2017年秋季新版北师大版九年级数学上学期6.3、反比例函数的应用教案2

合集下载

九年级数学北师大版(上册)6.3 反比例函数的应用

九年级数学北师大版(上册)6.3 反比例函数的应用
S
(2)当S=2时,y=100 =50, 2
所以当面条粗2 mm2时,面条的总长度为50 m.
4.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识: 一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细 (横截面积)S(mm2)的反比例函数,其图象如图所示. (1)写出y(m)与S(mm2)的函数关系式; (2)求当面条粗2 mm2时,面条的总长度是多少米?
∴y= 240 x
(2)
根据题意,若x=10,则y=
240 10
=24,
∴长为24 m
(3) 根据题意可得 240 ≤20,解得x≥12, x
∴宽至少为12 m
2.打字员要完成一篇4 200字的文章录入工作.
(1)若平均每分钟录入60个字,则完成工作需要多少分钟?
(2)写出录入时间y(分)与录入速度x(字/分)之间的函数关系式;
油0.1升的耗油速度行驶,可行驶700千米.
(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析
式,(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?
解:(1)把 a=0.1,S=700 代入
S= k 中,得 k=70,∴S= 70
a
a
(2) 把a=0.08代入 S= 70 得
(2) 不能
理由:晚上20:00到第二天早上
7:00共有11小时,
把x=11 代入 y= 225 , 得 y= 225 >20
x
11
∴不能
二、过关检测
第1关
7.将油箱注满k升油后,轿车可行驶的总路程S(单位:千米)与
平均耗油量a(单位:升/千米)之间是反比例函数关系S=k (k是常
a
数,k≠0).若某轿车油箱注满油后,以平均耗 油量为每千米耗

秋九年级数学上册 6.3 反比例函数的应用(2)教案 北师大版(2021年整理)

秋九年级数学上册 6.3 反比例函数的应用(2)教案 北师大版(2021年整理)

2017年秋九年级数学上册6.3 反比例函数的应用(2)教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年秋九年级数学上册6.3 反比例函数的应用(2)教案(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年秋九年级数学上册6.3 反比例函数的应用(2)教案(新版)北师大版的全部内容。

6O8x(min)y(mg)6.3反比例函数的应用教学目标:1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题2、能根据实际问题中的条件确定反比例函数的解析式。

3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。

教学重点、难点:重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题难点:根据实际问题中的条件确定反比例函数的解析式教学过程:一、情景创设:为了预防“非典”,某学校对教室采用药熏消毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量y (mg )与时间x (min)成正比例.药物燃烧后,y 与x 成反比例(如图所示),现测得药物8min 燃毕,此时室内空气中每立方米的含药量为6mg ,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y 关于x 的函数关系式为: ________, 自变量x 的取值范围是:_______,药物燃烧后y 关于x 的函数关系式为_______。

(2)研究表明,当空气中每立方米的含药量低于1.6mg 时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3mg 且持续时间不低于10min 时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?二、新授:例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。

九年级数学上册《反比例函数的应用》教案、教学设计

九年级数学上册《反比例函数的应用》教案、教学设计
布置适量的练习题,让学生在练习中巩固所学知识,提高解决问题的能力。同时,关注学生的个体差异,给予针对性的指导和鼓励。
6.小组合作,拓展提高
设置小组合作任务,让学生在合作中探讨反比例函数的更深入问题,如反比例函数与一次函数、二次函数的关系等。培养学生团队合作精神和创新能力。
7.课堂小结,总结提升
在课堂尾声,引导学生对所学知识进行总结,梳理反比例函数的定义、性质和应用。教师进行点评,强调重点,突破难点。
1.请同学们完成课本第十章第3节后的练习题,特别是第1、3、5、7、9题,这些题目涵盖了反比例函数的基本概念和性质,通过练习,加深对反比例函数的认识。
2.结合生活实际,设计一个反比例函数的应用问题,并尝试自己解决。这个问题可以涉及行程、面积、比例分配等方面,要求学生在解决过程中明确反比例函数的应用步骤和关键点。
九年级数学上册《反比例函数的应用》教案、教学设计
一、教学目标
(一)知识与技能
1.理解反比例函数的概念,掌握反比例函数的一般形式,了解常数k的几何意义。
2.能够绘制反比例函数的图像,掌握反比例函数图像的对称性、渐近线等性质。
3.学会运用反比例函数解决实际生活中的问题,如行程问题、面积问题等。
(二)过程与方法
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结反比例函数的定义、图像性质和应用。
2.强调反比例函数在实际问题中的应用,让学生认识到数学知识在生活中的重要性。
3.提醒学生课后复习,巩固所学知识。
4.布置课后作业,适当拓展,提高学生的自主学习能力。
五、作业布置
为了巩固学生对反比例函数的理解和应用,特布置以下作业:
3.加强师生互动,关注学生的个体差异,给予每个学生足够的关注和指导。

北师大版九年级数学上册:6.3反比例函数的应用(教案)

北师大版九年级数学上册:6.3反比例函数的应用(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了反比例函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对反比例函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在讲授新课的过程中,我尽量用简洁明了的语言解释反比例函数的定义,并通过案例分析让学生看到函数是如何在现实世界中发挥作用的。我认为这样的方法有助于提高学生的数学应用意识,让他们明白学习数学不仅仅是为了应付考试,而是为了解决实际问题。
实践活动环节,学生分组讨论和实验操作进行得相当顺利。我看到了他们积极思考、互相交流的场景,这让我感到很欣慰。不过,我也观察到有些小组在讨论时,个别成员参与度不高,这可能是因为他们对问题还不够理解。在未来的教学中,我需要更加关注这些学生,鼓励他们积极参与,提高他们的自信心。
北师大版九年级数学上册:6.3反比例函数的应用(教案)
一、教学内容
北师大版九年级数学上册:6.3反比例函数的应用。本节课我们将围绕以下内容展开:
1.反比例函数在实际问题中的应用。
2.利用反比例函数解决几何问题,如相似多边形的面积比、相似三角形的周长比等。
3.通过实际例子,让学生掌握反比例函数在生活中的应用,如速度与时间的关系、密度与体积的关系等。
4.分析反比例函数的性质,如函数图像、单调性、奇偶性等,并探讨其在实际问题中的应用。
5.练习题:完成教材课后练习第1、2、3题,巩固反比例函数的应用。
二、核心素养目标
1.培养学生运用反比例函数知识解决实际问题的能力,提升数学应用意识。

九年级数学上册第六章反比例函数6.3反比例函数的应用教案新版北师大版

九年级数学上册第六章反比例函数6.3反比例函数的应用教案新版北师大版

九年级数学上册第六章反比例函数6.3反比例函数的应用教案新版北师大版课题:6.3反比例函数的应用? 教学目标:一、知识与技能目标:能够分析问题中的定量关系,灵活运用反比例函数知识解决实际问题。

二、过程与方法目标:通过“分析数量-建立足够的模型-解决问题”的过程,培养分析和解决问题的能力。

情感态度和价值观目标:从现实情境中抽象出数学问题,建构数学模型,解决问题,培养学生应用数学知识解决问题的能力,体验数学的实用性,提高学习数学的兴趣.? 重点:利用反比例函数的含义和性质来解决实际问题难点:从实际问题中抽象数学问题,寻找变量之间的关系,建立数学模型.?教学流程:一、复习导入反比例函数你的形象是什么样的?它的本质是什么?课堂展示1:双曲线(1)当k>0时,双曲线的两个分支分别位于第一象限和第三象限。

在每个象限中,y随X的增加而减小;(2)当k<0时,双曲线的两支分别位于第二、第四象限,在每一个象限内,y随x的增大而增大.新课程介绍:学习反比例函数有什么用?2、新知识探究探究1:某科技小组进行野外考察,途中遇到一片十几米的烂泥湿地。

为了安全、迅速通过这片湿地,他们沿着前进的路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务。

你能解释他们这样做的道理吗?当湿地上人和板的压力恒定时,人和板在地面上的压力P(PA)如何随板面积s(m)的变化而变化?如果湿地地面上人和木材的总压力为600N,那么(1)使用包含s的代数公式来表示P,P是s的反比函数吗?为什么?2(2)当板面积为0.2m时,压力是多少?(3)如果要求压强不超过6000pa,木板面积至少要多大?(4)在直角坐标系中,绘制相应函数的图像(如教科书第148页的图所示)2(5)请用图片直观地解释(2)和(3),并与同龄人交流解析:当人和木板对湿地的压力一定时,木板面积越大,人和木板对地面的压强越小,木板面积越小,人和木板对地面的压强越大.解析:(1)由不得不p是s的反比例函数,因为给s一每个值p都有一个唯一的对应值。

最新北师大版九年级数学上册《反比例函数》教案(优质课一等奖教学设计).doc

最新北师大版九年级数学上册《反比例函数》教案(优质课一等奖教学设计).doc

《1 反比例函数》教案
教学目标:
1、从现实情境和已有的知识经验出发,讨论两个变量之间的函数关系,加深对函数概念的理解.
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
3、结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.
教学重点:
理解和领会反比例函数的概念.
教学难点:
从现实环境和所学知识人手,探索两个变量之间的函数关系.
教学过程:
一、问题提出
电流I、电阻R、电压U之间满足关系式U=IR,当U=220
V时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成表格(见可悲吧):当R越来越大时,I怎样变化?当R 越来越小呢?(3)变量I是R的函数吗?为什么?
根据提供的信息,对多对关系式的分析,可以得出:当电阻R越来越大时,电流I越来越小,当R越来越小时,I越来越大.当给定一个R的值时,相应地就确定了一个I值,因此,I是R的函数.
二、做一做
1、一个矩形的面积为20cm2,相邻的两条边长分别为x cm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
2、某村有耕地346.2公顷,人数数量n每年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的
函数吗?是反比例函数吗?为什么?
3、y是x的反比例函数,表格(见课本)给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成表格.
三、课堂小结
反比例函数概念形成的过程中,大家应充分利用已有的生活经验和背景知识,注意概念中变量的相依关系及变化规律,逐步加深理解.通过举例、说理、讨论等活动,用数学眼光审视某些实际现象.。

2019—2020年北师大版九年级数学上册《反比例函数的应用》教案(教案).doc

2019—2020年北师大版九年级数学上册《反比例函数的应用》教案(教案).doc

《3 反比例函数的应用》教案
教学目标:
1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程.
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.
3、通过对反比例函数的应用,培养学生解决问题的能力.
教学重点:
掌握从实际问题中建构反比例函数模型.
教学难点:
从实际问题中寻找变量之间的关系.
教学过程:
某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地,你能解释他们这样做的道理吗?当人和木
板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地的压力合计600N,那么:
(1)含S的代数式表示p,p是S的反比例函数吗?为什么?
(2)当木板面积为0.2m2时,压强是多少?
(3)如果要求压强不超过6000Pa,木板面积至少要多大?
(4)在直角坐标系中,作出相应的函数国象.
课堂小结:
本节课是用函数的观点处理实际问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以看什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图像,渗透数形结合的思想.。

北师大版数学九年级上册6.3反比例函数的应用优秀教案反思

北师大版数学九年级上册6.3反比例函数的应用优秀教案反思

北师大版数学九年级上册6.3反比例函数的应用优秀教案反思《北师大版数学九班级上册6.3反比例函数的应用优秀教案反思》这是一篇九班级上册数学教案,老师应以学段教学目标为背景,以本章教学目标为标准来考察同学的学习状况。

在教与学的过程中,了解同学数学活动中情感与智力的参加程度和目标达到的水平,准时进行归因分析,不断乐观引导和激励。

同时利用诊断结果不断改进自己的教学。

6.3 反比例函数的应用1.会依据实际问题中变量之间的关系,建立反比例函数模型;(重点)2.能利用反比例函数解决实际问题.(难点)一、情景导入我们都知道,气球内可以布满肯定质量的气体.假如在温度不变的状况下,气球内气体的气压p(kPa)与气体体积V (m3)之间有怎样的关系?你想知道气球在什么条件下会爆炸吗?二、合作探究探究点一:实际问题与反比例函数做拉面的过程中,渗透着反比例函数的学问.肯定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示:(1)写出y与S之间的函数表达式;(2)当面条的横截面积为1.6mm2时,面条的总长度是多少米?(3)要使面条的横截面积不多于1.28mm2,面条的总长度至少是多少米?解析:由题意可设y与S之间的函数表达式为y=kS,而P(32,4)为函数图象上一点,所以把对应的S,y的值代入函数表达式即可求出比例系数,从而得出反比例函数的表达式,最终依据反比例函数的图象和性质解题.解:(1)由题意可设y与S之间的函数关系式为y=kS.∵点P(4,32)在图象上,32=k4,k=128.y与S之间的函数表达式为y=128S(S0);(2)把S=1.6代入y=128S中,得y=1281.6=80.当面条的横截面积为1.6mm2时,面条的总长度是80m;(3)把S=1.28代入y=128S,得y=100.由图象可知,要使面条的横截面积不多于1.28mm2,面条的总长度至少应为100m.方法总结:解决实际问题的关键是认真阅读,理解题意,明确基本数量关系(即题中的变量与常量之间的关系),抽象出实际问题中的反比例函数模型,由此建立反比例函数,再利用反比例函数的图象与性质解决问题.探究点二:反比例函数与其他学科学问的综合某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了平安、快速通过这片湿地,他们沿着前进路线铺了若干木块,构筑成一条临时近道.木板对地面的压强p(Pa)是木板面积S(m2)的反比例函数,其图象如图所示.(1)请直接写出这一函数表达式和自变量的取值范围;(2)当木板面积为0.2m2时,压强是多少?(3)假如要求压强不超过6000Pa,木板的面积至少要多大?解析:由于木板对地面的压强p(Pa)是木板面积S(m2)的反比例函数,而图象经过点A,于是可以利用待定系数法求得反比例函数的关系式,进而可以进一步求解.解:(1)设木板对地面的压强p(Pa)与木板面积S(m2)的反比例函数关系式为p=kS(S0).因为反比例函数的图象经过点A(1.5,400),所以有k=600.所以反比例函数的关系式为p=600S(S0);(2)当S=0.2时,p=6000.2=3000,即压强是3000Pa;(3)由题意知600S6000,所以S0.1,即木板面积至少要有0.1m2.方法总结:本题渗透了物理学中压强、压力与受力面积之间的关系p=,当压力F肯定时,p与S成反比例.另外,利用反比例函数的学问解决实际问题时,要擅长发觉实际问题中变量之间的关系,从而进一步建立反比例函数模型.三、板书设计反比例函数的应用实际问题与反比例函数反比例函数与其他学科学问的综合经受分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程,提高运用代数方法解决问题的力量,体会数学与现实生活的紧密联系,增加应用意识.通过反比例函数在其他学科中的运用,体验学科整合思想.“反比例函数的图像与性质”是反比例函数的教学重点,同学需要在理解的基础上娴熟运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.3反比例函数的应用
一、教材分析
本节教材内容是对前两节知识的综合应用,同时加强了实际问题的理解和实际问题与数学知识之间的紧密联系。

能用学科间的实际题例,数学知识间的综合应用题例,使学生利用反比例函数的性质进一步解释、说明实际问题。

加强数形结合意识。

二、教学目标
1、知识与技能
能根据实际问题中的条件确定反比例函数的解析式,会画出它的图像,能根据图像指出函数值随自变量变化情况。

2、过程与方法
能通过探索实际问题列出函数关系式,利用反比例函数的性质解释实际问题,细心体会图像在解决问题时的作用。

3、情感态度和价值观
注意合作讨论,探索交流中,发展从图中获取信息的能力,渗透数形结合的思想方法通过对实际问题的分析与解决,让学生体验数学的价值,培养学生对数学的兴趣。

三、教学重点、难点
重点:反比例函数的应用,数形结合思想在函数中的应用。

难点:反比例函数与其它知识点的综合题。

四、教学准备
多媒体课件、小黑板
教学流程设计
教师指导
1、引入新课
引导学生回忆反比例函数的概念,图像与性质
2、讲授新课:
①课件(或小黑板)演示教材
课本中“科技小组进行野外考察”的问题
②课件演示教材“做一做”
第一个问题
③课件演示教科书“做一做”中的第二个
问题
④演示“随堂练习”
3、课时小结
引导学生总结本节课内容
4、布置作业
学生活动
1、独立思考作出回答
2、认真读题
注意自变量的取值范围
小组合作计论
交流后得出正确答案
独立思考,探索的解答
学生解答所有问题
3、学生归纳,说出收获
4、课后完成巩固新知识
五、教学过程
做的道理吗?当人
)的变化,人
湿地地面的压力合计
的代数式表式P,P是S的反
0.2m2时,压强是多少?
一是画出函数图像的三个步骤,二是画出
)是已知图像上某点的横生标为
该点的纵坐标。

3)是已知图像上点的纵坐标,求这些点所处的位置及它们的横坐标的取值范围。

这是一个数学综合题,涉及正比例函数与
点坐标,你是怎样求的?
四、布置作业:
本节课的重点就是让学生体验数学与实际的紧密联系,教师在教学过程中要充分发挥引导作用,最大限度地调动学生的积极性,培养学生的思维能力,树立学生应用数学的意识和数学建模的思想。

相关文档
最新文档