高考解题技术:抽象函数的处理方法
抽象函数问题求解的几种常用求法

抽象函数问题求解的几种常用求法抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数。
如函数的定义域、解析递推式、特定点的函数值、特定的运算性质等。
它是高中数学函数部分的难点,由于抽象函数没有具体的解析式作为载体,因此理解起来比较困难,那么怎样求解抽象函数问题呢?以下介绍几种解抽象函数问题的方法。
一. 特殊化方法1. 在求函数解析式或研究函数性质时,一般用“代换”的方法,如将x 换成x -或将x 换成1x 等。
2. 在求函数值时,可用特殊值(如0或1或-1)“代入” 例1.已知()f x 满足()123363f x f x x ⎛⎫+=⎪⎝⎭,求()f x 的解析式。
解:先令3u x =,解出3u x =,于是有:()1232f u f u u ⎛⎫+= ⎪⎝⎭-----------①再以1u代替u 得:()1223f f u u u ⎛⎫+=⎪⎝⎭------------②联立①、②式解方程组,并消去1f u ⎛⎫⎪⎝⎭,解得()6455u f u u=-即所求解析式为:()6455x f x x=-例2. 若对一切自然数a 、b 都有()()()f a b f a f b ab +=++且()11f =,求()f x 的解析式。
解:利用特殊值法 令1a =,等式变为:()()()()111f b f f b b f b b+=++=++,即:()()11f b f b b +-=+,注意到上式是一个关于自然数b 的递推关系式,令1b =, 有()()2111f f -=+2b =,有()()3221f f -=+1b n =-,有()()()111f n f n n --=-+将以上1n -条等式左右两边分别相加,得:()()()()1123111f n f n n -=++++-+⨯-即:()()()1123111f n n n =+++++-+⨯-()11232n n n -=++++=即所求解析式为:()()12x x f x -=二. 函数性质法函数的特征是通过其性质(如奇偶性、单调性、周期性、对称性、特殊点等)反应出来的,抽象函数也是如此。
抽象函数解题方法

抽象函数抽象函数解题方法一般形式为y=f(x)且无法用数字和字母表示出来的函数,一般出现在题目中,或许有定义域、值域等。
补充:1抽象函数常常与周期函数结合,如:f(x)=-f(x+2)f(x)=f(x+4)2解抽象函数题,通常要用赋值法,而且高考数学中,常常要先求F(0)F(1)抽象函数的经典题目!!!我们把没有给出具体解析式的函数称为抽象函数。
由于这类问题可以全面考查学生对函数概念和性质的理解,同时抽象函数问题又将函数的定义域,值域,单调性,奇偶性,周期性和图象集于一身,所以在高考中不断出现;如2002年上海高考卷1 2题,2004年江苏高考卷22题,2004年浙江高考卷12题等。
学生在解决这类问题时,往往会感到无从下手,正确率低,本文就这类问题的解法谈一点粗浅的看法。
一.特殊值法:在处理选择题时有意想不到的效果。
例1 定义在R上的函数f(x)满足f (x + y) = f (x) + f ( y )(x,y∈R),当x <0时,, f (x)>0,则函数f (x)在[a,b]上( )A 有最小值f (a) B有最大值f (b) C有最小值f (b) D有最大值f ( b)分析:许多抽象函数是由特殊函数抽象背景而得到的,如正比例函数f (x)= kx (k≠0),, , ,可抽象为f (x + y) = f (x) +f (y),与此类似的还有特殊函数抽象函数f (x)= x f (xy) =f (x) f (y)f (x)=f (x+y)= f (x) f (y)f (x)=f (xy) = f (x)+f (y)f (x)= tanx f(x+y)=此题作为选择题可采用特殊值函数f (x)= kx(k≠0)∵当x <0时f (x) > 0即kx > 0。
.∴k < 0,可得f (x)在[a,b]上单调递减,从而在[a,b]上有最小值f(b)。
二.赋值法.根据所要证明的或求解的问题使自变量取某些特殊值,从而来解决问题。
高考抽象函数技巧全总结[1]
![高考抽象函数技巧全总结[1]](https://img.taocdn.com/s3/m/5f9972543b3567ec102d8ad9.png)
高考抽象函数技巧全总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211x f x x =++,求()f x .解:设1x u x =+,则1u x u=-∴2()2111u u f u uu-=+=--∴2()1x f x x-=-2.凑合法:在已知(())()f g x h x =即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x xx+=+,求()f x解:∵22111()()(1)(f x x x x xxx+=+-+=11|||1||x xx =+≥∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
抽象函数问题及解法

抽象函数问题及解法原创/O客本文谈及的抽象函数问题是高考的必考内容,是高中函数与大学函数的衔接内容。
打开窗子说亮话,是高中教材没有,高考要考,大学不教但要经常用的内容。
如果一个关于函数f(x)的题目,已知f(x)的性质及f(x)满足的关系式,求证f(x)的其他性质,题目做完了,我们还不知道f(x)的具体的解析式,这就是抽象函数问题.一般地,抽象函数是指没有(直接或间接)给出具体的解析式,只给出一些函数符号及其满足某些条件的函数.解决抽象函数问题,我们可以用函数性质、特殊化、模型函数、联想类比转化、数形结合等多种方法.(1)函数性质法.函数的特征是通过其性质(如单调性、奇偶性、周期性、特殊点等)反映出来的,抽象函数也如此. 我们可以综合利用上述性质,包括借助特殊点布列方程等来解决抽象函数问题.(2)特殊化法.特殊化法又叫特取法. 为达到我们预期的目的,将已知条件进行适当的变换,包括式子的整体变换与具体数字的代换. 如在研究函数性质时,一般将x换成-x或其他代数式;在求值时,用赋值法,常用特殊值0,1,-1代入.(3)模型函数法.模型函数在解决抽象函数问题中的作用非同小可. 一方面,可以用借助具体的模型函数解答选择题、填空题等客观题. 另一方面,可以用“特例探路”,联想具体的模型函数进行类比、猜想,为解答题等主观题的解决提供思路和方法. 一般地,抽象函数类型有以下几种:①满足关系式f(x+y)=f(x)+f(y) (ⅰ)的函数f(x)是线性型抽象函数. 其模型函数为正比例函数f(x)=kx (k≠0).事实上,f(x+y)=k(x+y)=kx+ky=f(x)+f(y).令x=y=0,得f(0)=0,故f(x)的图象必过原点.令y=-x,得0=f(0)=f(x)+f(-x),即f(-x)=-f(x),所以f(x)为奇函数.命题(ⅰ)可以推广为f(x+y)=f(x)+f(y)+b(b是常数),其模型函数为一次函数f(x)=kx-b(k ≠0).②满足关系式f(x+y)=f(x) f(y) (ⅱ)的函数f(x)是指数型抽象函数. 其模型函数为指数函数f(x)=a x(a>0,a≠1).事实上,f(x+y)=a x+y=a x·a y=f(x) f(y).令x=y=0,得f(0)=1,故曲线f(x)必过点(0,1).命题(ⅱ)等价于f(x-y)=f(x) f(y).③满足关系式f(xy)=f(x)+f(y) (x,y∈R+) (ⅲ)的函数f(x)是对数型抽象函数. 其模型函数为对数函数f(x)=log a x(a>0,a≠1).令x=y=1,得f(1)=0,故曲线f(x)必过点(1,0).命题(ⅲ)等价于f( xy)=f(x)-f(y) (x,y∈R+) .④满足关系式f(xy)=f(x) f(y)的函数f(x)是幂型抽象函数. 其模型函数为幂函数f(x)=x n.⑤满足关系式f(x+y)=f(x)+f(y) 1- f (x) f(y)的函数f(x)是正切型抽象函数. 其模型函数为正切函数f(x)=tan x.需要指出的是,不是每种抽象函数都可以找到在中学阶段所熟知的函数作模型函数. 抽象函数的种类还有很多,这里罗列的仅是常见的,尤其是类型①、②、③最常见.我们就上述方法的应用,先进行例说,再分类例说.例如(2008·重庆),若定义域在R上的函数f(x)满足:对任意x1,x2∈R,有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是()A.f(x)为奇函数B.f(x)为偶函数C. f(x)+1为奇函数D. f(x)+1为偶函数这是线性型抽象函数问题. 联想模型函数f(x)=kx-1(k≠0),易知选C.如果此题改为解答题,题设条件不变,“判断并证明函数g(x)=f(x)+1的奇偶性”.那么我们首先联想模型函数,窥测解题方向,构建解题思路. 猜测g(x)是奇函数. 于是心中有“底”. 目标就是需要证明g(-x)+g(x)=0,即f(-x)+f(x)+2=0. 又抽象函数奇偶性问题,一般要先用赋值法确定f(0)的值,再用x,-x进行代换,进而得到g(-x)与g(x)的关系式.于是解答如下.g(x)是奇函数. 证明如下:令x1=x2=0,有f(0)=f(0)+f(0)+1,得f(0)=-1.再令x1=x,x2=-x,有f(0)=f(x)+f(-x)+1,即f(-x)+f(x)+2=0,从而g(-x)+g(x)= f(-x)+f(x)+2=0,所以函数g(x)是奇函数.1. 与单调性相关的问题例1已知函数f(x)的定义域为R,对任意x,y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2. 求f(x)在区间[-3,3]上的最大值和最小值.解析联想模型函数f(x)=kx(k≠0),猜想“f(x)是奇函数,且为减函数”.设m<n,则f(n)-f(m)=f((n-m)+m)-f(m)=f(n-m)+f(m)-f(m)=f(n-m).因为当x>0时,f(x)<0,而n-m>0,所以f(n-m)<0,即f(n)<f(m),所以f(x)是减函数.根据最值定理,f(x)在[-3,3]上的最大值为f(-3),最小值为f(3).因为f(1)=-2,所以f(2)=f(1+1)=2f(1)=-4,f(3)=f(2)+f(1)=-6.又令x=y=0,得f(0)=f(0+0)=f(0)+f(0),故f(0)=0,再令x=1,y=-1,得0=f(0)=f(1)+f(-1),故f(-1)=2,f(-3)=f(-2)+f(-1)=3f(-1)=6.所以f(x)在[-3,3]上的最大值为6,最小值为-6.点评我们可以举出具有这种性质的一个函数y=-2x(x∈[-3,3]).此外,我们还可以用奇偶性来证明单调性和求f(-3)的值. 由0=f(0)=f(x-x)=f(x)+f(-x),得f(-x)=-f(x),故f(x)是奇函数.因此f(n)-f(m)=f(n)+f(-m)=f(n-m)<0,f(-3)=-f(3)=6.注意这两种证明抽象函数单调性的技巧,为创造条件利用关系式,前者是作自变量变换n=n-m +m ;后者是用奇偶性巧妙地实现了“-”向“+”的转化.例2 已知函数f (x )的定义域为R ,对任意m ,n ,均有f (m +n )=f (m )+f (n )-1,且f (-12)=0,当x >-12时,f (x )>0. 求证f (x )是单调递增函数,并举出具有这种性质的一个函数. 解 设m >n ,则m -n >0,m -n -12>-12, 所以f (m )-f (n )=f (n +m -n )-f (n )=[f (n )+f (m -n )-1]-f (n )=f (m -n )+f (-12)-1=f (m -n -12)>0,即f (m )>f (n ). 从而f (x )为单调递增函数. 具有这种性质的一个函数是y =2x +1.例3 已知函数f (x )的定义域是(0,+∞),且f (xy )=f (x )+f (y ),当x >1时,f (x )>0.(1)求f (1),并证明f (x )在定义域上是增函数;(2)如果f (13)=-1,求满足f (x )-f (1x -2)≥2的x 的取值范围. 解 (1)令x =y =1,则f (1)=f (1)+f (1),得f (1)=0.设0<m <n ,则f (n ) - f (m )= f (n m ·m ) - f (m )= [f (n m )+f (m )] - f (m )= f (n m )>0 (因为n m>1). 即f (m )<f (n). 所以f (x )在(0,+∞)上是增函数.(2)由f (1)=0, f (1)=f (1x ·x )=f (1x )+f (x ),得f (1x)=-f (x ). 有f (13)=-f (3)=-1,得f (3)=1,故2=f (3)+f (3)=f (9), 有f (x )-f (1x -2)=f (x )+f (x -2)=f (x (x -2)), 所以原不等式可化为f (x (x -2))≥f (9),于是从而所求x 的取值范围是[1+10,+∞).点评 题(2)实质上是解抽象函数不等式. 一般地,先把不等式中的常数项化成某个函数值(如这里的2=f (9)),以便利用单调性“脱去”函数符号,转化成一般不等式. 特别注意抽象函数定义域. 不等式组的前两个不等式是定义域要求(这里也是单调区间的要求,因为只有同一个单调区间,才能“脱去”函数符号),第三个是单调性的逆用.此外,我们可以写出满足题设条件的一个函数y =log 3x .2. 与奇偶性相关的问题例4(2002·北京)已知f (x )是定义域在R 上不恒为0的函数,且对任意a ,b ∈R 都满足f (a ·b )=af (b )+bf (a ). 求f (0)和f (1),判断并证明f (x )的奇偶性.解 令a =b =0,则f (0·0)=0,即f (0)=0.令a =b =1,则f (1)=2 f (1),即f (1)=0.x >0,x -2>0, 解得x ≥1+10.x (x -2)≥9.f (x )为奇函数,证明如下.令a =-1,b =x ,则f (-x )=-f (x )+xf (-1),又f (1)=f ((-1)·(-1))=-f (-1)-f (-1),即f (-1)=0,从而f (-x )=-f (x ).所以f (x )为奇函数.点评 当然,也可以只令a =-1,推得f (-b )=-f (b )而得结论.例5(2009·全国)函数f (x )的定义域为R . 若f (x +1)与f (x -1)都是奇函数,则( )A. f (x )是偶函数B. f (x )是奇函数C. f (x )=f (x +2)D. f (x +3)是奇函数解析 由f (x +1)是奇函数,知f (-x +1)=-f (x +1), ①由f (x -1)是奇函数,知f (-x -1)=-f (x -1), ②在①中,用x -1代换x ,得f (2-x )= -f (x ),在②中,用x +1代换x ,得f (-2-x )=-f (x ),所以f (2-x )= f (-2-x ),再用-2-x 代换x ,得f (4+x )=f (x ),知4为f (x )的周期.于是由②,f (-x -1+4)=-f (x -1+4),即f (-x +3)=-f (x +3),所以f (x +3)是奇函数,可知选D.点评 我们还可以构造模型函数f (x )=cosπx 2来解此选择题,可知选 D. 事实上f (x +3)=sin πx 2. 还有,由f (x +1)是奇函数,可令h (x )=f (x +1),则h (-x )=-h (x ),即f (-x +1)=-f (x +1).此外,对上述变量代换法可以用换元法帮助理解. 例如,令t =x +1,则x =t -1,代入①式得f (2-t )=-f (t ),即f (2-x )=-f (x ). 注意这里的代换和换元的前提是,不能改变函数f (x )的定义域.例6(2014•全国)已知偶函数f (x )在[0,+∞)上单调递减,且f (2)=0,若f (x -1)>0,则x 的取值范围是 .解析 实际上是解抽象不等式f (|x -1|)>f (2).因为f (x )是偶函数,所以f (x -1)= f (|x -1|),因为f (2)=0,f (x -1)>0,所以f (|x -1|)>f (2).又f (x )在[0,+∞)上单调递减, |x -1|,2∈[0,+∞),所以|x -1|<2,解得-2<x -1<2,即-1<x <3综上可知,x 的取值范围是(-1,3).例7(2015•全国)设函数f ´(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ´(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A. (-∞,-1)∪(0,1)B. (-1,0)∪(1,+∞)C. (-∞,-1)∪(-1,0)D. (0,1)∪(1,+∞)解析 因为f (x )是R 上的奇函数,所以f (-x )=-f (x ) ①,对等式两边求导,注意左边用复合函数求导法则,得[f (-x )]´=[ -f (x )]´ ,f ´(-x )•(-x )´=-f ´(x ),即f ´(-x ) =f ´(x ) ②.因为当x >0时,xf ´(x )< f (x ),故当x <0时,则-x >0,-xf ´(-x )< f (-x ),将①,②代入得-xf ´(x )<- f (x ),即xf ´(x )> f (x ) (x <0).由f (x )>0,知xf ´(x )>0,得f ´(x )<0 (x <0),因此,f (x )在(-∞,0)上是减函数,又f (-1)=0,所以x <0时,由不等式f (x )>0,即f (x )> f (-1),解得x <-1.由奇偶性与单调性的关系知,f (x )在(0,+∞)上也是减函数,又f (1)=-f (-1)=0,所以x >0时,由不等式f (x )>0,即f (x )> f (1),解得0<x <1.综上可知,选A.评注(1)这里,我们由f (-x )=-f (x ),推得f ´(-x ) =f ´(x ). 这表明奇函数的导函数是偶函数. 同理可得,偶函数的导函数是奇函数.(2)另法. 我们可以构造辅助函数来解此题. 令g (x )=f (x )x ,得g ´(x )=xf ´(x )-f (x )x 2.当x >0时,g ´(x )<0,知g (x )单调递减. 由f (-1)=-f (1)及f (-1)=0,知g (1)=0,所以由不等式f (x )>0,即g (x )>g (1),解得0<x <1. 可证g (-x )=g (x ),g (x )是偶函数,知g (x )在(-∞,0)上是单调递增. 当x <0时,同理,由g (x )<g (-1)解得x <-1. 一般地,题目条件出现“xf ´(x )-f (x )<0( >0)”时,可以考虑构造辅助函数g (x )=f(x )x;出现“xf ´(x )+f (x )<0( >0)”时,可以考虑构造辅助函数 h (x )=xf (x ).(3)为加深对此题的理解,我们可以举出这类函数的一个特例:它的图象如图1.3. 与周期性相关的问题例8(2001·全国)设f (x )是定义域在R 上的偶函数,其图象关于直线x =1对称,对任意x 1,x 2∈[0,12 ],都有f (x 1+x 2)=f (x 1)f (x 2),且f (1)=a >0. 求f (12),f (14),并证明f (x )是周期函数.解 由题设得a =f (1)=f (12+12)=f (12)f (12),即f (12)=21a . 21a = f (12)=f (14+14)=f (14)f (14),即f (14)=41a . 因为f (x )是偶函数,所以f (-x )= f (x ),又f (x )图象关于直线x =1对称,得f (1+x )=f (1-x ),用x +1代换x ,得f (2+x )=f (-x ),于是f (2+x )=f (x ),所以f (x )是周期函数.例9 设函数f (x )定义在R 上,且对任意的x 有f (x )=f (x +1)-f (x +2),求证f (x )是周期函数,并找出它的一个周期.解 因为f (x )=f (x +1)-f (x +2),所以f (x +1)= f (x +2)-f (x +3),两式相加,得f (x )= -f (x +3),即f (x +3)= - f (x ).因此,f (x +6)=f ((x +3)+3)=-f (x +3)=-(-f (x ))=f (x ).所以,f (x )是周期函数,它的一个周期是6.点评 对于由关系式f (x +3)= - f (x ),推得f (x +6)=f (x ). 这个我们可以这样理解,“自变量每增加3,函数值反号一次”. 我们增加6,反号两次,不就“负负得正”了吗. 类似的还有f (x +2)=-x +1,x >0, 0, x =0, -x -1, x <0. f (x )= 图1±1f(x ),可得f (x +4)=f (x )等. 例10(2011·上海)设g (x )是定义在R 上的以1为周期的函数,若函数f (x )=x +g (x )在区间[3,4]上的值域为[-2,5],求f (x )在区间[-10,10]上的值域.解 由g (x +1)=g (x ),知g (x +n )=g (x ),n ∈Z .所以f (x +n )=x +n + g (x +n )=x +g (x )+n =f (x )+n ,n ∈Z .因为x ∈[3,4]时,f (x )∈[-2,5],故当x ∈[-10,-9]时,x +13∈[3,4],有f (x +13)∈[-2,5],即f (x )+13∈[-2,5],所以f (x )∈[-15,-8].当x ∈[-9,-8]时,x +12∈[3,4],同理,f (x )∈[-14,-7].……当x ∈[9,10]时,x -6∈[3,4],从而f (x -6)∈[-2,5],即f (x )-6∈[-2,5],所以f (x )∈[4,11].综上,当x ∈[-10,10]时,有f (x )∈[-15,-8]∪[-14,-7]∪…∪[4,11]=[-15,11].所以f (x )值域为[-15,11].4. f (x )=af (x +b )的问题关于已知f (x )所满足的方程求f (x )的解析式问题,我们在7.3节讲述过. 我们现在来研究函数f (x )满足关系式f (x )=af (x +b ),求解与f (x )相关的问题.例11(2010·广东)已知函数f (x )对任意实数x 均有f (x )=kf (x +2),其中常数k 为负数,且f (x )在区间[0,2]上有表达式f (x )=x (x -2).(1)求f (-1),f (2. 5)的值;(2)写出f (x )在[-3,3]上的表达式,并讨论f (x )在[-3,3]上的单调性.解析 (1)因为当0≤x ≤2时,f (x )=x (x -2),故f (1)=-1,f (12)=-34. 又x ∈R 时,f (x )=kf (x +2)(k <0), 所以f (-1)=kf (-1+2)=kf (1)=-k ; f (2. 5)=f (2+12)=1k f (12)=-34k. (2)因为当0≤x ≤2时,f (x )=x (x -2),设-2≤x <0,则0≤x +2<2,有f (x +2)=(x +2)(x +2-2)=x (x +2),所以f (x )=kf (x +2)=k x (x +2).设-3≤x <-2,则-1≤x +2<0,有f (x +2) =k (x +2)(x +4),所以f (x )=kf (x +2)=k 2(x +2)(x +4). 设2<x ≤3, 则0<x -2≤1,又f (x -2)=kf (x ),所以f (x )=1k f (x -2)=1k(x -2)(x -4).因为k <0,由二次函数性质知,f (x )在[-3,-1],[1,3]上为增函数;在[-1,1]上为减函k 2(x +2)(x +4),-3≤x <-2, k x (x +2), -2≤x <0, x (x -2), 0≤x ≤2, 1k (x -2)(x -4), 2<x ≤3. 综上所述,f (x )=数. (图2)例12(2003·上海)已知集合M 是满足下列性质的函数f (x )的全体:存在非零常数T ,对任意x ∈R ,有f (x +T )=Tf (x )成立.(1)函数f (x )=x 是否属于集合M ,说明理由;(2)设函数f (x )=a x (a >0且a ≠1)的图象与y =x 的图象有公共点,证明:f (x )=a x ∈M . 解 (1)对于非零常数T ,f (x +T )=Tf (x )=Tx ,因为对任意x ∈R ,x +T = Tx 不能恒成立,所以f (x )=x M .(2)因为函数f (x )=a x (a >0且a ≠1)的图象与y =x 的图象有公共点,显然x =0不是方程a x =x 的解,所以存在非零常数T ,使a T =T .于是对于f (x )=a x 有f (x +T )=a x +T = a T ·a x = T ·a x = Tf (x ),所以f (x )=a x ∈M .所以方程组 有解,消去y 得a x =x , y =a x , y =x。
高三数学抽象函数问题的解题策略

高三数学抽象函数问题的解题策略一、利用专门模型有些抽象函数咨询题,用常规解法专门难解决,但与具体函数〝对号入座〞后,咨询题容易迎刃而解.这种方法多用于解填空题、选择题、解答题的解题后的检验,但解答题的解答书写过程一样不能用此法.例1 假设函数f(x)与g(x)在R 上有定义,且f(x-y)=f(x)g(y)-g(x)f(y), f(-2)=f(1)≠0,那么g(1)+g(-1)= .解 因为 f(x-y)=f(x)g(y)-g(x)f(y), 这是两角差的正弦公式模型,又f(-2)=f(1)≠0,那么可取x x f 32sin )(π=因此 f(-1-1)=f(-1)g(1)-g(-1)f(1) 例2 设函数f(x)是定义在R 上的减函数,且满足f(x+y)=f(x)f(y),f(-3)=8,那么不等式f(x)f(x-2)< 的解集为 . 解 因为函数f(x)满足f(x+y)=f(x)f(y),这是指数函数模型,又 f(-3)=8, 那么可取 ∵f(x)f(x-2)< ∴2)21()21(-x x <2561, 即22)21(-x <8)21(,∴ 2x-2 >8, 解不等式,得 x >5,∴ 不等式的解集为 {x|x >5}.二、利用函数性质函数的特点是通过函数的性质反映出来的,抽象函数也不例外,只有充分利用题设条件所讲明的函数的性质,灵活进行等价转化,抽象函数咨询题才能峰回路转、化难为易.1. 利用单调性例3 设f(x)是定义在〔0,+∞〕上的增函数,满足f(xy)=f(x)+f(y), f(3)=1,解不等式f(x)+f(x-8)≤2.解 ∵ 函数f(x)满足f(xy)=f(x)+f(y), f(3)=1,32sin )1()1()32sin()34sin(πππ---=-⇒g g .1)1()1()1(23)1(2323-=-+⇒---=⇒g g g g 2561 2561 ,)21()(x x f =∴ 2=1+1=f(3)+f(3)=f(9),由f(x)+f(x-8)≤2,得 f[x(x-8)]≤f(9),∵ 函数f(x)是定义在〔0,+∞〕上的增函数,那么 ∴ 不等式解集为 {x|8<x ≤9}. 2. 利用奇偶性 例4 函数f(x)=ax 5+bsinx+3,且f(-3)=7,求f(3)的值.分析 f(x)的解析式含有两个参数a 、b,却只有一个条件f(-3)=7,无法确定a 、b 的值,因此f(x)仍是抽象函数,但我们注意到g(x)=ax 5+bsinx 是奇函数,有g(-3)=-g(3).解 设g(x)=ax 5+bsinx,明显g(x)是奇函数,∵ f(-3)=7,∴ f(-3)=g(-3)+3=-g(3)+3=7 g(3)=-4,∴ f(3)=g(3)+3=-4+3=-1.3. 利用周期性例5 设函数f(x)在R 上是奇函数,f(x+2)=-f(x) ,当0<x ≤1时,f(x)=x,那么f(7.5)= .解 由f(x+2)=-f(x) ,得 f(x+4)=-f(x+2)=f(x),那么f(x)是以4为周期的周期函数,且是奇函数,因此 f(7.5)=f(2×4-0.5)=f(-0.5)=-f(0.5)=-0.5.例6 函数f(x)满足f(1)=2,f(x+1)=)(1)(1x f x f -+,那么 f(2007)= . 解 ∵ ∴ f(x)是以4为周期的周期函数, 4. 利用对称性例7 f(x)是奇函数,定义域为{x|x ∈R,x ≠0},又f(x)在区间〔0,+∞〕上是增函数,且f(-1)=0,那么满足f(x)>0的x 的取值区间是 .解 依条件作出f(x)的大致图象,如图1所示,从图象中可看出,当f(x)>0时,x 的取值区间是〔-1,0〕∪〔1,+∞〕.x >0, x-8>0, x(x-8)≤9, ⇒ 8<x ≤9, ,)(1)(1)(11)(1)(11)1(1)1(1)2(x f x f x f x f x f x f x f x f -=-+--++=+-++=+ ),()2(1)4(x f x f x f =+-=+从而 .21)1(1)3()2007(-=-==∴f f f ⇒例8 定义在〔-∞,+∞〕上的函数y=f(x)在〔-∞,2〕上是增函数,且函数y=f(x+2)为偶函数,那么f(-1),f(4),f(6)的大小关系为 . 解 设F(x)=f(x+2),∵ F(x)为偶函数,∴ F(-x)=F(x), 即f(2+x)=f(2-x),∴ 函数f(x)的图象关于直线x=2对称,∴ f(-1)=f(5),∵ f(x)在〔-∞,2〕上是增函数,∴ f(x)在〔2,+∞〕上是减函数,∴ f(6)<f(5)<f(4), 即f(6)<f(-1)<f(4).三、利用专门方法有些抽象函数咨询题,用常规方法来解决往往难于奏效,但用一些专门规方法来求解,常收到意想不到的成效.1. 利用赋值法例9 函数f(x)的定义域为R,对任意x 、y ∈R,都有f(x+y)+f(x-y)= 2f(x)f(y),且f(0)≠0.〔1〕求证:f(0)=1;〔2〕求证:f(x)是偶函数; 〔3〕 ① 求证:对任意x ∈R,有f(x+c)= -f(x)成 立;② 求证:f(x)是周期函数.解〔1〕令x=y=0,那么有2f(0)=2f 2(0), ∵ f(0)≠0,∴ f(0)=1.〔2〕令x=0,那么有f(y)+f(-y)= 2f(0)f(y),∵ f(0)=1,∴ f(-y)=f(y),∴ f(x)是偶函数. 〔3〕① 分不用22c 、c x + (c ≠0)替换x 、y, 有f(x+c)+f(x)=2f(2c x +)f(2c ). ∵ f(2c )=0, ∴ f(x+c)= -f(x) .② 由①知 f(x+c)=-f(x),用x+c 替换x,有f(x+2c)=-f(x+c)=f(x),∴ f(x)是以2c 为周期的周期函数.2. 利用递推法例10 设函数f(x)的定义域为R ,且对任意实数x,都有f(x)=f(x+1)-f(x+2),求证:f(x)是周期函数.解 ∵ f(x)=f(x+1)-f(x+2),∴ f(x+1)=f(x+2)-f(x+3),将以上两式相加,得 f(x+3)=-f(x),.0)2()0(=≠c f ,c c 使若存在常数∴ f(x+6)=-f(x +3)=f(x),∴ f(x)是周期函数,6是它的一个周期.例11 f(x)是定义在正整数集的函数,且满足f(x+y)=f(x)+f(y)+xy (x,y ∈N +),f(1)=1,求函数f(x)的解析式.解 令y=1,∵ f(1)=1,∴ f(x+1)=f(x)+f(1)+x, 即f(x+1)-f(x)=x+1,那么 f 〔2)-f(1)=2,f 〔3)-f(2)=3,……f(x)-f(x-1)=x.将以上各式相加,得 f(x)-f(1)=2+3+4+ (x)∴ f(x)=1+2+3+4+…+x=21x(x+1) (x ∈N +). 3. 利用反证法例12 函数f(x)在区间(-∞,+∞〕上是增函数,a,b ∈R,假设f(a)+f(b)≥f(-a)+f(-b).求证:a+b ≥0.证明 假设a+b <0,那么a <-b,b <-a,∵ 函数f(x)在区间(-∞,+∞〕上是增函数,∴ f(a) <f(-b),f(b) <f(-a),∴ f(a)+f(b)<f(-a)+f(-b),这与矛盾,∴ a+b <0不成立,即a+b ≥0.例13 设函数f(x)对定义域内任意实数都有f(x) ≠0,且f(x+y)=f(x)f(y)成立,求证:对定义域内任意x,都有f(x) >0.证明 假设在定义域内存在x 0,使f(x 0)≤ 0, ∵ ∴ f(x 0) >0,这与假设的f(x 0)≤ 0矛盾, 因此假设不成立,故对定义域内任意x,都有f(x) >0. 以上我们利用抽象函数的专门模型、函数性质、专门方法等途径举例讲明了求解抽象函数咨询题的一些策略.事实上处理这类咨询题时,常将几种解题策略综合使用,〝多管齐下〞方能游刃有余.,0)2(),2()2()2()22()(00200000≠==+=x f x f x f x f x x f x f。
抽象函数问题求解的常用方法

抽象函数问题求解的常用方法
高中数学中,抽象函数的解题方法主要包括以下几个方面:
1.确定定义域和值域:抽象函数的定义域和值域是解题的基础,需要根据题目中给出的条件进行确定。
2.运用函数性质:抽象函数和一般的函数一样,具有诸如奇偶性、周期性、单调性等函数性质。
在解题过程中,可以根据这些性质进行分析和推导,从而得出结论。
3.运用复合函数的性质:抽象函数可能会出现复合函数的形式,运用复合函数的性质可以将抽象函数化简,从而更加方便进行分析和计算。
4.利用函数的图像特征:抽象函数的图像特征包括零点、极值、拐点等,在解题过程中可以结合图像特征进行分析,进一步确定函数的性质和变化趋势。
需要注意的是,抽象函数作为高中数学中的一个较为高级的知识点,需要学生掌握一定的数学基础和思维方法,例如函数图像的绘制、导数和微积分等知识。
因此,在学习抽象函数时,需要逐步扩充自己的数学知识面,并不断提高自己的数学思维能力和分析能力。
如何解决高一数学中的抽象函数问题

如何解决高一数学中的抽象函数问题在高一数学的学习中,抽象函数问题常常让同学们感到头疼。
这些问题不像具体函数那样有明确的表达式,而是仅仅通过一些函数性质或运算关系来描述,具有较强的抽象性和逻辑性。
但别担心,只要掌握了正确的方法和思路,抽象函数问题也能迎刃而解。
首先,我们要理解抽象函数的定义和常见类型。
抽象函数通常是指没有给出具体解析式的函数,而是通过一些条件,如函数的定义域、值域、单调性、奇偶性、周期性等,来描述函数的特征。
常见的抽象函数类型有:以函数运算关系给出的抽象函数,如$f(x + y) = f(x) +f(y)$;以函数性质给出的抽象函数,如$f(x) = f(x)$表示函数为奇函数。
那么,解决抽象函数问题的关键在哪里呢?关键之一是赋值法。
通过对自变量赋予特殊值,往往能得出一些有用的结论。
比如,对于函数$f(x + y) = f(x) + f(y)$,我们可以令$x = 0$,$y = 0$,得到$f(0) = f(0) + f(0)$,从而得出$f(0) = 0$。
再比如,若已知$f(1) = 2$,要研究$f(2)$,我们可以令$x = 1$,$y =1$,得到$f(2) = f(1 + 1) = f(1) + f(1) = 4$。
关键之二是利用函数的性质。
比如,如果已知函数是奇函数,那么$f(x) = f(x)$;如果是偶函数,就有$f(x) = f(x)$。
通过这些性质,可以将自变量转化为已知的形式,从而进行计算或推理。
例如,已知$f(x)$是奇函数,且$f(2) = 5$,那么$f(-2) = f(2) =-5$。
关键之三是周期性。
如果函数具有周期性,我们可以利用周期将自变量的取值范围进行转化。
比如,若函数$f(x)$的周期为$T$,那么$f(x + kT) = f(x)$,$k\in Z$。
例如,若函数的周期为$4$,$f(1) =2$,求$f(9)$,则可以将$f(9)$转化为$f(9) = f(1 + 2\times 4) = f(1) = 2$。
高考抽象函数技巧全总结

高考抽象函数技巧全总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u uf u u u-=+=--∴2()1xf x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考解题技术(2)
抽象函数的处理方法
1.代换法求抽象函数的定义域
【题1】(2013,大纲理数,4题)已知函数()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为( )
A.(1,1)-
B.112⎛⎫-- ⎪⎝⎭,
C. (1,0)-
D.1(,1)2
【题2】(1997,全国文数,7题)设函数y =f (x )定义在实数集上,则函数y =f (x -1)与y =f (1-x )的图象关于( )
A.直线y =0对称
B.直线x =0对称
C.直线y =1对称
D.直线x =1对称
【解析】取()2f x x =+,则
(1)1,(1)3y f x x y f x x =-=+=-=-,
作出两直线的图象,如图2,由图可知,其图象关于直线x =1对称。
评注:可以从理论上证明函数()1f x -与函数()1f x -关于直线x=1对称. 注意到()f x 与()f x -的图象关于y 轴对称,将它们同时右移1单位,前者得()1f x -的图象,后者得()1f x --
⎡⎤⎣⎦的图象,也就是()1f x -的图象.所以函数()
1f x -
与函数()1f x -关于直线x=1对称
3.探原型求抽象函数的函数值
【题3】已知函数f (x )满足:f (m +n )=f (m )f (n ),f (1)=3,则2(1)(2)(1)
f f f ++2(2)(4)(3)f f f ++2(3)(6)(5)f f f ++2(4)(8)(7)
f f f +的值等于( ) A .36 B .24 C .18 D .12
【解析】符合f (m +n )=f (m )f (n )的函数原型是指数函数x y a =,∵f (1)=3,
∴3,a =得3x
y =.原式改写为:()22446688
35733333333433243333+++++++=+=,故选B. 评注:如果不用特值,本题的一般解法是:
∵f (m +n )=f (m )f (n ),∴f (2n )=f (n )f (n ),即f (2n )=2()f n .且有f (n +1)=f (n )f (1)=3f (n ), 即(1)()f n f n +=3,则2(1)(2)(1)f f f ++2(2)(4)(3)f f f ++2(3)(6)(5)f f f ++2(4)(8)(7)
f f f + =2(2)2(4)2(6)2(8)(1)(3)(5)(7)
f f f f f f f f +++=2×3+2×3+2×3+2×3=24,故选B . 显然,作为选择题如此计算并不划算.
4.转换法求抽象函数中参数的范围
【题4】(2013年天津卷文7)已知函数()f x 是定义在R 上的偶函数, 且在区间
[0,)+∞单调递增. 若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是( )
A .[1,2]
B .10,2⎛⎤ ⎥⎝⎦
C .1,22⎡⎤⎢⎥⎣⎦
D .(0,2] 【解析】()f x 是定义在R 上的偶函数,所以1222
(log )(log )(log )f a f a f a =-=,
从而原不等式可化为2(log )(1)f a f ≤,即2(|log |)(1)f a f ≤,
而()f x 在[0,)+∞单调递增,所以2|log |1a ≤,解得122a ≤≤,选C 。
评注:抽象函数的不等式或方程问题常借助函数的单调性解决,只需将已知条件化为()()f a f b ≤即可。
5.赋值法求抽象函数的函数值
【题5】(2008年陕西卷) 定义在R 上的函数()f x 满足()()()f x y f x f y x y +=++(x y ∈R ,)
,(1)2f =,则(2)f -等于( ) A .2 B .3
C .6
D .9 【解析】令0,0x y ==,得(0)2(0)0f f =+,从而(0)0f =;
令1x y ==,得(2)2(1)26f f =+=,
令2,2x y ==-,得(0)(2)(2)8f f f =+--,所以可得(2)2f -=。
评注:本题的解法称为“赋值法”.目的还是一个,尽可能使抽象函数具体化
6.数形结合确定抽象函数的图象.
【题6】(2012年湖北卷)已知定义在区间[0,2]上的函数y=f(x)的图象如图3所示,则y=-f(2-x)的图象为( )
【解析】图3中的函数可以记为:()[][]0,111,2x
x f x x ⎧∈⎪=⎨∈⎪⎩
当[]0,1x ∈时,[]21,2x -∈;当[]1,2x ∈时,[]20,1x -∈.
于是()[][]1
0,121,22x x y f x x ⎧-∈⎪=---+=⎨∈⎪⎩。
比照各图象,仅B 适合,故选B.
评注:本题也可取特值.由图象可知()()()f 0f 1f 2=0,==1因此,x=0时,y=-
图
3
f(2-0)=-1,函数图象过点(0,-1)排除A,D;又x=1时,y=-f(2-1)=-1,函数图象过点(1,-1),排除C。
所以选B。
7.周期函数的处理方法
f x是定义在R上的以3为周期的奇函数,且
【题7】(2005年福建卷)()
f ,则方程f(x)=0在区间(0,6)内解的个数的最小值是()
(2)0
A.2
B.3
C.4
D.5
【解析】因为f(x)是奇函数,所以f(0)=0;
因为f(x)是以3为周期的函数,f(2)=0,所以f(3)=f(0+3)=f(0)=f(5)=f(2+3)=f(2)=0.
又f(-1)=f(2-3)=f(2)=0;f(x)是奇函数,可得f(-1)=-f(1)=0。
从而f(1)=0,f(4)=f(1+3)=f(1)=0.
因为f(x)以3为周期,所以f(1.5)=f(1.5-3)=f(-1.5)=-f(1.5) ,
也就是f(1.5)=-f(1.5),即2f(1.5)=0, f(1.5)=0,从而f(4.5)=f(1.5+3)=0.
由此可见,f(x)=0在区间(0,6)内的解至少有7个,分别是:1,2,3,4,5,1.5,4.5,
四个选项中没有正确答案。
【点评】命题组给出的标准答案是D,连命题人自己也忽略了两个值,可见抽象函数问题不论是命题还是解题都应慎之又慎。