4.1 生活中的优化问题举例(1)

合集下载

凸优化 生活例子

凸优化 生活例子

凸优化生活例子
1.路线规划:无论是在日常生活中选择最佳的出行路线,还是在物流行业中
选择货物的运输路径,凸优化都能帮助我们找到最优解。

例如,地图应用常常使用凸优化算法为用户规划最短或最快路线。

2.购物决策:在购买商品或服务时,我们经常需要在预算内寻找最佳的商品。

凸优化可以帮助我们找到在预算约束下的最优购买方案,实现花费的最小化。

3.电力系统优化:电力系统的负荷优化是凸优化应用的典型案例。

通过优化
电力的分配和调度,可以提高电力系统的效率并降低能源浪费。

4.农业灌溉:在农业中,灌溉系统的优化设计也是凸优化的应用场景。

通过
合理分配水源,可以提高灌溉效率,节约水资源。

5.通信网络:在通信网络中,信号传输的优化、数据包的路由选择等都涉及
到凸优化技术的应用。

这有助于提高网络的传输效率和稳定性。

生活中的优化问题举例一

生活中的优化问题举例一
x
方法一:基本均值不等式法:“一正二定三相等”
S( x) 2x 512 8 2 2x 512 8 72
x
x
当且仅当2x 512即x 16时,S( x)取得最小值为72
方法二:(导数x法求最值)
S( x)
2
512 x2
2( x
16)(x x2
16)
当0 x 16时,S(x) 0 当x 16时,S(x) 0
可 口 可 乐 公 司 制 造 并 出售 圆 柱 形 瓶 装 饮 料 。 瓶子 的 底 面 半 径 为 rcm , 瓶 高 为5rcm , 瓶 子 的 制 造 成 本 包 括 瓶身 和 瓶 底 ( 将 瓶 盖 部 分近 似看成上底)。其中瓶身为0.1分 / cm 2,瓶底为0.25分 / cm 2。已知每 出 售1ml的 饮 料 , 公 司 将 获 利0.1分(此 处 利 润 指 除 出 饮 料 生产 成 本 后 的 利 润, 不 含 瓶 子 成 本 ) , 且 公司 能 制 造 的 瓶 子 的 最 大半 径 为6cm 。
生活中的优化问题举例(一)
生活中经常遇到求利润最大、用料
最省、效率最高等问题, 这些问题 通常称为优化问题.通 过 前面的学
习, 我 们 知 道, 导 数 是 求 函 数 最 大小
值的有力工具.本节我们运用导数, 解决一些生活中的优化问题.
一、基础知识链接
1、函数y 2x3 3x2 12x 5在0,3上的最小值
(3)如何使一个圆环状的磁 盘存储尽可能多的信息?
例3:现有一张半径为R的磁盘, 它的存储区是半径介于r与R的
R
环行区域。
r
(1)是不是r越小,磁盘的存
储量越大? (2) r为多少时,磁盘具有最大存储量

生活中系统优化原理的例子

生活中系统优化原理的例子

生活中系统优化原理的例子系统优化原理是指通过对系统内部各个组成部分和运行流程进行分析和改进,以提高系统整体性能和效率的一种方法。

生活中有很多例子可以体现系统优化原理的应用,包括:1. 交通流优化:城市交通堵塞是一个普遍存在的问题,通过优化交通流可以提高交通效率。

例如,道路规划不当可能导致交叉口拥堵,可以通过减少交叉口数量、设置红绿灯优化信号灯配时,以及利用流量监测和智能交通系统来改进交通流。

2. 餐厅排队优化:在繁忙的餐厅等候排队是一种常见的情况,通过系统优化原理可以减少顾客等待时间。

例如,通过设置有效的预订和排号系统、提高厨房效率、设置快速结账通道,以及利用智能点餐系统等手段来优化餐厅排队过程。

3. 供应链管理:供应链是一个涉及多个环节和参与方的系统,通过优化供应链能够提高整体效率和降低成本。

例如,通过优化物流和库存管理,减少节点之间的运输和储存时间,以及建立供需预测机制等手段来改进供应链运作。

4. 生产流程优化:在制造业中,通过对生产流程进行优化可以提高生产效率和产品质量。

例如,通过改进工艺和设备、合理安排生产计划和员工工作,以及优化物料供应和排程等手段来提高整个生产流程的效率。

5. 能源消耗优化:为了减少能源消耗和环境负荷,需要对能源消耗进行优化。

例如,通过改进建筑结构和隔热材料、使用高效能源设备和照明系统、引入清洁能源,以及建立能源管理体系等手段来降低能源消耗。

6. 电子设备的运行优化:对于电子设备,通过对软硬件的优化可以提高系统性能和用户体验。

例如,通过优化操作系统和应用程序的代码,减少资源占用和提高响应速度,以及优化电池管理和内存管理等手段来提高电子设备的运行效率。

7. 信息检索和推荐系统优化:在互联网时代,信息的获取和推荐成为了一个重要的问题,通过优化搜索引擎和推荐算法可以提高用户的信息获取和推荐准确度。

例如,通过优化搜索算法和索引结构、个性化推荐算法,以及利用用户反馈和数据分析来优化信息检索和推荐系统。

生活中的优化问题举例

生活中的优化问题举例

生活中的优化问题举例引言生活中,我们经常面临各种各样的问题和挑战。

为了提高效率、提升生活质量,我们需要不断寻找解决问题的方法和策略。

在这篇文章中,我们将探讨生活中的优化问题,并给出一些实际的例子来说明如何应对这些问题。

什么是优化问题?优化问题是指在给定的限制条件下,寻找一个最优解的问题。

通过优化,我们可以最大限度地提高效率、降低成本、提升满意度等。

在生活中,我们可以将优化问题应用于各个领域,如时间管理、健康管理、金融规划等。

生活中的优化问题举例1. 时间管理时间管理是一个常见的生活优化问题。

我们每天都面临着有限的时间资源,如何合理分配时间成为了一个重要的课题。

以下是一些可以帮助我们优化时间管理的方法和技巧:1.制定优先级:将任务按照重要性和紧急性进行排序,优先处理重要且紧急的任务,避免因琐碎的事务耗费过多时间。

2.打破大目标:学会将大目标分解成小目标,逐步推进。

这样可以减少任务的压力,并更好地管理时间。

3.制定时间表:制定一个明确的时间表,为每项任务规定固定的时间段。

这样可以提高效率,并避免时间的浪费。

4.利用时间碎片:充分利用日常生活中的碎片化时间,比如排队等待、交通工具上的时间,可以用来读书、听课等。

2. 健康管理健康是幸福生活的基石,因此健康管理也成为了一个重要的优化问题。

以下是一些可以帮助我们优化健康管理的方法和策略:1.合理饮食:均衡饮食是健康的基础。

合理控制饮食,摄入适量的营养物质,避免过量或偏食,有助于维持身体的健康状态。

2.积极运动:适量的运动可以帮助我们保持身体健康和心理平衡。

根据个人情况选择合适的运动方式和时间,如慢跑、游泳、瑜伽等。

3.规律作息:良好的作息习惯对于身体和心理健康至关重要。

合理安排睡眠时间,确保充足的休息,有助于保持精力充沛和情绪稳定。

4.健康检查:定期进行身体检查,及时发现和处理潜在的健康问题,有助于预防和治疗疾病。

3. 金融规划金融规划是一个经济优化的问题。

生活中的优化问题举例图文

生活中的优化问题举例图文

安排休息时间
总结词
合理安排休息时间是优化健康管理的重要环节,有助于 恢复身体机能和缓解压力。
详细描述
保证充足的睡眠时间,合理安排工作和休息时间,采用 适当的放松方式,如冥想、瑜伽等,有助于恢复身体机 能和缓解压力。
总结词
创造良好的睡眠环境,保持规律的睡眠习惯,有助于提 高睡眠质量。
详细描述
保持安静、黑暗、舒适的睡眠环境,避免睡前过度兴奋 或刺激,保持规律的睡眠习惯,有助于提高睡眠质量。
自身能力范围。
制定工作计划
01
分解任务
将工作目标分解为具体的任务, 明确任务的责任人、完成时间和 所需资源。
安排时间
02
Байду номын сангаас
03
调整计划
根据任务的紧急性和重要性,合 理安排工作时间,确保任务按时 完成。
在执行过程中,根据实际情况及 时调整工作计划,以适应变化和 应对突发情况。
安排工作时间
避免过度劳累
总结词
结合日常生活和工作,灵活安排运动时间和场地,有助于 提高运动计划的可行性和持久性。
详细描述
根据个人生活和工作情况,灵活安排运动时间和场地,将 运动融入日常生活和工作中,有助于提高运动计划的可行 性和持久性。
总结词
注意运动安全,遵循正确的运动姿势和技巧,预防运动损 伤。
详细描述
在运动前进行适当的热身活动,遵循正确的运动姿势和技 巧,避免过度运动和损伤,注意运动安全。
总结词
学会放松自己,缓解压力和焦虑情绪。
详细描述
通过冥想、瑜伽、深呼吸等放松技巧来缓解压力和焦虑 情绪,学会放松自己。
THANKS
感谢观看
生活中的优化问题举例
contents

生活中的优化举例

生活中的优化举例

05
工作办公优化
任务管理优化
总结词
高效、条理、计划
详细描述
通过制定明确的任务目标和计划,将工作任务分解为可执行的小任务,并按 优先级进行排序,可以帮助我们更高效地完成任务,同时避免任务遗漏或任 务完成不及时。
时间
详细描述
合理规划时间,将时间分配到不同的任务和活动中,可以最大限度地减少时间浪 费和提高工作效率。同时,学会合理调整工作节奏和时间安排,能够更好地适应 高强度的工作压力。
01
运用大数据技术,智能调度共享单车,提高单车可用性和效率

共享汽车服务
02
提供便捷的共享汽车服务,满足短途出行需求,减少汽车使用
频率。
电动汽车推广
03
鼓励使用电动汽车等环保出行方式,降低排放,改善空气质量

02
日常生活优化
购物优化
计划性购物:列出需要购买的物 品清单,尽量避免在无计划的情 况下进行购物,减少不必要
比较购物:在购买之前,通过线 上或线下的方式比较不同商家的 价格和质量,以便选择最合适
批量购买:一次性购买大量的日 用品,可以降低单位价格,同时 减少购物次数,提高购物效率。
的支出。
的商品。
饮食优化
均衡饮食:合理搭配 蛋白质、碳水化合物 、脂肪、维生素、矿 物质等营养素,以满 足身体
的基本需求。
简单化烹饪:减少烹 饪的复杂程度,使用 简单的烹饪技巧和食 材,可以降低食物中 脂肪和糖
游戏娱乐优化
流畅体验
通过优化游戏算法、降低游戏内延迟等技术手段,提高游戏的流畅度和稳定 性。
个性化设置
为玩家提供多种个性化设置,如自定义角色、场景等,让玩家更具自由度和 沉浸感。

生活中的优化问题举例

生活中的优化问题举例

生活中的优化问题举例
以下是一些生活中常见的优化问题举例:
1. 路线规划:对于一次旅行或者日常通勤,如何选择最短或最快的路线,以节省时间和资源。

2. 日程安排:如何合理分配时间,使得工作效率最大化,同时留出时间进行休息和娱乐。

3. 购物决策:在购买商品时,如何选择最佳的品牌、型号或价格,以满足需求并节约开支。

4. 饮食计划:如何合理安排饮食,以保证营养均衡,同时避免浪费和过量摄入。

5. 能源使用:如何优化能源的使用,例如合理设置空调温度、减少电器待机时间等,以节约能源成本并保护环境。

6. 个人理财:如何合理规划个人财务,包括投资、储蓄和债务,以实现财务增长并达到目标。

7. 旅游安排:在进行旅游计划时,如何选择最佳的目的地、交通方式、住宿和活动,以满足旅行的需求。

8. 学习方法:如何优化学习方法,例如选择适合个人的学习时间、学习环境和学习资源,以提高学习效率。

9. 生活习惯:如何培养健康的生活习惯,例如规律作息、科学饮食和适度运动,以改善身体健康。

10. 时间管理:如何合理分配时间,设置优先级和避免拖延,以提高工作和生活的效率。

高二数学生活中的优化问题举例试题

高二数学生活中的优化问题举例试题

高二数学生活中的优化问题举例试题1.把总长为16m的篱笆,要围成一个矩形场地,则矩形场地的最大面积是 m2.【答案】16【解析】设一边长为x,则另一边长可表示为8﹣x,则其面积可表示关于边长的二次函数,在定义域内求最值.解:设一边长为x,则另一边长可表示为8﹣x,则面积S=x(8﹣x)=﹣x2+8x=﹣(x﹣4)2+16,0<x<8故当矩形的长与宽相等,都为4时面积取到最大值16故应填16.点评:考查将实际问题求最值的问题转化为二次函数在某个区间上的最值问题,二次函数求最值一般用配方法.2.某工厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其它三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为.【答案】32米,16米.【解析】要求材料最省,则要求新砌的墙壁总长最短,设场地宽为x米,则长为米,因此新墙壁的周长,利用基本不等式可求周长的最小值,从而可求砌壁所用的材料最省时堆料的长和宽.解:设场地宽为x米,则长为米,因此新墙总长为L=2x+(x>0),则L′=2﹣.令L′=0得x=±16,又x>0,∴x=16,则当x=16时,L=64,min∴长为=32(米).故堆料场的长为32米,宽为16米时,砌墙所用的材料最少.故答案为:32米,16米.点评:本题重点考查函数模型的构建,考查基本不等式的运用,解题的关键是求出新的墙壁的周长.3.设底为等边三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为.【答案】【解析】设底边边长为a,高为h,利用体积公式V=Sh得出h,再根据表面积公式得S=,最后利用导函数即得底面边长.解:设底边边长为a,高为h,则V=Sh=a2×h,∴h==,则表面积为=,则,令可得,即a=.故答案为.点评:本小题主要考查棱柱、棱锥、棱台、棱柱、棱锥、棱台的侧面积和表面积、基本不等式等基础知识,考查运算求解能力,考查转化思想.属于基础题.4.如图,在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,最大容积是.【答案】16000cm3【解析】设箱底边长为xcm,结合题意可得容积V(x)=(60x2﹣x3)(0<x<60).再用导数工具研究V(x)在区间(0,60)上的单调性,可知当x=40时V(x)达到最大值.由此得到本题答案.解:设箱底边长为xcm,则箱高h=,∴箱子容积V(x)=x2h=(60x2﹣x3)(0<x<60).求导数,得V′(x)=60x﹣x2,令V′(x)=60x﹣x2=0,解得x=0(不合题意,舍去),x=40,∵x∈(0,40)时,V′(x)>0;x∈(40,60)时,V′(x)<0∴V(x)在区间(0,40)上为增函数,区间(40,60)上为减函数由此可得V(x)的最大值是V(40)=16000.故答案为:16000cm3.点评:本题以一个实际问题为例,求铁箱的容积最大值.着重考查了函数模型及其应用和利用导数研究函数的单调性、求最值等知识,属于中档题.5.某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用y1和y2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站千米处.【答案】5【解析】由题意先解出土地占用费与运费关于车站距离的函数,将费用之和关于车站距离的函数关系式建立起来,再用基本不等式求解.解:设仓库建在离车站d千米处,由已知y1=2=,得k1=20,∴y1=,y 2=8=k2•10,得k2=,∴y2=d,∴y1+y2=+≥2=8.当且仅当=,即d=5时,费用之和最小.故应填5.点评:本题考查选定系数法求解析式,此法的特点是相关函数的解析式的形式已知.求最值时用到了基本不等式求最值.6.如图所示,设铁路AB=50,B、C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A到C最省?【答案】即在离点B距离为的点M处修筑公路至C时,货物运费最省.【解析】由已知,我们可计算出公路上的运费和铁路上的运费,进而得到由A到C的总运费,利用导数法,我们可以分析出函数的单调性,及函数的最小值点,得到答案.解:设M为AB上的一点,且MB=x,于是AM上的运费为2(50﹣x),MC上的运费为4,则由A到C的总运费为p(x)=2(50﹣x)+4(0≤x≤50).p′(x)=﹣2+,令p′(x)=0,解得x1=,x2=﹣(舍去).当x<时,p′(x)<0;当x>时,p′(x)>0,故当x=时,p(x)取得最小值.即在离点B距离为的点M处修筑公路至C时,货物运费最省.点评:本题考查的知识点是导数在最大值最小值问题中的应用,函数最值的应用,其中根据已知条件求出函数的解析式,并确定函数的单调性是解答本题的关键.7.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)函数关系式为,则使该生产厂家获取最大年利润的年产量为.【答案】9万件【解析】求出函数的导函数,由导函数等于0求出极值点,结合实际意义得到使该生产厂家获取最大年利润的年产量.解:由,得:y′=﹣x2+81,由﹣x2+81=0,得:x1=﹣9(舍),x2=9.当x∈(0,9)时,y′>0,函数为增函数,当x∈(9,+∞)时,y′<0,函数为减函数,所以当x=9时,函数有极大值,也就是最大值,为(万元).所以使该生产厂家获取最大年利润的年产量为9万件.故答案为9万件.点评:本题考查了函数在某点取得极值的条件,考查了运用导函数判断原函数的单调性,此题是基础题.8.设底为等边三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为.【答案】【解析】设底边边长为a,高为h,利用体积公式V=Sh得出h,再根据表面积公式得S=,最后利用导函数即得底面边长.解:设底边边长为a,高为h,则V=Sh=a2×h,∴h==,则表面积为=,则,令可得,即a=.故答案为.点评:本小题主要考查棱柱、棱锥、棱台、棱柱、棱锥、棱台的侧面积和表面积、基本不等式等基础知识,考查运算求解能力,考查转化思想.属于基础题.9.横梁的强度和它的矩形横断面的宽成正比,并和矩形横断面的高的平方成正比,要将直径为d 的圆木锯成强度最大的横梁,则横断面的宽是.【答案】d.【解析】据题意横梁的强度同它的断面高的平方与宽x的积成正比(强度系数为k,k>0)建立起强度函数,求出函数的定义域,再利用求导的方法求出函数取到最大值时的横断面的值.解:如图所示,设矩形横断面的宽为x,高为y.由题意知,当xy2取最大值时,横梁的强度最大.∵y2=d2﹣x2,∴xy2=x(d2﹣x2)(0<x<d).令f(x)=x(d2﹣x2)(0<x<d),得f′(x)=d2﹣3x2,令f′(x)=0,解得x=或x=﹣(舍去).当0<x<时,f′(x)>0;当<x<d时,f′(x)<0,因此,当x=时,f(x)取得极大值,也是最大值.故答案为:d.点评:考查据实际意义建立相关的函数,再根据函数的特征选择求导的方法来求最值.10.某种产品每件成本为6元,每件售价为x元(x>6),年销量为u万件,若已知与成正比,且售价为10元时,年销量为28万件.(1)求年销售利润y关于x的函数关系式.(2)求售价为多少时,年利润最大,并求出最大年利润.【答案】(1)y=﹣2x3+33x2﹣108x﹣108.(2)售价为9元时,年利润最大,最大年利润为135万元.【解析】(1)根据题中条件:“若已知与成正比”可设,再依据售价为10元时,年销量为28万件求得k值,从而得出年销售利润y关于x的函数关系式.(2)利用导数研究函数的最值,先求出y的导数,根据y′>0求得的区间是单调增区间,y′<0求得的区间是单调减区间,从而求出极值进而得出最值即可.解:(1)设,∵售价为10元时,年销量为28万件;∴,解得k=2.∴=﹣2x2+21x+18.∴y=(﹣2x2+21x+18)(x﹣6)=﹣2x3+33x2﹣108x﹣108.(2)y'=﹣6x2+66x﹣108=﹣6(x2﹣11x+18)=﹣6(x﹣2)(x﹣9)令y'=0得x=2(∵x>6,舍去)或x=9显然,当x∈(6,9)时,y'>0当x∈(9,+∞)时,y'<0∴函数y=﹣2x3+33x2﹣108x﹣108在(6,9)上是关于x的增函数;在(9,+∞)上是关于x的减函数.∴当x=9时,y取最大值,且ymax =135.∴售价为9元时,年利润最大,最大年利润为135万元.点评:本小题主要考查根据实际问题建立数学模型,以及运用函数、导数的知识解决实际问题的能力.属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.4.1生活中的优化问题举例(1)
【学情分析】:
导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:
1、与几何有关的最值问题;
2、与物理学有关的最值问题;
3、与利润及其成本有关的最值问题;
4、效率最值问题。

【教学目标】:
1.掌握利用导数求函数最值的基本方法。

2.提高将实际问题转化为数学问题的能力.提高学生综合、灵活运用导数的知识解决生活中问题的能力
3.体会导数在解决实际问题中的作用.
【教学重点】:
利用导数解决生活中的一些优化问题.
【教学难点】:
将生活中的问题转化为用函数表示的数学问题,再用导数解决数学问题,从而得出问题的最优化选择。

【教学突破点】:
利用导数解决优化问题的基本思路:
【教法、学法设计】:。

相关文档
最新文档