余两角三角函数的关系,属于基础题,解题的关键是掌握三角函数的定义和勾股定理的运用.二.填空题(共4小题)21.(2014•铜仁)cos60°=.根据特殊角的三角函数值计算.解:cos60°=.故答案为:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要掌握特殊角度的三角函22.(2014•济宁)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为3+.理求出AD,相加即可求出答案.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+.故答案为:3+.本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构23.(2014•株洲)孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为182米(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475).作出图形,可得AB=500米,∠A=20°,在Rt△ABC中,利用三角函数即可求得BC的长度.解:在Rt△ABC中,AB=500米,∠BAC=20°,∵=tan20°,∴BC=ABtan20°=500×0.3640=182(米).故答案为:182.24.(2013•泰安)如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为67.5海里(取,结果精确到0.1海里).可得出关于x的方程,解出后即可计算AB的长度.解:∵∠DBA=∠DAB=45°,∴△DAB是等腰直角三角形,过点D作DE⊥AB于点E,则DE=AB,设DE=x,则AB=2x,在Rt△CDE中,∠DCE=30°,则CE=DE=x,在Rt△BDE中,∠DAE=45°,则DE=BE=x,由题意得,CB=CE﹣BE=x﹣x=25,解得:x=,故AB=25(+1)=67.5(海里).故答案为:67.5.本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段三.解答题(共6小题)25.(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.计算题.根据tan∠BAD=,求得BD的长,在直角△ACD中由勾股定理得AC,然后利用正弦的定义求解.解:∵在直角△ABD中,tan∠BAD==,∴BD=AD•tan∠BAD=12×=9,∴CD=BC﹣BD=14﹣9=5,∴AC===13,∴sinC==.本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.26.(2014•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A 处,另一端在OP上滑动,将窗户OM按图示方向向内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)(2)在Rt△BDE中,根据三角函数即可得到滑动支架的长.解:(1)在Rt△BOE中,OE=,在Rt△BDE中,DE=,则+=30,解得BE≈11(cm).故B点到OP的距离大约为11cm;(2)在Rt△BDE中,BD=≈26cm.故滑动支架的长约为26cm.此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.27.(2014•聊城)如图,美丽的徒骇河宛如一条玉带穿城而过,沿河两岸的滨河大道和风景带成为我市的一道新景观.在数学课外实践活动中,小亮在河西岸滨河大道一段AC上的A,B两点处,利用测角仪分别对东岸的观景台D进行了测量,分别测得∠DAC=60°,∠DBC=75°.又已知AB=100米,求观景台D到徒骇河西岸AC的距离约为多少米(精确到1米).(tan60°≈1.73,tan75°≈3.73)几何图形问题;数形结合.如图,过点D作DE⊥AC于点E.通过解Rt△EAD和Rt△EBD分别求得AE、BE的长度,然后根据图示知:AB=AE﹣BE=100,把相关线段的长度代入列出关于ED的方程﹣=100.通过解该方程求得ED的长度.解:如图,过点D作DE⊥AC于点E.∵在Rt△EAD中,∠DAE=60°,∴tan60°=,∴AE=同理,在Rt△EBD中,得到EB=.又∵AB=100米,∴AE﹣EB=100米,即﹣=100.则ED=≈≈323(米).答:观景台D到徒骇河西岸AC的距离约为323米.本题考查了解直角三角形的应用.主要是正切概念及运算,关键把实际问题转化为数学问题加以计算.28.(2014•烟台)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.几何图形问题.延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出∠CAD=180°﹣∠ODB﹣∠ACD=90°,解Rt△ACD,得出AD=AC•tan∠ACD=米,CD=2AD=3米,再证明△BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BD﹣CD即可求出浮漂B与河堤下端C之间的距离.解:延长OA交BC于点D.∵AO的倾斜角是60°,∴∠ODB=60°.∵∠ACD=30°,∴∠CAD=180°﹣∠ODB﹣∠ACD=90°.在Rt△ACD中,AD=AC•tan∠ACD=•=(米),∴CD=2AD=3米,又∵∠O=60°,∴△BOD是等边三角形,∴BD=OD=OA+AD=3+=4.5(米),∴BC=BD﹣CD=4.5﹣3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.29.(2014•莱芜)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)DE,再根据DB=DC﹣BE即可求解.解:过A点作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB•sin62°=25×0.88=22米,BE=AB•cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18米,∴DB=DE﹣BE≈6.58米.故此时应将坝底向外拓宽大约6.58米.考查了解直角三角形的应用﹣坡度坡角问题,两个直角三角形有公共的直角边,先求出公共边的解决此类30.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)当∠CED=60°时,AD=3CD=60cm,当∠CED=120°时,过点E作EH⊥CD于H(图2),则∠CEH=60°,CH=HD.在直角△CHE中,sin∠CEH=,∴CH=20•sin60°=20×=10(cm),∴CD=20cm,∴AD=3×20=60≈103.9(cm).∴103.9﹣60=43.9(cm).即点A向左移动了43.9cm;(3)当∠CED=120°时,∠DEG=60°,∵DE=EG,∴△DEG是等边三角形.∴DG=DE=20cm,当∠CED=60°时(图3),则有∠DEG=120°,过点E作EI⊥DG于点I.∵DE=EG,∴∠DEI=∠GEI=60°,DI=IG,在直角△DIE中,sin∠DEI=,∴DI=DE•sin∠DEI=20×sin60°=20×=10cm.∴DG=2DI=20≈34.6cm.则x的范围是:20cm≤x≤34.6cm.本题考查了菱形的性质,当菱形的一个角是120°或60°时,连接菱形的较短的对角线,即可把菱形分成两个。
浙江省杭州市中考数学模拟试题27(含解析)-人教版初中九年级全册数学试题

某某省某某市2015届中考数学模拟试题27一.选择题(本题有10个小题,每小题3分,共30分)1.下列各数中,最小的是()A.0 B.1 C.﹣D.﹣A.1.00553×109B.1.00553×1010 C.1.00553×1011 D.1.00553×10123.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和404.正八边形的每个外角为()A.60° B.45° C.35° D.36°5.已知x=1是方程x2+x﹣2a=0的一个根,则方程的另一个根是()A.1 B.2 C.﹣2 D.﹣16.在一个不透明的口袋中装有7个完全相同的小球,把它们分别标号为1,2,3,4,5,6,7,从中随机摸出一个小球,其标号大于3的概率为()A.B.C.D.7.如图,关于抛物线y=x2+2x﹣1,下列说法错误的是()A.顶点坐标为(﹣1,﹣2)B.对称轴是直线x=﹣lC.开口方向向上D.当x>﹣1时,y随x的增大而减小8.如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形有()A.1对B.2对C.3对D.4对9.如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是()A.B.C.D.10.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点N C.点P D.点Q二.填空题(本题有6个小题,每小题4分,共24分)11.计算()÷=.12.已知反比例函数y=的图象经过点A(1,﹣2),则k=.13.已知⊙O的直径CD为5cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=4,则AC=.14.三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”,如果一个“特征三角形”的“特征角”为110°,那么这个“特征三角形”的最小内角的度数为.15.已知﹣2<x+y<3且1<x﹣y<4,则z=2x﹣3y的取值X围是.16.如图,在平面直角坐标系xOy中,我们把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(﹣1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上. 当一次函数y=x+b的图象与图形C恰好只有一个公共点时,b的取值X围为; 已知▱AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,则点M的横坐标x的取值X围为.三.解答题(本题有7个小题,共66分)17.如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成36°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC≈4.5米,引桥水平跨度AC=7米.(1)求水平平台DE的长度;(2)若与地面垂直的平台立枉MN的高度为2.5米,求两段楼梯AD与BE的长度之比.(参考数据:取sin36°=0.59,cos36°=0.81,tan36°=0.73.18.我校艺术节期间,向九年级学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填:“普查”或“抽样调查”),王老师所调查的4个班征集到作品其中B班征集到作品件,请把图2补充完整.(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要在其中抽两人去参见学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程).19.已知△ABC,以顶点C为圆心、CB为半径作圆交AC于点D,连接DB.若∠ACB=2∠ABD,①求证:边AB所在直线于⊙C相切;②AC=3,BC=2,求AD和DB的长.20.某某地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014﹣2019年,某某工程地铁对负责建设,分两个班组分别从某某南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?21.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(画图工具不限)(2)若∠PAB=25°,求∠ADF的度数;(3)如图2,若60°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.22.在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别相交于点A(﹣3,0)、B(0,﹣3)两点,二次函数y=x2+mx+n的图象经过点A.(1)求一次函数y=kx+b的表达式;(2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n;(3)① 设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;②若当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m,n的值.23.如图(1),边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,记=k,我们把k叫做这个菱形的“形变度”.(1)若变形后的菱形有一个内角是60°,则k=.(2)如图1(2),已知菱形ABCD,若k=.①这个菱形形变前的面积与形变后的面积之比为;②点E、F、G、H分别是菱形ABCD各边的中点,求四边形EFGH形变前与形变后的面积之比.(3)如图1(3),正方形ABCD由16个边长为1的小正方形组成,形变后成为菱形A′B′C′D′,△AEF(E、F是小正方形的顶点),同时形变为△A′E′F′,设这个菱形的“形变度”为k.对于△AEF与△A′E′F′的面积之比你有何猜想?并证明你的猜想.当△AEF与△A′E′F′的面积之比等于2:时,求A′C′的长.2015年某某省某某市中考数学模拟试卷(27)参考答案与试题解析一.选择题(本题有10个小题,每小题3分,共30分)1.下列各数中,最小的是()A.0 B.1 C.﹣D.﹣【考点】实数大小比较.【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可解答.【解答】解:因为在A、B、C、D四个选项中行只有只有C、D为负数,故应从C、D中选择;因为|﹣|>|﹣|,所以,故选C.【点评】此题主要考查了实数的大小的比较,实数比较大小的方法:(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数绝对值大的反而小.A.1.00553×109B.1.00553×1010 C.1.00553×1011 D.1.00553×1012【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】11.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和40【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选:A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.正八边形的每个外角为()A.60° B.45° C.35° D.36°【考点】多边形内角与外角.【分析】利用正八边形的外角和等于360度即可求出答案.【解答】解:360°÷8=45°.故选B.【点评】本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.5.已知x=1是方程x2+x﹣2a=0的一个根,则方程的另一个根是()A.1 B.2 C.﹣2 D.﹣1【考点】根与系数的关系.【分析】已知x=1是方程x2+x﹣2a=0的一个根,设另一根是a,利用根与系数的关系则有1+a=﹣1,由此可以求出另一个根.【解答】解:∵x=1是方程x2+x﹣2a=0的一个根,设另一根是a,利用根与系数的关系则有1+a=﹣1,解得a=﹣2.故选C.【点评】本题考查一元二次方程ax2+bx+c=0的根与系数关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.6.在一个不透明的口袋中装有7个完全相同的小球,把它们分别标号为1,2,3,4,5,6,7,从中随机摸出一个小球,其标号大于3的概率为()A.B.C.D.【考点】概率公式.【分析】由在一个不透明的口袋中装有7个完全相同的小球,把它们分别标号为1,2,3,4,5,6,7,直接利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的口袋中装有7个完全相同的小球,把它们分别标号为1,2,3,4,5,6,7,∴从中随机摸出一个小球,其标号大于3的概率为:.故选C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.7.如图,关于抛物线y=x2+2x﹣1,下列说法错误的是()A.顶点坐标为(﹣1,﹣2)B.对称轴是直线x=﹣lC.开口方向向上D.当x>﹣1时,y随x的增大而减小【考点】二次函数的性质;二次函数的图象.【分析】先将一般式化为顶点式,得到y=x2+2x﹣1=(x+1)2﹣2,根据二次函数的性质得出顶点坐标是(﹣1,﹣2),对称轴是直线x=﹣1,根据a=1>0,得出开口向上,当x>﹣1时,y随x的增大而增大,根据结论即可判断选项.【解答】解:抛物线y=x2+2x﹣1=(x+1)2﹣2,A、因为顶点坐标是(﹣1,﹣2),故说法正确;B、因为对称轴是直线x=﹣1,故说法正确;C、因为a=1>0,开口向上,故说法正确;D、当x>﹣1时,y随x的增大而增大,故说法错误.故选D.【点评】本题主要考查对二次函数的性质的理解和掌握,能熟练地运用二次函数的性质进行判断是解此题的关键.也考查了配方法.8.如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形有()A.1对B.2对C.3对D.4对【考点】相似三角形的判定.【分析】先根据条件证明△PCF∽△BCP,利用相似三角形的性质:对应角相等,再证明△APD∽△PGD,进而证明△APG∽△BFP再证明时注意图形中隐含的相等的角.【解答】解:∵∠CPD=∠B,∠C=∠C,∴△PCF∽△BCP.∵∠CPD=∠A,∠D=∠D,∴△APD∽△PGD.∵∠CPD=∠A=∠B,∠APG=∠B+∠C,∠BFP=∠CPD+∠C∴∠APG=∠BFP,∴△APG∽△BFP.故选C.【点评】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角.9.如图,某航天飞机在地球表面点P的正上方A处,从A处观测到地球上的最远点Q,若∠QAP=α,地球半径为R,则航天飞机距地球表面的最近距离AP,以及P、Q两点间的地面距离分别是()A.B.C.D.【考点】解直角三角形的应用;切线的性质;弧长的计算.【分析】由题意,连接OQ,则OQ垂直于AQ,在直角三角形OQA中,利用三角函数解得.【解答】解:由题意,从A处观测到地球上的最远点Q,∴AQ是⊙O的切线,切点为Q,连接OQ,则OQ垂直于AQ,如图则在直角△OAQ中有,即AP=.在直角△OAQ中则∠O为:90°﹣α,由弧长公式得PQ为.故选B.【点评】本题考查了直角三角形的应用,由题意在直角三角形OAQ中,利用三角函数从而解得.10.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点N C.点P D.点Q【考点】动点问题的函数图象.【专题】应用题;压轴题.【分析】分别假设这个位置在点M、N、P、Q,然后结合函数图象进行判断.利用排除法即可得出答案.【解答】解:A、假设这个位置在点M,则从A至B这段时间,y不随时间的变化改变,与函数图象不符,故本选项错误;B、假设这个位置在点N,则从A至C这段时间,A点与C点对应y的大小应该相同,与函数图象不符,故本选项错误;C、,假设这个位置在点P,则由函数图象可得,从A到C的过程中,会有一个时刻,教练到小翔的距离等于经过30秒时教练到小翔的距离,而点P不符合这个条件,故本选项错误;D、经判断点Q符合函数图象,故本选项正确;故选:D.【点评】此题考查了动点问题的函数图象,解答本题要注意依次判断各点位置的可能性,点P的位置不好排除,同学们要注意仔细观察.二.填空题(本题有6个小题,每小题4分,共24分)11.计算()÷= 6 .【考点】二次根式的混合运算.【专题】计算题.【分析】先将二次根式化为最简,然后再进行二次根式的除法运算.【解答】解:原式=(12﹣6)÷=6.故答案为:6.【点评】此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.12.已知反比例函数y=的图象经过点A(1,﹣2),则k= ﹣2 .【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(1,﹣2)代入y=求出k的值即可.【解答】解:∵反比例函数y=的图象经过点A(1,﹣2),∴﹣2=,解得k=﹣2.故答案为:﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.已知⊙O的直径CD为5cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=4,则AC= 2或.【考点】垂径定理;勾股定理.【专题】分类讨论.【分析】先画图,分两种情况:①AC>AD,如图1,连接OA,根据垂径定理得出AM,再由勾股定理得出AC;②AC<AD,如图2,连接OA,根据垂径定理得出AM,再由勾股定理得出OM,即可得出AC.【解答】解:分两种情况:①AC>AD,如图1,连接OA,∵CD=5,∴OA=OC=2.5,∵AB⊥CD,∴AM=BM,∵AB=4,∴AM=2,∴OM=1.5,∴CM=4,∴由勾股定理得AC=2;②AC<AD,如图2,连接OA,∵CD=5,∴OA=OC=2.5,∵AB⊥CD,∴AM=BM,∵AB=4,∴AM=2,∴OM=1.5,∴CM=1,∴由勾股定理得AC=;故答案为2或.【点评】本题考查了垂径定理,以及勾股定理,分类讨论是解题的关键.14.三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”,如果一个“特征三角形”的“特征角”为110°,那么这个“特征三角形”的最小内角的度数为15°.【考点】三角形内角和定理.【专题】新定义.【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最小内角即可.【解答】解:由题意得:α=2β,α=110°,则β=55°,180°﹣110°﹣55°=15°,故答案为:15°.【点评】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.15.已知﹣2<x+y<3且1<x﹣y<4,则z=2x﹣3y的取值X围是1<z<11 .【考点】不等式的性质.【分析】根据不等式的性质,设a(x+y)+b(x﹣y)=2x﹣3y;根据不等式的性质来求解;【解答】解:﹣2<x+y<3 ①,1<x﹣y<4 ②,设a(x+y)+b(x﹣y)=2x﹣3y则有解得:a=b=故z=,即﹣×(3)+1×<z<所以1<z<11故答案为:1<z<11.【点评】本题考查了了不等式的性质,利用了不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.16.如图,在平面直角坐标系xOy中,我们把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(﹣1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上. 当一次函数y=x+b的图象与图形C恰好只有一个公共点时,b的取值X围为b=或﹣1≤b<1 ; 已知▱AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,则点M的横坐标x的取值X围为﹣2<x<﹣1或0≤x <.【考点】一次函数综合题.【分析】利用直径所对的圆周角是直角,从而判定三角形ADB为等腰直角三角形,其直角边的长等于两直线间的距离,可利用数形结合的方法得到当直线与图形C有一个交点时自变量x的取值X围;根据平行四边形的性质及其四个顶点均在图形C上,可能会出现四种情况,分类讨论即可得出答案.【解答】解:如图,分别连接AD、DB,则点D在直线AE上,∵点D在以AB为直径的半圆上,∴∠ADB=90°,∴BD⊥AD,在Rt△DOB中,由勾股定理得,BD=,∵AE∥BF,∴两条射线AE、BF所在直线的距离为,则当一次函数y=x+b的图象与图形C恰好只有一个公共点时,b的取值X围是b=或﹣1≤b<1.假设存在满足题意的平行四边形AMPQ,根据点M的位置,分以下四种情况讨论:①当点M在射线AE上时,如图2,∵AMPQ四点按顺时针方向排列,∴直线PQ必在直线AM的上方∴PQ两点都在弧AD上,且不与点A、D重合,∴0<PQ<.∵AM∥PQ且AM=PQ,∴0<AM<,∴﹣2<x<﹣1,②当点M在弧AD上时,如图3,∵点A、M、P、Q四点按顺时针方向排列∴直线PQ必在直线AM的下方,此时,不存在满足题意的平行四边形.③当点M在弧BD上时,设弧DB的中点为R,则OR∥BF,当点M在弧DB上时,如图4,过点M作OR的垂线交弧DB于点Q,垂足为点S,可得S是MQ的中点.∴四边形AMPQ为满足题意的平行四边形,∴0≤x<.当点M在弧RB上时,如图5,直线PQ必在直线AM的下方,此时不存在满足题意的平行四边形.④当点M在射线BF上时,如图6,直线PQ必在直线AM的下方,此时,不存在满足题意的平行四边形.综上,点M的横坐标x的取值X围是﹣2<x<﹣1或0≤x<.故答案为:b=或﹣1<b<1,﹣2<x<﹣1或0≤x<.【点评】此题考查了一次函数的综合,题目中还涉及到了勾股定理、平行四边形的性质及圆周角定理的相关知识,题目中还渗透了分类讨论思想.三.解答题(本题有7个小题,共66分)17.如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成36°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC≈4.5米,引桥水平跨度AC=7米.(1)求水平平台DE的长度;(2)若与地面垂直的平台立枉MN的高度为2.5米,求两段楼梯AD与BE的长度之比.(参考数据:取sin36°=0.59,cos36°=0.81,tan36°=0.73.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)首先由已知构造直角三角形如图,延长BE交AC于F,过点E作EG⊥AC,垂足为G,解直角三角形BCF求得CF,又由已知BE∥AD,四边形AFED为平行四边形,所以DE=AF=AC﹣CF.(2)如图解直角三角形BCF,可求出BF,EG=MN=3米,解直角三角形EGF可求出EF,则BE=BF﹣EF,而AD=EF,从而求得两段楼梯AD与BE的长度之比.【解答】解:(1)延长BE交AC于F,过点E作EG⊥AC,垂足为G,在Rt△BCF中,CF==≈6.16(米),∴AF=AC﹣CF=7﹣6.16=0.84(米),∵BE∥AD,∴四边形AFED为平行四边形,∴DE=AF=0.84米.答:水平平台DE的长度为0.84米.(2)作EH⊥A C于H.∵MN⊥AC,∴EH=MN=2.5,∵EH∥BC,∴.【点评】此题考查的知识点是解直角三角形的应用,关键是由已知首先构建直角三角形,运用三角函数求解.18.我校艺术节期间,向九年级学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是抽样调查(填:“普查”或“抽样调查”),王老师所调查的4个班征集到作品其中B班征集到作品 3 件,请把图2补充完整.(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要在其中抽两人去参见学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程).【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据条形统计图与扇形统计图的知识,即可求得王老师所调查的4个班征集到作品其中B班征集到作品;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)根据题意得:王老师采取的调查方式是抽样调查;∵王老师所调查的4个班征集到作品共有:5÷=12(件),∴王老师所调查的4个班征集到作品其中B班征集到作品:12﹣2﹣5﹣2=3(件);故答案为:抽样调查,3;(2)画树状图得:∵共有12种等可能的结果,抽中一男一女的有8种情况,∴抽中一男一女的概率为: =.【点评】此题考查了列表法或树状图法求概率以及扇形统计图与条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.19.已知△ABC,以顶点C为圆心、CB为半径作圆交AC于点D,连接DB.若∠ACB=2∠ABD,①求证:边AB所在直线于⊙C相切;②AC=3,BC=2,求AD和DB的长.【考点】切线的判定.【分析】(1)证得AB⊥BC即可判定切线;(2)首先根据AD=AC﹣CD求得AD的长,然后勾股定理得到AB的长,根据△ADG∽△ACB,对应边成比例得出,从而求得,根据勾股定理求得BD的长即可.【解答】解:(1)∵CB=CD,∴∠CDB=∠CBD,∵∠CDB=∠A+∠DBA,∠ACB=2∠ABD,∴在△ABC中,由三角形的内角和定理得:2(∠A+∠DBA)+2∠ABD=180°,∴∠A+2∠DBA=90°,即∠A+∠ACB=90°,∴∠ABC=90°,∴边AB所在直线于⊙C相切;(2)作DG⊥AB于G.AD=AC﹣CD=AC﹣BC=3﹣2=1,∵BC⊥AB,AC=3,BC=2,∴,∵DG⊥AB,BC⊥AB,∴DG∥BC.∴△ADG∽△ACB,∴,∴,∴,∴,∴.【点评】本题考查了切线的判定与性质,三角形内角和定理三角形相似的判定和性质,勾股定理的应用等,在解决切线问题时,常常连接圆心和切点,证明垂直或利用垂直求解.20.某某地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014﹣2019年,某某工程地铁对负责建设,分两个班组分别从某某南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?【考点】二元一次方程组的应用.【分析】(1)设甲、乙班组平均每天掘进x米,y米,根据“甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米,”列出方程组解答即可;(2)设按原来的施工进度和改进施工技术后的进度分别还需a天,b填完成任务,根据题意列式计算得出答案,再进一步相减即可.【解答】解:(1)设甲、乙班组平均每天掘进x米,y米,由题意得,解得.答:甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)设按原来的施工进度和改进施工技术后的进度分别还需a天,b填完成任务,则a=(48180﹣110)÷(12.2+9.8)=2185(天),b=(48180﹣110)÷(12.2+1.7+9.8+1.3)=1922.8(天),因此a﹣b=2185﹣1922.8=262.2(天).答:少用262.2天完成任务.【点评】此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系,理清工程问题的计算方法是解决问题的关键.21.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(画图工具不限)(2)若∠PAB=25°,求∠ADF的度数;(3)如图2,若60°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.【考点】作图—复杂作图;正方形的性质;轴对称的性质.【分析】(1)直接利用对称点作法得出E点位置进而得出答案;(2)利用轴对称的性质以及等腰三角形的性质得出即可;(3)由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,进而利用勾股定理得出即可.【解答】解:(1)如图1所示:(保留作图迹)(2)如图2,连接AE,则∠PAB=∠PAE=25°,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAD=140°,∴∠ADF=20°;(3)BF2+FD2=2AB2.理由:如图3,连接AE,BF,BD,由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,则∠BFD=∠BAD=90°,故BF2+FD2=BD2,则BF2+FD2=2AB2.【点评】此题主要考查了复杂作图以及对称点的性质和正方形的性质以及勾股定理等知识,熟练应用轴对称的性质得出是解题关键.22.在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别相交于点A(﹣3,0)、B(0,﹣3)两点,二次函数y=x2+mx+n的图象经过点A.(1)求一次函数y=kx+b的表达式;(2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n;(3)① 设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;②若当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m,n的值.【考点】二次函数综合题.【分析】(1)利用待定系数法求出解析式,(2)先表示出二次函数y=x2+mx+n图象的顶点,利用直线AB列出式子,再与点A在二次函数上得到的式子组成方程组求得m,n的值,(3)①易求抛物线解析式为y=x2﹣2x﹣15.根据抛物线的对称性和增减性来求二次函数y=x2+mx+n 的最小值;②本题要分四种情况:当对称轴﹣3<﹣<0时;当对称轴﹣>0时;当对称轴﹣=0时;当对称轴﹣≤﹣3时,结合二次函数y=x2+mx+n的图象经过点A得出式子9﹣3m+n=0,求出m,n但一定要验证是否符合题意.【解答】解:(1)A(﹣3,0),B(0,﹣3)代入y=kx+b得,解得.∴一次函数y=kx+b的解析式为:y=﹣x﹣3;(2)二次函数y=x2+mx+n图象的顶点为(﹣,)∵顶点在直线AB上,∴=﹣3,又∵二次函数y=x2+mx+n的图象经过点A(﹣3,0),∴9﹣3m+n=0,∴组成方程组为,解得或.(3)①当m=﹣2时,9﹣3m+n=0,解得 n=﹣15,∴y=x2﹣2x﹣15.∵对称轴直线x=1在﹣3≤x≤0右侧,∴x=0时,y最小值是﹣15.∵二次函数y=x2+mx+n的图象经过点A.。
2015年中考数学模拟试题参考答案

2015年中考数学模拟试题参考答案1-10:DADBBDAABB(11)2(12)1.49×810(13 )83(14)1425 (15)8(16)75° 17(1)y=-2x+4 (2)x ≤118(1)略 (2)105°19(1)P P 略P 略略略略PPPP略略P 略PPPPPp 凭PPPPPPp(2)树形图略P=81520(1)(2)略.(3)P(0,1), y=-12x+7421(1)连接BD ,OD ,作OG ⊥CD 于G ,DE ⊥AB 于E.则OG=DE=125,22221127-=2510DG OD OG =-=()()725DC DG ∴==(2)连接BD,由tan ∠BAC=12。
设BC=a,则AC=2a,222=A 2+(=52a)Baa=25 a=5 作DH ⊥BC 于H ,则3cos DCH cos 5BAD ∠=∠=设DC=x,则CH=35x ,45DH x =.由勾股定理得:222435554x x ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭解得5x =,负值舍去。
5DC ∴=.22.(1)设调整价格后的标价是y.元.80757520100100100100160160y -⨯=⨯⨯180y ∴=(2)(x 120)(2x 400)3000--+=12150,170x x ∴==(3)6a ≤<1023.解:⑴当k=2时AB=BC=2CD ,又E 是BC 的中点.∴BC=2BE ,∴BE=CD.又∠ABC=∠BCD.∴△ABE ≌△BCD.∴∠CBD=∠BAE ,∴∠AFB=∠CBD +∠AEB=∠BAE +∠AEB=180°-∠ABC=60°.⑵作BH ⊥AC 于H ,则CH=21AC ,又AG=3GC ,∴AC=4GC. ∴CH=2GC.∴GH=GC ,∵AB=BC ,∠ABC=120°,∴∠ACB=30°.∴∠ACD=120°-30°=90°, ∴BH ∥CD.∴1==GCGHCD BH ,∴BH=CD 设CD=BH=1,则AB=k , 又Rt △ABH 中∠BAH=30°,∴AB=2BH=2,即k=2.⑶由∠ABC=∠BCD=∠APD=120°可证△ABP ∽△PCD ∴CD BP PC AB =设CD=1,PB=x 则AB=BC=k ,PC=k -x.∴1xx k k =- ∴x 2-kx +k =0由点P 的唯一性可知方程有两个相等的实根,∴△=k 2-4k =0,∴k =4.24.解:⑴将A (-t ,0),B (3t ,0),C (0,-3)代入可求321)3)((1222--=-+=x tx t t x t x t y ⑵作DG ⊥x 轴于G ,EH ⊥x 轴于H.由y D =y C =-3得332122-=--x tx t ,∴x=0或x=2t.∴x D =2t.∴AG=3t.设E (x E ,y E ),则y E =21t (x E +t)(x E -3t),易证△AGD ∽△AHE ,∴EHDGAH AG =∴)3)((1332t x t x t t x t E E E -+=+∴x E =4t ,∴AH=5t ,∴5353===t t AH AG AE AD . ⑶t=1时y=x 2―2x ―3,设PM 的解析式为:y=kx +m ,由⎩⎨⎧--=+=322x x y m kx y 得x 2-(k +2)x -m -3=0,△=(k +2)2+4(m +3)=0,∴k +2=±23--m ,设x M >0,x N <0则x m =322--=+m k , y M =―m ―3―233---m ,x N =-3-m ,y N =-m -3+233---m .由x M +x N =0知Q为MN的中点.可得y Q =6)122(21)(21--=--=+m m y y N M ,∴QC=y Q -y C =―m ―6―(―3)=―m ―3.CP =―3―m ,∴CP =CQ.。
三年中考五年模拟数学答案

三年中考五年模拟数学答案【篇一:2015中考数学5年中考3年模拟】txt>1.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),?,则第n个图形的周长是a、2nb、4nc、2n+1d、2n+22.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是()a.米 b.米 c.米d.米23.(2014威海)已知x﹣2=y,则x(x﹣3y)+y(3x﹣1)﹣2的值是()a.﹣2 b.0 c.2d.44.求1+2+2+2+?+22s-s=22013232012的值,可令s=1+2+2+2+?+223232012,则2s=2+2+2+2+?+22342013,因此-1.仿照以上推理,计算出1+5+5+5+?+52012的值为()a.52012 -1b.52013 -1 c. d.5. 为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛。
如下图所示:按照上面的规律,摆n个“金鱼”需用火柴棒的根数为a.2+6nb.8+6nc.4+4n d.8n6. 若n满足(n-2011)2+(2012-n)2=1, 则2012-n)(n-2011)的值为( )a.-1b.0c.1/2d.17. 若n满足(n-2010)2+(2011-n)2=5, 求(2011-n)(n-2010)的值.8. 在平面直角坐标系中,正方形abcd的位置如图所示,点a的坐标为(1,0),点d的坐标为(0,2),延长cb交x轴于点a1,作正方形a1b1c1c;延长c1b1交x轴于点a2,作正方形a2b2c2c1?按这样的规律进行下去,第2011个正方形的面积为( )a. 5(3/2)2010b. 5(9/4)2011c. 5(9/4)2011d. 5(3/2)402010 已知,则的值是______________.11. 若√x-2y+9与|x-y-3|互为相反数,则x+y的值为.a.3b.9c.12d.2712. 若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是,-1的差倒数为.现已知x2013的值为() ,是的差倒数,是的差倒数,是的差倒数,?,依次类推,则…..14. 正方形oa1b1c1、a1a2b2c2、a2a3b3c3┅按如图放置,其中点a1、a2、a3┅在x轴的正半轴上,点b1、16、为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买a,b两种型号的学习用品共1000件,已知a型学习用品的单价为20元,b型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买a,b两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买b型学习用品多少件?17.(2014潍坊)如图,已知矩形abcd的长ab为5,宽bc为4,e是bc边上的一个动点,ae⊥ef,ef交cd于点f.设be=x,fc=y,则点e从点b运动到点c时,能表示y关于x的函数关系的大致图象是()a. b.c.d.ab c.d19.如图,矩形abcd中,ab=3,bc=4,动点p从a点出发,按a→b→c的方向在ab和bc上移动,记pa=x,点d到直线pa的距离为y,则y关于x的函数图象大致是()20、如图,正方形abcd的边长为4cm,动点p、q同时从点a出发,以1cm/s的速度分别沿a→b→c和a→d→c的路径向点c运动,设运动时间为x(单位:s),四边形pbdq的面积为y(单位:cm2),则y与x(0≤x≤8)之间的函数关系可用图象表示为( )函数y=x分之k在第一象限的图像经过点b,若oa2-ab2=12.则k的值为。
2015年中考数学模拟试卷及答案(含答题纸)

9.反比例函数 y=
k (k≠0 )的图象经过两点 A(x1 ,y1 ), B(x2 ,y 2) ,当 x 1 <x 2 <0 x
时,y 1 > y2 。则一次函数 y=-2x+k 不经过的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.如图,AB 是⊙O 的直径,弦 CD⊥AB 于点 G,点 F 是 CD 上一点,且满足
PQ 的值 AQ
(2)连接 CM,设动点 P 的横坐标为 t。当 t 为何值时,△APQ 与△CMN 相似? (三)图 2 中,点 E 在 Y 轴上满足∠OAE=30°。 (二)中的直线 PQ 交 AE 于点 F,将∠ OAE 沿直线 PQ 翻折,点 A 落在射线 AO 上的点 G 处。当△EFG 是直角三角形时,试确定 点 Q 的坐标。
图1
图2
参考简答 一.选择题 ABBCC DCDCC 二.填空题 11.x≤3 12.6 13.16π 15.76 16.(1)(2)(3) 三.解答题 17.3 18.化简得
14。100,50
2 x(x 1) 。X 只能取 2,原式= 3 x 1
19.(1)略 (5 分) (2)矩形 (5 分) 20.(1)50, 5 次, 图中 5 次有 16 人图略 (2)112 (3)
2015 年中考数学模拟试卷
广办武元中学 一、选择题(每小题 3 分,共 30 分) 1.-3 的相反数是( ) A. 3 B.-3 C.胡启
1 3
D.
1 3
)
2.不等式 3X-5<1 的解集在数轴上表示是( A B D ) . C.
C 3. 如图所示的几何体的俯视图是( A. B.
D.
第 3 题图
2015年上海市杨浦区中考数学一模试卷及答案解析(pdf版)
A. S1=S3
B. S2=2S4
C. S2 =2S1
D.S1•S3=S2•S4
二.填空题(本大题满分 4×12=48 分)
7.(4 分)(2015•静安区一模)已知 = ,那么
=
.
8.(4 分)(2015•静安区一模)计算:
=
.
9.(4 分)(2002•福州)已知线段 a=4 cm,b=9 cm,则线段 a,b 的比例中项为
.
15.(4 分)(2015•静安区一模)如图,当小杰沿坡度 i=1:5 的坡面由 B 到 A 行走了 26 米
时,小杰实际上升高度 AC=
米.(可以用根号表示)
16.(4 分)(2015•青浦区一模)已知二次函数的图象经过点(1,3),对称轴为直线 x=﹣1,
由此可知这个二次函数的图象一定经过除点(1,3)外的另一点,这点的坐标是
20.(10 分)(2015•静安区一模)如图,已知在△ ABC 中,AD 是边 BC 上的中线,设 = ,
=;
(1)求 (用向量 , 的式子表示);
(2)如果点 E 在中线 AD 上,求作 在 , 方向上的分向量;(不要求写作法,但要保 留作图痕迹,并指出所作图中表示结论的分向量).
21.(10 分)(2015•大庆模拟)如图,某幢大楼的外墙边上竖直安装着一根旗杆 CD,小明 在离旗杆下方大楼底部 E 点 24 米的点 A 处放置一台测角仪,测角仪的高度 AB 为 1.5 米, 并在点 B 处测得旗杆下端 C 的仰角为 40°,上端 D 的仰角为 45°,求旗杆 CD 的长度;(结 果精确到 0.1 米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
2015年中考数学模拟试题(一)附答案
2015年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上)1.2-等于(▲)A.2B.-2C.±2D.±122.使1x-有意义的x的取值范围是(▲)A.x>1B.x≥1C.x<1D.x≤13.计算(2a2) 3的结果是(▲)A.2a5B.2a6C.6a6D.8a64.如图所示几何体的俯视图是(▲)A.B.C.D.5.在□ABCD中,AB=3,BC=4,当□ABCD的面积最大时,下列结论正确的有(▲)①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④6.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为(▲)A.3或4 2 B.4或32C.3或4D.32或42E DCBAA'( 第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.计算 (-1)3+( 14)-1= ▲ . 8.计算 23+13= ▲ . 9.方程3x -4 x -2=12-x的解为x = ▲ . 10.南京地铁三号线全长为44830米,将44830用科学记数法表示为 ▲ . 11.已知关于x 的方程x 2-m x +m -2=0的两个根为x 1、x 2,则x 1+ x 2-x 1x 2= ▲ .12.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是 ▲ 岁.13.如图,正六边形ABCDEF 的边长为2,则对角线AC = ▲ .14.某体育馆的圆弧形屋顶如图所示,最高点C 到弦AB 的距离是20 m ,圆弧形屋顶的跨度AB 是80 m ,则该圆弧所在圆的半径为_____▲_____m .15.如图,将边长为6的正方形ABCD 绕点C 顺时针旋转30°得到正方形A ′B ′CD ′,则点A 的旋转路径长为 ▲ .(结果保留π)16.如图,A 、B 是反比例函数y = kx 图像上关于原点O 对称的两点,BC ⊥x 轴,垂足为C ,连线AC 过点D (0,-1.5),若△ABC 的面积为7,则点B 的坐标为 ▲ . 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)化简: x -1 x +2 ÷(3x +2-1).18.(6分)解不等式组:⎩⎪⎨⎪⎧1- x +13≥0,3+4(x -1)>1.19.(8分)如图,E 、F 是四边形ABCD 的对角线AC 上两点,AE =CF ,DF ∥BE ,DF =BE .(1)求证:四边形ABCD 是平行四边形; (2)若AC 平分∠BAD ,求证:□ABCD 为菱形.(第19题)A BCD EF FED C B A ( 第13题 )C OB A (第14题)(第16题) A B D A'D' B' (第15题)20.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是____▲______. (2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关..的概率. (3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)21.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0—50时为1级,质量为优;51—100时为2级,质量为良;101—200时为3级,轻度污染;201—300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了____▲___天的空气质量检测结果进行统计; (2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为____▲____°; (4)如果空气污染达到中度污染或者以上........,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)22.(8分)已知P (-5,m )和Q (3,m )是二次函数y =2x 2+b x +1图像上的两点.(1)求b 的值;(2)将二次函数y =2x 2+b x +1的图像沿y 轴向上平移k (k >0)个单位,使平移后的图像与x 轴无交点,求k 的取值范围.23.(8分)如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离OA =75厘米.展开小桌板使桌面保持水平,此时CB ⊥AO ,∠AOB =∠ACB =37°,且支架长OB 与桌面宽BC 的长度之和等于OA 的长度.求小桌板桌面的宽度BC .(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)O C B A 空气质量等级天数统计图 空气质量等级天数占所抽取天数百分比统计图24.(8分)水池中有水20 m 3,12:00时同时打开两个每分钟出水量相等且不变的出水口,12:06时王师傅打开一个每分钟进水量不变的进水口,同时关闭一个出水口,12:14时再关闭另一个出水口,12:20时水池中有水56 m 3,王师傅的具体记录如下表.设从12:00时起经过t min 池中有水y m 3,右图中折线ABCD 表示y 关于t 的函数图像.(1)每个出水口每分钟出水 ▲ m 3,表格中a = ▲ ; (2)求进水口每分钟的进水量和b 的值;(3)在整个过程中t 为何值时,水池有水16 m 3 ?25.(9分)如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径, ⌒ BD = ⌒AD ,DE ⊥BC ,垂足为E . (1)求证:CD 平分∠ACE ;(2)判断直线ED 与⊙O 的位置关系,并说明理由; (3)若CE =1,AC =4,求阴影部分的面积.26.(9分)某水果超市以8元/千克的单价购进1000千克的苹果,为提高利润和便于销售,将苹果按大小分两种规格出售,计划大、小号苹果都为500千克,大号苹果单价定为16元/千克,小号苹果单价定为10元/千克,若大号苹果比计划每增加1千克,则大苹果单价减少0.03元,小号苹果比计划每减少1千克,则小苹果单价增加0.02元.设大号苹果比计划增加x 千克. (1)大号苹果的单价为 ▲ 元/千克;小号苹果的单价为 ▲ 元/千克;(用含x 的代数式表示) (2)若水果超市售完购进的1000千克苹果,请解决以下问题: ① 当x 为何值时,所获利润最大? ② 若所获利润为3385元,求x 的值.时间 池中有水(m 3)12:00 20 12:04 12 12:06 a12:14 b 12:20 56(第25题) (第24题) a t/min y /m 3 O 20 b 56AB CD27.(10分)【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.【初步体验】(1)如图①,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FC∥BC.若AD=2,AE=1,DF=6,则EG=▲, FBGC=▲.(2)如图②,在△ABC中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB 为边构造△ADM(即AM=BF,MD=DF);以AE、EG、GC为边构造△AEN(即AN=GC,NE=EG).求证:∠M=∠N.【深入探究】上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:(3)如图③,已知△ABC和线段a,请用直尺与圆规作△A′B′C′.满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)图③aAB CAB CD EGF图①图②AB CD EGFMN2015年中考数学模拟试题(一)参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)三、解答题(本大题共11小题,共88分)7.解:原式= x -1 x +2÷3-x -2x +2……………………………………………………………………………2分= x -1 x +2× x +21-x…………………………………………………………………………………4分 =-1 …………………………………………………………………………………………6分18.解:解不等式①,得x ≤2. …………………………………………………………………………2分解不等式②,得x >12.…………………………………………………………………………4分所以,不等式组的解集是12<x ≤2. …………………………………………………………6分19.证明:(1)∵DF ∥BE ,∴∠AFD =∠CEB , ……………………………………………………………1分 ∵AE =CF ,∴AF =CE .∵AF =CE ,DF =BE ,…………………………………………………………2分∴△ADF ≌△CBE . ……………………………………………………3分∴AD =BC ,∠DAF =∠BCE ,∴AD ∥BC ,∴四边形ABCD 是平行四边形. ………………………………………………4分 (2)∵AC 平分∠BAD ,∴∠DAC =∠BAC .…………………………………………………………………5分 ∵四边形ABCD 是平行四边形, ∴CD ∥AB ,∴∠DCA =∠BAC .∴∠DCA =∠DAC , ………………………………………………………………6分 ∴AD =DC ,…………………………………………………………………………7分 ∴□ABCD为菱形. ………………………………………………………………8分20.解:(1)31------------------------------------------------------------------------------------------------------------2分 (2)树状图或列表正确---------------------------------------------------------------------------------------------5分 将第一题中的三个选项记作A 1、B1、C1,第二题中去掉一个错误选项后的三个选项分别记作A2、B2、C2,其中A1、A2分别是两题的正确选项.列表如下:共有9种等可能的结果,其中,同时答对2题通关有1种结果, ∴P (同时答对两题)=19·······························……………………………………………………··········7分 (3)第一题··································………………………………………………………………·················8分21.解:(1)50; ·······································································································································2分 (2)5·································································4分(3)72;····················································································································································6分 (4)365×24+650=219天····························································································································8分22.解:(1)∵点P 、Q 是二次函数y =2x 2+bx +1图像上的两点,∴此抛物线对称轴是直线x =-1.·······························································································2分∴有-b2×2=-1.∴b =4.·········································································································4分(2)平移后抛物线的关系式为y=2x2+4x+1-k.∵平移后的图像与x轴无交点,∴△=16-8+8 k<0··················································································································6分解得k>1 (8)分23.解:设小桌板桌面宽度BC 的长为 x 厘米,则支架OB 的长为(75-x )厘米.延长CB 交OA 于点D ,由题意知,CD ⊥OA ,…………………………1分 在Rt △OBD 中,OD =OB cos37°=0.8(75-x )=60-0.8x ,………2分 BD =OB sin37°=0.6(75-x )=45-0.6x ,…………………………4分 所以CD =CB +BD =45+0.4x ,AD =15+0.8x ,所以tan37°=ADCD……………………………………………………………6分 即0.75=15+0.8x45+0.4x ,解之得,x =37.5答:小桌板桌面宽度BC 的长为37.5厘米. ……………………………………8分24.解:(1)1,8 …………………………………………………………………………2分 (2)设进水口每分钟进水x m 3,由题意得:8+(x -1)(14-6)+ x (20-14)=56解得x =4 ……………………………………………………………………3分 所以b =8+(4-1)×8=32 m 3 ……………………………………………4分(3)在0~6分钟:y =20-2t当y =16时,16=20-2t ,……………………………………………………5分 解得t =2…………………………………………………………………………6分 在6~14分钟:y =kt +b (k ≠0)把(6,8)(14,32)得:⎩⎪⎨⎪⎧6k +b =8,14k +b =32. 解得⎩⎪⎨⎪⎧k =3,b =﹣10.即y =3t -10当y =16时,16=3t -10,t =263………………………………………………8分则t =2和t =263水池有水16 m 3.25.解:(1)∵四边形ABCD 是⊙O 内接四边形,∴∠BAD +∠BCD =180°,∵∠BCD +∠DCE =180°,∴∠DCE =∠BAD ,………………………………………………………1分∵ ⌒ BD = ⌒AD ,∴∠BAD =∠ACD ,………………………………………………………………………2分 ∴∠DCE =∠ACD ,∴CD 平分∠ACE .………………………………………………………………3分 (2)ED 与⊙O 相切.………………………………………………………………………………………4分 理由:连接OD ,∵OC =OD ,∴∠ODC =∠OCD , ∵∠DCE =∠ACD ,∴∠DCE =∠ODC ,∴OD ∥BE ,∵DE ⊥BC ,∴OD ⊥DE ,∴ED 与⊙O 相切. …………………………………………………………6分 (3)∵AC 为直径,∴∠ADC =90°=∠E ,∵∠DCE =∠ACD ,∴△DCE ∽△ACD ,…………………7分 ∴CE CD =CD CA ,即1CD =CD4,∴CD =2,………………………………………………………………………8分 ∵OC =OD =CD =2,∴∠ DOC =60°,∴S 阴影=S 扇形-S △OCD =23π-3.…………………………9分OC BAD26.解:(1)16-0.03x ;10+0.02x ; ………………………………………………………………2分 (2)①设售完购进1000千克的苹果所获利润为y 元,由题意得:y =38000)02.010)(500()03.016)(500(=-+-+-+x x x x ………………………………····5分=﹣0.05x 2+x +5000 x =﹣b2a=10,y =5005.当x =10时,所获最大利润为5005元. ………………………………………………………····6分 ②由题意,列方程:33858000)02.010)(500()03.016)(500(=-+-+-+x x x x ……………7分 化简,整理得032300202=--x x ………………………………………………………………····8分 解得:190=x 或170-=x ………………………………………………………………………····9分 答:大号苹果比计划增加190千克或减少170千克时,才能确保这批苹果的利润为3385元.27.解:(1)3;2.……………………………………………………………………………………····2分 (2)证明:∵DE ∥FG ,∴AD AE = DF EG .………………………………………………………………………………………····3分 ∵DE ∥FG ∥BC , ∴DF EG =FB GC, ∴AD AE = DF EG =FB GC ,即AD AE = MD NE =AM AN,………………………………………………………····5分 ∴△AMD ∽△ANE , ……………………………………………………………………………····6分 ∴∠M =∠N . ………………………………………………………………………………····7分 (3)简要步骤:第一步:在射线DM 上截取△ABC 的三边.第二步:在射线DN 上截取DH =a ,连接HG ,作FI ∥C'E ∥HG ,第三步:以DC'、C'I 、IH 为边构造△A' B' C'.………………………………………………………………………………………………····10分MD(A') E F G N H IC'B'CA B。
中考仿真模拟考试《数学卷》附答案解析
6000(1﹣x)2=3600
解得:x1= ,x2= (不合题意,舍去),
∴生产1t甲种药品成本的年平均下降率为 .
故选:A.
【点睛】本题主要考查了一元二次方程的实际应用,熟练掌握相关方法是解题关键.
9.如图,已知△ABC中,∠C=90°,AC=BC= ,将△ABC绕点A顺时针方向旋转60°得到△A′B′C′的位置,连接C′B,则C′B的长为( )
A.2- B. C. D.1
10.设函数y=x2+2kx+k﹣1(k为常数),下列说法正确的个数是( )
(1)对任意实数k,函数与x轴有两个交点
(2)当x≥﹣k时,函数y的值都随x的增大而增大
(3)k取不同的值时,二次函数y的顶点始终在同一条抛物线上
(4)对任意实数k,抛物线y=x2+2kx+k﹣1都必定经过唯一定点
22.阅读下列材料:若关于x的一元二次方程ax2+bx+c=0的两个非零实数根分别为x1,x2,则x1+x2=﹣ ,x1x2= .
解决下列问题:已知关于x的一元二次方程(x+n)2=6x有两个非零不等实数根x1,x2,设m= ,
(Ⅰ)当n=1时,求m的值;
(Ⅱ)是否存在这样的n值,使m的值等于 ?若存在,求出所有满足条件的n的值;若不存在,请说明理由.
6.抛物线y=2(x﹣2)2+5向左平移3个单位长度,再向下平移2个单位长度,此时抛物线的对称轴是()
A.x=2B.x=﹣1C.x=5D.x=0
7.已知点A(﹣1,2),O是坐标原点,将线段OA绕点O逆时针旋转90°,点A旋转后的对应点是A1,则点A1的坐标是( )
2015届九年级中考模拟考试数学试题及答案
2015年中考模拟考试数学试卷说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分...为试题...卷和答...题.卷,答案要求......写.在答..题.卷上,在....试题..卷上作答不.....给.分... 一、选择题(本大题共6小题,每小题3分,共18分)每小题只有一个正确的选项,请把正确选项的代号填涂在答题卷的相应位置上. 1. 3-的相反数是 A .3B .31 C .3- D . 31-2.下列运算正确的是A . 523x x x =+B .x x x =-23C .623x x x =⋅D .x x x =÷233. 直线y=x -1的图像经过的象限是A. 第二、三、四象限B.第一、二、四象限C. 第一、三、四象限D.第一、二、三象限 4.下列几何体各自的三视图中,只有两个视图相同的是A .①③B .②④C .③④D .②③ 5. 如图,点A 、B 、C 的坐标分别为(0, -1),(0,2),(3,0).从下面四个点M (3,3),N (3,-3),P (-3,0),Q (-3,1)中选择一个点,以A 、B 、C 与该点为顶点的四边形是中心对称图形的个数有 A .1个 B .2个 C .3个 D .4个(第4题图 )6.类比二次函数图象的平移,把双曲线y=x1向右平移2个单位,再向上平移1个单位,其对应的函数解析式变为 A .2x 3x y ++=B .2x 1x y -+=C .2x 1x y ++=D .2x 1x y --= 二、填空题(本大题共8小题,每小题3分,共24分)7.国家统计局初步测算,2011年中国国内生产总值(GDP )约为470000亿元.将“470000亿元”用科学记数法表示为********* 亿元. 8.函数x y 24-=的自变量的取值范围是********* .①正方体 ②圆锥体 ③球体9.分解因式:22a b ab b -+= ********* .10.如图,已知AB ∥CD ,∠A =50°,∠C =∠E .则∠C =********* . 11. 若不等式3(2)x x a --≤的解为1-≥x ,则a 的值为********* .12. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是********* .13. 如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 到了点B’,则图中阴影部分的面积是********* .14.如图,△ABC 是一个直角三角形,其中∠C=90゜,∠A=30゜,BC=6;O 为AB 上一点,且OB=3, ⊙O 是一个以O 为圆心、OB 为半径的圆;现有另一半径为333-的⊙D 以每秒为1的速度沿B →A →C →B 运动,设时间为t ,当⊙D 与⊙O 外切时,t 的值为 ****** . (本题为多解题,漏写得部分分,错写扣全部分)三、(本大题共4小题,每小题6分,共24分) 15计算:()1260cos 2218π-+︒-⎪⎪⎭⎫⎝⎛+--16. 先化简,再求值()x x x x x 224422+÷+++ ,其中 x = 2(第12题图) CBA(第13题图)A B C D E 50°(第10题图)17.新余某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示.请在答题卷的原图上利用尺规作出音乐喷泉M 的位置.(要求:不写已知、求作、作法和结论,只保留作图痕迹,必须用铅笔作图)18.甲乙丙三个同学在打兵乓球时,为了确定哪两个人先打,商定三人伸出手来,若其中两人的手心或手背同时向上,则这两个人先打,如果三个人手心或手背都向上则重来. (1)求甲乙两人先打的概率; (2)求丙同学先打的概率.四、(本大题共2小题,每小题8分,共16分)19. 如图,在Rt △ABC 中,∠C 为直角,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F .(1)若AC=8,AB=12,求⊙O 的半径;(2)连接OE 、ED 、DF 、EF .若四边形BDEF 是平行四边形,试判断四边形OFDE 的形状,并说明理由.20.如图:把一张给定大小的矩形卡片ABCD 放在间距为10mm 的横格纸中(所有横线互相平行),恰好四个顶点都在横格线上,AD 与l 2交于点E, BD 与l 4交于点F. (1)求证:△ABE ≌△CDF ;(2)已知α=25°,求矩形卡片的周长.(可用计算器求值,答案精确到1mm ,参考数据: sin25°≈0.42,cos25°≈0.91, tan25°≈0.47)五、(本大题共2小题,每小题9分,共18分)21. 某公司为了解顾客对自己商品的总体印象,采取随机抽样的方式,对购买了自己商品的年龄在16~65岁之间的400个顾客,进行了抽样调查.并根据每个年龄段的抽查人数和该年龄段对商品总体印象感到满意的人数绘制了下面的图(1)和图(2).根据上图提供的信息回答下列问题:(1)被抽查的顾客中,人数最多的年龄段是 岁;FEA(2)已知被抽查的400人中有83%的人对商品总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图(2);(3)比较31~40岁和41~50岁这两个年龄段对商品总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数⨯100%.22. 某超市经销甲、乙两种商品. 现有如下信息:请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元?(2)该超市平均每天卖出甲商品50件和乙商品20件.经调查发现,甲、乙两种商品零售单价分别每降0.2元,这两种商品每天可各多销售10件.为了使每天获取更大的利润,超市决定把甲、乙两种商品的零售单价都下降m 元.设总利润为n 元,请用含m 的式子表示超市每天销售甲、乙两种商品获取的总利润n ,在不考虑其他因素的条件下,当m 定为多少时,才能使超市每天销售甲、乙两种商品获取的总利润最大?每天的最大利润是多少?六、(本大题共2小题,每小题10分,共20分) 23. 已知抛物线22232y x mx m m =-++.(1)若抛物线经过原点,求m 的值及顶点坐标,并判断抛物线顶点是否在第三象限的平分线所在的直线上;(2)是否无论m 取任何实数值,抛物线顶点一定不在第四象限?说明理由;当实数m 变化时,列出抛物线顶点的纵、横坐标之间的函数关系式,并求出该函数的最小函数值.51~60岁 7%21~30岁 39%31~40岁 20%16~20岁 16%61~65岁 3% 41~50岁 15% 图(1)24.已知:如图(1),△OAB是边长为2的等边三角形,0A在x轴上,点B在第一象限内;△OCA是一个等腰三角形,OC=AC,顶点C在第四象限,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B 运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;(2)在OA上(点O、A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.参考答案一、选择题(本大题共6小题,每小题3分,共18分)二、填空题(本大题共8小题,每小题3分,共24分)7、54.710⨯ 8、2≤x 9、()21-a b10、25゜ 11、8 12、74 13、24π 14、3612或3312或333+++(每写对一个1分,但写错0分) 三、(本大题共4小题,每小题6分,共24分) 15、解:原式=1212222+⨯-+…………………………………………………3分 =222+ ……………………………………………………………6分16、解:原式=()()21222+⋅++x x x x=x 1……………………………………………4分 将2=x 代入得:221=x………………………………………………………6分 17.………………………………………………6分18、 甲: 手心向上 手背向上乙:手心向上手背向上手心向上 手背向上 ……2分丙:手心向上 手背向上 手心向上 手背向上 手心向上 手背向上 手心向上 手背向上 (1)P(甲乙两人先打)=0.25 …………………………………………………………4分 (2)P(丙同学先打)=0.5………………………………………………………………6分 四、(本大题共2小题,每小题8分,共16分) 19、(1)设⊙O 的半径为r .∵BC 切⊙O 于点D ∴OD ⊥BC∵∠C =90° ∴OD ∥AC ∴△OBD ∽△ABC . …………………………2分∴OD AC = OBAB ,即12128r r -= 解得:524=r∴⊙O 的半径为524………………………4分(2)四边形OF DE 是菱形 ………………5分 ∵四边形BDEF 是平行四边形 ∴∠DEF =∠B .∵∠DEF =12∠DOB ∴∠B =12∠DOB .∵∠ODB =90° ∴∠DOB +∠B =90° ∴∠DOB =60°∵DE ∥AB ,∴∠ODE =60°.∵OD =OE ,∴△ODE 是等边三角形∴OD =DE ∵OD =OF ∴DE =OF ∴四边形OFDE 是平行四边形 ………7分∵OE =OF ∴平行四边形OFDE 是菱形. …………………………………8分20、(1) ∵l 2∥l 4 BC ∥AD ∴四边形BFDE 是平行四边形∴BE=FD ……………………………………………………………………2分 ∵AB=CD ,∠BAE=∠FCD=90゜∴△ABE ≌△CDF ……………………………………………………………4分(2)(批改时注意若学生用计算器计算,中间答案会有少许不同,但最终答案一样) 过A 作AG ⊥l 4,交l 2于H ∵α=25° ∴∠ABE=25°∴ sin 0.42AHABE AB∠=≈ 解得:AB ≈47.62 ………………5分∵∠ABE+∠AEB=90゜ ∠HAE+∠AEB=90゜ ∴∠HAE=25゜ ∴91.0cos ≈=∠ADAGDAG 解得:AD ≈43.96 ………………7分 ∴矩形卡片ABCD 的周长为(47.62+43.96)×2≈183(mm ) ………8分 五、(本大题共2小题,每小题9分,共18分)21、(1) 被抽查的顾客中,人数最多的年龄段是21~30岁 ……………………2分(2)总体印象感到满意的人数共有83400332100⨯=(人) 31~40岁年龄段总体印象感到满意的人数是332(5412653249)66-++++=(人) ………………………………4分图略 …………………………………………………………………………6分 (3) 31~40岁年龄段被抽人数是2040080100⨯=(人) 总体印象的满意率是66100%82.5%83%80⨯=≈ ………………………7分 41~50岁被抽到的人数是1540060100⨯=人,满意人数是53人, F EGHA总体印象的满意率是5388.3%88%60=≈ …………………………………8分 ∴41~50岁年龄段比31~40岁年龄段对商品总体印象的满意率高 ……9分22、(1)设甲商品的进货单价是x 元,乙商品的进货单价是y 元. ………………1分 根据题意,得⎩⎨⎧x +y =53(x +1)+2(2y -1)=19 解得⎩⎨⎧x =2y =3………………………3分答:甲商品的进货单价是2元,乙商品的进货单价是3元. ………………4分(2)设商店每天销售甲、乙两种商品获取的利润为n 元,则………………5分n =(1-m )(50+10×m 0.2)+(5-3-m )(20+10×m0.2) 即 n =-100m 2+80m +90 =-100(m -0.4)2+106. ……………………………7分∴当m =0.4时,n 有最大值,最大值为106. ………………………………8分答:当m 定为0.4时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是106元. ………………………………………………………………9分 六、(本大题共2小题,每小题10分,共20分) 23、解:∵()m m m x m m mx x y 222322222++-=++-=∴抛物线顶点为()m mm 22,2+(1)将(0,0)代入抛物线解析式中解得:m=0或m=32-………………………1分 当m=0时,顶点坐标为(0,0) 当m=32-时,顶点坐标为(32-,94-) ……………………………………3分 ∵第三象限的平分线所在的直线为y=x ∴(0,0)在该直线上,(32-,94-)不在该直线上 ……………………………4分 (2)∵m>0时,m m 222+>0∴抛物线顶点一定不在第四象限 …………………………………………6分设顶点横坐标为m ,纵坐标为n ,则m m n 222+= …………………8分∵212122222-⎪⎪⎭⎫ ⎝⎛+=+=m m mn ∴当21-=m 时,n 有最小值21- …………………………………10分 24、解:(1)过点C 作CD OA ⊥于点D .(如图①) ∵OC AC =,120ACO ∠=︒,∴30AOC OAC ∠=∠=︒.∵OC AC =,CD OA ⊥, ∴1OD DA ==. 在Rt ODC ∆中,1cos cos30OD OC AOC ===∠︒(1)当203t <<时,OQ t =,3AP t =,23OP OA AP t =-=-; 过点Q 作QE OA ⊥于点E .(如图①)在Rt OEQ ∆中,∵30AOC ∠=︒,∴122t QE OQ ==, ∴21131(23)22242OPQ t S OP EQ t t t ∆=⋅=-⋅=-+. 即23142S t t =-+ .………………………………………2分 (图①)(2)当23t <时,(如图②) OQ t =,32OP t =-.∵60BOA ∠=︒,30AOC ∠=︒,∴90POQ ∠=︒. ∴2113(32)222OPQ S OQ OP t t t t ∆=⋅=⋅-=-.即232S t t =-.故当203t <<时,23142S t t =-+,当23t <≤时,232S t t =-……………4分(2),0)或2(,0)3 …………………6分 (3)BMN ∆的周长不发生变化.延长BA 至点F ,使AF OM =,连结CF .(如图③)∵90,MOC FAC OC AC ∠=∠=︒=,∴MOC ∆≌FAC ∆. ∴MC CF =,MCO FCA ∠=∠ …………………7分∴FCN FCA NCA MCO NCA ∠=∠+∠=∠+∠60OCA MCN =∠-∠=. ∴FCN MCN ∠=∠. 又∵,MC CF CN CN ==.∴MCN ∆≌FCN ∆.∴MN NF = ……………………………………9分∴BM MN BN BM NF BN ++=++AF BA OM BO ++-=BA BO =+4=. ∴BMN ∆的周长不变,其周长为4 ……………………………………10分x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年中考数学模拟试题
时间120分钟满分120分 2015.5.26
一、选择题(每小题3分,共21分)
1、.下列运算中,正确的是()
C.(﹣2)0=0 D.2﹣1=
A.=±3B.
=2
2、甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()
A.=B.=C.=D.=
3、如图,淇淇和嘉嘉做数学游戏:
假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=()
A.2B.3C.6D.x+3
4、反比例函数y=的图象如图所示,以下结论:
①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;
④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()
A.①②B.②③C.③④D.①④
5、如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()
A.点M在AB上
B.点M在BC的中点处
C.点M在BC上,且距点B较近,距点C较远
D.点M在BC上,且距点C较近,距点B较远
6、如图,梯形ABCD 中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P 从点A 出发,沿折线AD ﹣DC ﹣CB 以每秒1个单位长的速度运动到点B 停止.设运动时间为t 秒,y=S△EPF ,则y 与t 的函数图象大致是( )
A .
B .
C .
D .
7、如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,点B 为劣弧AN 的中点.点P 是直径MN 上一动点,则PA+PB 的最小值为( ) A .
B . 1
C . 2
D . 2
二、填空题(每小题3分,共24分.把答案写在题中横线上)
8.若x+y=1,且x≠0,则(x+
)÷
的值为______ .
9、已知a ,b 是方程x 2﹣x ﹣3=0的两个根,则代数式2a 3+b 2+3a 2﹣11a ﹣b +5的值为
10、如图,A 是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A 与桌面接触的概率是 ___________.
11、如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上,将△BMN 沿MN 翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=____________ .
12、.如图,菱形ABCD 中,点M ,N 在AC 上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=________
13、如图,PA ,PB 切⊙O 于A 、B 两点,CD 切⊙O 于点E ,交PA ,PB 于C ,D .若⊙O 的半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是
__________.
14、.如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;
将C1绕点A1旋转180°得C2,交x轴于点A2;
将C2绕点A2旋转180°得C3,交x轴于点A3;
…
如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=_______________.
15、今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有_________________种。
三、解答题(共75分.解答应写出文字说明、证明过程或演算步骤)
16、(5分)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:
2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣
(1)求(﹣2)⊕3的值;
(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.
17、(5分)今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.
18、(6分)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E是边BC 延长线上一点,且∠CDE=∠ABD.
(1)求证:四边形ACED是平行四边形;
(2)联结AE,交BD于点G,求证:=.
19、(6分)如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;
(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;
①求△A′BC的周长和sin∠BA′C的值;
②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.
20、(6分)小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.
(1)请用树形图或列表法列出摸笔游戏所有可能的结果;
(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.
21.(6分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.
回答下列问题:
(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:
①小宇的分析是从哪一步开始出现错误的?
②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.
22、(7分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O 的切线,交BC于E.
(1)求证:点E是边BC的中点;
(2)求证:BC2=BD•BA;
(3)当以点O、D、E、C为顶点的四
边形是正方形时,求证:△ABC是等腰
直角三角形.
23、(8分)图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).
(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)
(第6题图)
24、(12分)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y
1
(元)与国内销售量x(千件)的关系为:
y
1
=
若在国外销售,平均每件产品的利润y
2
(元)与国外的销售数量t(千件)的关系为
(1)用x的代数式表示t为:t= ;当0<x≤4时,y
2与x的函数关系为:y
2
= ;当<
x<时,y
2
=100;
(2)当该公司在国内销售量是国外销量的两倍时,问总利润是多少?
(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?
25、(14分)如图,抛物线y=﹣x2+bx+c交x轴于点A,交y轴于点B,已知经过点A,B的直线的表达式为y=x+3.
(1)求抛物线的函数表达式及其顶点C的坐标;
(2)如图①,点P(m,0)是线段AO上的一个动点,其中﹣3<m<0,作直线DP⊥x轴,交直线AB 于D,交抛物线于E,作EF∥x轴,交直线AB于点F,四边形DEFG为矩形.设矩形DEFG的周长为L,写出L与m的函数关系式,并求m为何值时周长L最大;
(3)如图②,在抛物线的对称轴上是否存在点Q,使点A,B,Q构成的三角形是以AB为腰的等腰三角形?若存在,直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.。