华北电力大学2018-2019 学年现代控制理论阶段检测
现代控制理论_长安大学中国大学mooc课后章节答案期末考试题库2023年

现代控制理论_长安大学中国大学mooc课后章节答案期末考试题库2023年1.线性系统的状态空间表达式如下,则系统能控能观子空间为()维系统。
【图片】答案:22.已知线性定常系统的状态方程如下,状态反馈阵【图片】()使闭环系统极点配置为【图片】。
【图片】答案:3.下列语句中,正确的是()。
答案:系统状态空间实现中选取状态变量不是唯一的,其状态变量的个数是唯一的。
4.线性系统的状态空间表达式为如下,则系统的模拟结构图为()。
【图片】答案:5.系统方框图,如下图所示,则根据系统方框图建立的状态空间表达式为()。
【图片】答案:6.已知机械系统如下图所示。
其中质量块m受到外力u(t)的作用产生位移y(t),质量块m与地面之间无摩擦。
以外力 u(t)为输入信号,位移y(t)为输出量,系统状态空间模型为()。
【图片】答案:7.若A、B是方阵,则必有【图片】。
答案:错误8.已知单输入单输出系统的传递函数为【图片】,则系统状态空间表达式为()。
答案:9.已知系统的传递函数为【图片】,则系统状态空间表达式为()。
答案:10.原系统传递函数阵的阶数一定高于能控能观子系统传递函数的阶数。
答案:错误11.带状态观测器的状态反馈系统和直接状态反馈系统具有相同的传递函数矩阵。
答案:正确12.带状态观测器的状态反馈系统,观测器的极点会全部被闭环系统的零点相消。
答案:正确13.单输入-单输出线性时不变系统状态空间表达式的矢量矩阵形式为()。
答案:14.系统方框图如下所示,则系统的状态空间表达式为()。
【图片】答案:;15.RLC电路网络如下图所示,其中【图片】为输入电压, 【图片】为输出电压。
选择状态变量【图片】,则系统状态空间表达式为()。
【图片】答案:16.已知单输入单输出系统的微分方程为【图片】,则系统状态空间模型为()。
答案:17.已知系统的传递函数为【图片】,则系统状态空间表达式的对角型实现为()。
答案:18.已知非线性系统的微分方程为【图片】,则利用近似线性化方法得到系统的局部线性化状态方程是()。
现代控制理论习题集_免费下载

现代控制理论习题集序为了帮助同学们更好地学习《现代控制理论》这门大学自动化专业的主干基础课程,在王整风老师的指导下,我们共同编写了这本基于刘豹版本教材的习题集,希望能让大家拥有做题不仅仅注重题目答案,更关注解题过程的意识。
本书第一章由张胜编写,第二章由何新礼编写,第三章由刘洋编写,第四章由邢雅琪编写,第五章由孙峰编写,由宋永康和王彦明统稿,在此向王老师和以上同学表示感谢。
由于时间仓促,本习题集难免有不当之处,个别题目的解法并不唯一,解题过程难免有错误、疏漏的地方,恳请大家批评指正。
编者2013年6月目录第一章控制系统的状态空间表达式 (1)第二章控制系统状态空间表达式的解 (13)第三章线性控制系统的能控性和观性 (21)第四章稳定性与李亚普诺夫方法 (33)第五章线性定常系统综合 (38)第一章控制系统的状态空间表达式张胜1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
解:直接对系统方块结构图转化得系统的模拟结构图如下:可得系统的状态方程:故系统的状态空间表达式为:1-2 有电路如图1-28所示。
以电压u(t)为输入量,求以电感中的电流和电容上的R上的电压作为输出量的输出方程。
电压作为状态变量的状态方程,和以电阻2解:易得系统为3维单输入单输出系统:假定流过c U 上的电流向下,对图中的两个回路由KVL 得 :解得213.11x Cx C x -=转化成矩阵形式为:1-4 两输入21,u u ,两输出21,y y 的系统。
其结构模拟图如图1.30所示,试求其状态空间表达式和传递函数阵。
解:令11y u -前向通道上积分号后的状态变量分别为12,x x ;22y u -前向通道上积分号后的状态变量分别为4,3x x 。
由于系统为四维,两输入,两输出系统,故系统阵A 为4×4阶,输入阵B 为4×2阶,输出阵C 为2×4阶。
由图得,系统的状态空间表达式如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡43212101000001x x x x y y由 可求得系统传递函数阵。
现代控制理论试卷及答案-总结

、〔10分,每小题1分〕试判断以下结论的正确性,若结论是正确的, 一〔√〕1. 由一个状态空间模型可以确定惟一一个传递函数.〔√〕2. 若系统的传递函数不存在零极点对消,则其任意的一个实现均为最小实现.〔×〕 3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的.〔√〕4. 对线性定常系统x = Ax ,其Lyapunov意义下的渐近稳定性和矩阵A的特征值都具有负实部是一致的.〔√〕5.一个不稳定的系统,若其状态彻底能控,则一定可以通过状态反馈使其稳定.〔×〕 6. 对一个系统,只能选取一组状态变量;〔√〕7. 系统的状态能控性和能观性是系统的结构特性,与系统的输入和输出无关;〔×〕 8. 若传递函数G(s) = C(sI 一A)一1 B 存在零极相消,则对应的状态空间模型描述的系统是不能控且不能观的;〔×〕9. 若一个系统的某个平衡点是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的;〔×〕 10. 状态反馈不改变系统的能控性和能观性.二、已知下图电路,以电源电压 u<t>为输入量,求以电感中的电流和电容中的电压作为状态变量的状态方程,和以电阻 R2 上的电压为输出量的输出方程.〔10 分〕解:〔1〕由电路原理得:二.〔10 分〕图为 R-L-C 电路,设u 为控制量,电感L 上的支路电流和 电容 C 上的电压x 为状态变量,电容 C 上的电压x 为输出量,试求: 网2 2络的状态方程和输出方程,并绘制状态变量图.解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件, 故有独立变量.以 电感 L 上 的 电流和 电容两端 的 电压为状态变量 , 即令:i L = x 1 , u c = x 2,由基尔霍夫电压定律可得电压方程为: • •y y21 =-x x21+ u三、 〔每小题 10 分共 40 分〕基础题〔1〕试求 y - 3y - 2y = u + u 的一个对角规 X 型的最小实现.〔10 分〕Y(s) = s 3 + 1 = (s +1)(s 2 - s +1) = s 2 - s +1 = 1+ 1+ -1 …………4 分不妨令X (s)1 = 1 ,X (s)2 = - 1 …………2 分 于是有 又Y(s)U(s)= 1+ X (s)1U(s)+ X (s)2U(s),所以Y(s) = U (s) + X 1 (s) + X 2 (s) , 即有y = u + x + x …………2 分1 2最终的对角规 X 型实现为则系统的一个最小实现为:=「|2 0 ]+「| 1 ]|u, y = [1 1…………2 分 U (s) s 3 - 3s - 2 (s +1)(s 2 - s - 2) s 2 - s - 2 s - 2 s + 1 L 0 -1-1」U (s) s - 2 U (s) s + 1从上述两式可解出x 1 ,x 2 ,即可得到状态空间表达式如下:〔2〕已知系统 =「| 0 1]| +「|1]|u, y = [1 -2] ,写出其对偶系统,判断该系统的能控性与其对偶系统的能观性.〔10 分〕解答:= 10 3-2+ -12 u…………………………2 分y = [1 2] ……………………………………2 分〔3〕设系统为试求系统输入为单位阶跃信号时的状态响应〔10 分〕 .解(t )=「|e-t 0 ]|L 0 e -2t 」……………………………..…….……..3 分(t) = (t )(0) + j 0t (t )u(t )d τ……….….……….……..3 分=11+ j 0t11d τ ….……..2 分=「| e-t ]| + j t 「| e -(t -t ) ]|d τL e -2t 」 0 |L e -2(t -t )」| .................................................................................... 1 分=(1- e1(1-2= 21 (1 e -2t )………………..1 分〔4〕已知系统 x =01 01x + 11u 试将其化为能控标准型.〔10 分〕 「0 1 ]解: u c = 11 02 , u -c 1 =|L 21 - 21 」| ............2 分 p 1= [0 1]u -c1 = [0 1]-121= [21 - 21].…….1 分 p 2= p 1A = [21- 21]01 01= [21 21].……..1 分 L -2 3」 L 2」「 1 - 1 ] 「 1 1]P = |L 212」| ,P -1 = |L -1 1」| ....................2 分能控标准型为x =「|0 1]|x +「|0]|u........ 4 分 四、设系统为试对系统进行能控性与能观测性分解,并求系统的传递函数.〔10 分〕 解:能控性分解:能观测性分解: 传递函数为g(s) ==(2分)五、试用李雅普诺夫第二法,判断系统 x •=「| 0 1 ]| x 的稳定性.〔10分〕方法一:解: x 1= x 2原点 x =0是系统的惟一平衡状态 .选取标准二次型函数为李雅e普诺夫函数,即当x 1 = 0 ,x 2 = 0 时, v(x) = 0 ;当x 1 丰 0 ,x 2 = 0 时,v(x) = 0 ,因此v(x) 为 负半定.根据判断,可知该系统在李雅普诺夫意义下是稳定的. 另选一个李雅普诺夫函数,例如:为正定,而为负定的,且当 x ) w ,有V (x)) w .即该系统在原点处是大 X 围渐进 稳定. 方法二:• • ••L -1 -1」L 0 1」 L 1」解:或者设P =则由 A T P + PA = -I 得+=可知 P 是正定的.因此系统在原点处是大 X 围渐近稳定的六、 〔20 分〕线性定常系统的传函为 Y (s) = s +4U (s) (s + 2)(s +1)〔1〕实现状态反馈,将系统闭环的希翼极点配置为(-4,-3),求反馈阵K .〔5 分〕〔2〕试设计极点为(-10,-10) 全维状态观测器〔5 分〕 . 〔3〕绘制带观测器的状态反馈闭环系统的状态变量图〔4 分〕 〔4〕分析闭环先后系统的能控性和能观性〔4 分〕注明:由于实现是不惟一的,本题的答案不惟一!其中一种答案为:解:〔1〕 Y (s) = s + 4 = s + 4U (s) (s + 2)(s +1) s 2 + 3s + 2系统的能控标准型实现为: X =「| 0 1 ]| X +「|0]| u, y = [4 1]X ……1 分系统彻底可控,则可以任意配置极点……1 分 令状态反馈增益阵为K = [k k ]……1 分1 2则有A - BK =「| 0 1 ]|,则状态反馈闭环特征多项式为又期望的闭环极点给出的特征多项式为: (s + 4)(s + 3) = s 2+ 7s +12由入2 + (k + 3)入 + (k + 2) = s 2 + 7s +12 可得到K = [4 10]……3 分1 2〔2〕观测器的设计:L -k 2 - 2 -k 1- 3」 L -2 -3」 L 1」由传递函数可知,原系统不存在零极点相消,系统状态彻底能观,可以任意配置观测器的极点.……1 分 令E = [e e ]T ……1 分1 2由观测器 = (A - EC)+ Bu + Ey 可得其期望的特征多项式为:f * (s) = f (s) 亭 E = - 311 395T ……4 分〔3〕绘制闭环系统的摹拟结构图第一种绘制方法:……4 分〔注:观测器输出端的加号和减号应去掉!不好意思, 刚发现!!〕第二种绘制方法:〔4〕闭环前系统状态彻底能控且能观,闭环后系统能控但不能观〔因 为状态反馈不改变系统的能控性 ,但闭环后存在零极点对消 ,所以系 统状体不彻底可观测〕……4 分A 卷-+-41 s32x 21 sx1x14+ + y10++22 - 3+ +1 s 222 - 358 -34 322 - 3 + ++1+ + - s1 4 43v u +-++++一、判断题,判断下例各题的正误,正确的打√ , 错误的打×〔每小题1 分,共10 分〕1、状态方程表达了输入引起状态变化的运动,输出方程则表达了状态引起输出变化的变换过程〔√〕2、对于给定的系统,状态变量个数和选择都不是惟一的〔×〕3、连续系统离散化都没有精确离散化,但近似离散化方法比普通离散化方法的精度高〔×〕4、系统的状态转移矩阵就是矩阵指数〔×〕5、若系统的传递函数存在零极点相消,则系统状态不彻底能控〔×〕6、状态的能空性是系统的一种结构特性,依赖于系统的结构, 与系统的参数和控制变量作用的位置有关〔√〕7、状态能控性与输出能控性之间存在必然的联系〔×〕8、一个传递函数化为状态方程后,系统的能控能观性与所选择状态变量有关〔√ 〕9、系统的内部稳定性是指系统在受到小的外界扰动后,系统状态方程解的收敛性,与输入无关〔√〕10、若不能找到合适的李雅普诺夫函数,那末表明该系统是不稳定的〔×〕二、已知系统的传递函数为试分别用以下方法写出系统的实现:(1) 串联分解(2) 并联分解(3) 直接分解(4) 能观测性规X 型〔20 分〕解:2对于s3 +10s2 + 31s + 30 有(1) 串联分解串联分解有多种,如果不将 2 分解为两个有理数的乘积,如2 = 1 8 ,绘制该系统串联分解的结4构图,然后每一个惯性环节的输出设为状态变量,则可得到系统四种典型的实现为:则对应的状态空间表达式为:需要说明的是, 当交换环节相乘的顺序时,对应地交换对应行之间对角线的元素. . 的实现为:〈0 0一311]XX + u则. .的实现为:〈0一311]XX + u挨次类推!! (2) 并联分解实现有无数种,若实现为〈X = X + 21u只要满足y = [c L 1 c 2 c 3]2 1〔3〕直接分解〔4〕能观测规 X 型三、给定一个二维连续时间线性定常自治系统 = A , t > 0 .现知,对应于两个不同初态的状态响应分别为试据此定出系统矩阵A.〔10 分〕解: x(t) = e At x(0) 可得四、已知系统的传递函数为〔1〕试确定 a 的取值,使系统成为不能控,或者为不能观测;〔2〕在上述 a 的取值下,写出使系统为能控的状态空间表达式,判断系统的能观测性; 〔3〕若a = 3 ,写出系统的一个最小实现.〔15 分〕解:〔1〕因为因此当a = 1 或者a = 2 或者a = 3 时, 浮现零极点对消现象,系统就成为不能控或者不能观测的系统 〔2〕可写系统的能控标准形实现为此问答案不惟一 存在零极相消,系统不能观 〔3〕 a = 3 ,则有G(s) =2 3 一1 3 如例如: s 3 + 10s 2 + 31s +30 = (s + 2) + (s + 3) + (s + 5),则其实现可以为:可写出能控标准形最小实现为此问答案不惟一,可有多种解五、已知系统的状态空间表达式为 〔1〕判断系统的能控性与能观测性; 〔2〕若不能控,试问能控的状态变量数为多少? 〔3〕试将系统按能控性进行分解; 〔4〕求系统的传递函数.〔15 分〕 解:〔1〕系统的能控性矩阵为U C = [b Ab ]= 10 -20, det U C = 0, rankU C = 1 < 2故系统的状态不能控系统的能观测性矩阵为「 c ] 「 2 5 ]故系统的状态不能观测 4 分〔2〕 rankU = 1 , 因此能控的状态变量数为 1C〔3〕由状态方程式可知是x 能控的, x 是不能控的2 1〔4〕系统的传递函数为1 分2 分G(s) = c (sI - A )-1 b = c (sI - A )-1 b = 5 只与能控子系统有关六、给定系统解李雅普诺夫方程,求使得系统渐近稳定的 a 值 X 围.〔10 分〕七、伺服机电的输入为电枢电压,输出是轴转角,其传递函数为〔1〕设计状态反馈控制器u = -Kx + v ,使得闭环系统的极点为-5 士 j5 ;〔2〕设计全维状态观测器,观测器具有二重极点-15;〔3〕将上述设计的反馈控制器和观测器结合,构成带观测器的反馈控制器,画出闭环系统的状 态变量图;〔4〕求整个闭环系统的传递函数.〔20 分〕 第二章题 A 卷第一题:判断题,判断下例各题的正误,正确的打√ ,错误的打× 〔每小题 1 分,共 10 分〕 11、状态方程表达了输入引起状态变化的运动,输出方程则表达了状态引起输出变化的变换 过程〔 √〕12、对于给定的系统,状态变量个数和选择都不是惟一的〔×〕13、连续系统离散化都没有精确离散化,但近似离散化方法比普通离散化方法的精度高〔×〕3 分2 2 2s + 2U O= |L cA 」| = |L 19 -10」| , det U C = -115 丰 0, rankU O = 214、系统的状态转移矩阵就是矩阵指数〔×〕15、若系统的传递函数存在零极点相消,则系统状态不彻底能控〔×〕16、状态的能空性是系统的一种结构特性 ,依赖于系统的结构, 与系统的参数和控制变量作 用的位置有关〔 √〕17、状态能控性与输出能控性之间存在必然的联系〔×〕18、一个传递函数化为状态方程后,系统的能控能观性与所选择状态变量有关〔√〕 19、系统的内部稳定性是指系统在受到小的外界扰动后,系统状态方程解的收敛性,与输入无 关〔 √〕20、若不能找到合适的李雅普诺夫函数,那末表明该系统是不稳定的〔×〕第二题:已知系统的传递函数为G(s) == ,试分别用以下方法写出系统的实现:(5) 串联分解〔4 分〕 (6) 并联分解〔4 分〕 (7) 直接分解〔4 分〕 (8) 能观测性规 X 型〔4 分〕(9) 绘制串联分解实现时系统的结构图〔4 分〕解:s对于有s 3 +10s 2 + 31s + 30(3) 串联分解 串联分解有三种s = s . 1 . 1 = 1 . s . 1 = 1 . 1 . s s 3 +10s 2 + 31s + 30 (s + 1) (s + 2) (s + 3) (s + 1) (s + 2) (s + 3) (s + 1) (s + 2) (s + 3) = (1)..=.(1).=.(1)对应的状态方程为:(4) 并联分解实现有无数种,其中之三为: 〔3〕直接分解 〔4〕能观测规 X 型 (10) 结构图第二章题 B 卷第一题:判断题,判断下例各题的正误,正确的打√ ,错误的打× 〔每小题 1 分,共 10 分〕 1、状态空间模型描述了输入-输出之间的行为,而且在任何初始条件下都能揭示系统的内部 行为〔 √〕2、状态空间描述是对系统的一种彻底的描述,而传递函数则只是对系统的一种外部描述〔√〕3、任何采样周期下都可以通过近似离散化方法将连续时间系统离散化〔×〕4、对于一个线性系统来说,经过线性非奇妙状态变换后,其状态能控性不变〔 √〕5、系统状态的能控所关心的是系统的任意时刻的运动〔×〕6、能观〔能控〕性问题可以转化为能控〔能观〕性问题来处理〔√〕7、一个系统的传递函数所表示的是该系统既能控又能观的子系统〔√〕8、一个系统的传递函数若有零、 极点对消现象,则视状态变量的选择不同,系统或者是不能控的Y(s) s 3 +10s 2 + 31s + 32U (s) (s 2 + 5s + 6)(s + 1)或者是不能观的〔 √〕9、对于一个给定的系统,李雅普诺夫函数是惟一的〔 ×〕 10、若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的〔√〕 第二题: 求以下 RLC 网络系统的状态空间模型, 并绘制其结构图.取电压 e_i 为输入,e_o 为输 出.其中 R 1 、R 2 、C 和 L 为常数.第二题图答案:解: 〔状态变量可以另取〕定义状态变量: x 1 为电阻两端电压 v,x 2 为通过电感的电流 i.输入 u 为 e_i ,输出 y 为e_o .使用 基尔霍夫电流定理列 R 1 和 R 2 间节点的电流方程:使用基尔霍夫电压定理列出包含 C 、R 2 、L 回路的电压方程: 最后,输出电压的表达式为: 得到状态空间模型: 结构图为:第三题: 如图所示,系统的输入量为 u 1 和 u 2、输出量为 y 和请选择适当的状态变量,并写出系 统的状态空间表达式,根据状态空间表达式求系统的闭环传递函数:第三题图 解:状态变量如下图所示〔3 分〕从方框图中可以写出状态方程和输出方程〔4〕 状态方程的矩阵向量形式: 系统的传递函数为〔3 分〕:. 解:由电路图可知:图1 :RC 无源网络可得:选,,=所以可以得到:解:运用公式可得:可得传递函数为:解:先求出系统的.可得:令,X<k>+解:计算算式为:所以:解:由于 A 无特定形式,用秩判据简单.因此,不管 a 去何值都不能够联合彻底能控和彻底能观测解:〔1〕选取李雅普若夫函数V<x>,取,可知:V<0>=0,即〔2〕计算基此可知:即:〔3〕判断和出:为正定.并判断其定号性.对取定和系统状态方程,计算得到:为负半定..对此, 只需判断的不为系统状态方程的解.为此,将带入状态方程, 导表明,状态方程的解只为, 不是系统状态方程的解.通过类似分析也可以得证不是系统状态方程的解. 基此, 可知判断.〔4〕综合可知,对于给定非线性时不变系统,可构造李雅普若夫函数判断满足:V<x>为正定, 为负定;对任意,当,有基此,并根据李雅普若夫方法渐近稳定性定理知:系统原点平衡状态为大X 围渐近稳定.解:可知,系统彻底可控,可以用状态反馈进行任意极点配置. 由于状态维数为 3 维.所以设.系统期望的特征多项式为:而令,二者相应系数相等.得:5 3 ]即: 验证:A 卷二、基础题〔每题 10 分〕1、给定一个二维连续时间线性定常自治系统 = A , t > 0 .现知,对应于两个不同初态的状 态响应分别为试据此定出系统矩阵 A .解: x(t) = e At x(0) 2 分可得e At = 4 4「| 1 (e -t + e 3t )4 分4 e -t + 4 e 3t |「 1 -5 e -t + 3 e 3t |L -1 1 1 ] 21 (e -t + e 3t )」2 ]-1 「| 43 e -t + 41 e 3t -1」| = - 23 e -t + 21e 3t45 e -t + 43e 3t ]|「-1 - 25 e -t + 23e 3t 」 |L 1-2] 1 」| A ==-te3t14-43t =0 = 41 11 2、设线性定常连续时间系统的状态方程为取采样周期T = 1s ,试将该连续系统的状态方程离散化. 解:① 首先计算矩阵指数.采用拉氏变换法:e t = L -1 (s -)-1 = L -1〈-1= L -122)=3 分② 进而计算离散时间系统的系数矩阵.= e T =「|1 0.5 (1- e -2T )] T 「14 分0.4323] 0.1353」|2 分 「3 e -t + 1 e 3t |L 0 e -2T 」|| 将T = 1s 代入得 = e = |L 0 - 4 e -t + 4 e 3t| |- 3 e -t + 1 e 3t |L 2 2 = | 2||L -e -t + e 3t2 2 」|=(j T)B =〈(|j T「|10 |l 0 |L00.5(1- e-2t)] )|「0]「0.5T + 0.25e-2T - 0.25]=|L -0.5e-2T + 0.5 」|「1.0789]= | |③故系统离散化状态方程为xx21 = xx21kk+ u (k ) 2 分3、已知系统的传递函数为〔1〕试确定a 的取值,使系统成为不能控,或者为不能观测;〔2〕在上述a 的取值下,写出使系统为能控的状态空间表达式,判断系统的能观测性;〔3〕若a = 3 ,写出系统的一个最小实现.〔10 分〕解:〔1〕因为因此当a = 1 或者a = 2 或者a = 3 时, 浮现零极点对消现象,系统就成为不能控或者不能观测的系统 3 分〔2〕可写系统的能控标准形实现为此问答案不惟一x =-x + u y =[2a 2 0]x3 分存在零极相消,系统不能观 1 分〔3〕a = 3 ,则有G(s) =可写出能控标准形最小实现为此问答案不惟一,可有多种解三、已知系统的状态空间表达式为3 分〔1〕判断系统的能控性与能观测性;〔2〕若不能控,试问能控的状态变量数为多少?〔3〕试将系统按能控性进行分解;〔4〕求系统的传递函数.〔10 分〕解:〔1〕系统的能控性矩阵为UC= [b Ab]=1-2, det UC= 0, rankUC= 1 < 23 分L0.4323」|dt卜||e-2t 」| J|L 1」故系统的状态不能控系统的能观测性矩阵为「 c ] 「 2 5 ] U O= | | = | | ,detU = -115 丰 0, rankU = 2 C O4 分〔2〕 rankU = 1 , 因此能控的状态变量数为 1 1 分 C〔3〕由状态方程式可知是x 能控的, x 是不能控的 2 分3 分B 卷二、基础题〔每题 10 分〕1、给定一个连续时间线性定常系统, 已知状态转移矩阵个(t) 为 试据此定出系统矩阵 A .解:A =〈dt d(t) 卜Jt =0=t =0「 0 2 ] = | |2、设线性定常连续时间系统的状态方程为取采样周期T = 1s ,试将该连续系统的状态方程离散化.解:① 首先计算矩阵指数.采用拉氏变换法: ② 进而计算离散时间系统的系数矩阵.「 1 T ] 「1 1]= e T = |L 0 1」|将T = 1s 代入得 = e T = |L 0 1」| ③ 故系统离散化状态方程为 3、已知系统的传递函数为试写出系统的能控标准形实现.〔10 分〕解:系统的能控标准形实现为三、试确定下列系统当 p 与 q 如何取值系统既能控又能观.〔10 分〕 解:系统的能控性矩阵为其行列式为 det [b Ab ]= p 2 + p - 12根据判定能控性的定理 , 若系统能控 , 则系统能控性矩阵的秩为 2,亦即行列式值不为2 1〔4〕系统的传递函数为G(s) = c (sI - A )-1 b = c (sI - A )-1 b = 5 只与能控子系统有关2 2 2s + 2L -1 -3」L cA 」 L 19 -10」 故系统的状态不能观测[b Ab]= p2+ p - 12 丰00 , det因此当p 丰3,-4 时系统能控系统能观测性矩阵为其行列式为根据判定能观性的定理, 若系统能观, 则系统能观性矩阵的秩为2, 亦即「c ]det | | = 12q2 - q - 1 丰0L cA」1 1因此当q 丰, - 时系统能观3 41 1综上可知, 当p 丰3, -4 , q 丰, - 时系统既能控又能观3 4。
现代控制理论基础题库(带答案)

现代控制理论基础题库1、已知某系统的传递函数为:,以下状态空间描述正确的是(C)2、控制理论的发展阶段为(A)。
A、经典控制理论、现代控制理论和鲁棒控制理论B、经典控制理论、现代控制理论C、经典控制理论、鲁棒控制理论D、现代控制理论3、下面关于线性定常系统的非奇异线性变换说法错误的是(C)A、对于线性定常系统,非奇异线性变换不改变系统的传递函数矩阵B、对于线性定常系统,非奇异线性变换不改变系统的特征多项式C、对于线性定常系统,非奇异线性变换不改变系统的状态空间描述D、对于线性定常系统,非奇异线性变换不改变系统的特征值4、状态方程是什么方程(B)A、高阶微分方程B、一阶微分方程C、代数方程D、高阶差分方程5、现代控制理论在整个控制理论发展中起到了什么作用?AA、承上启下B、总结C、开拓D、引领6、能完全描述系统动态行为的数学模型是(B)A、差分方程B、状态空间表达式C、微分方程D、传递函数7、输出方程是(C)A、一阶微分方程B、高阶微分方程C、代数方程D、高阶差分方程8、若某一系统的状态空间描述为:(单选)则与其对应的传递函数为(B)9、以下叙述错误的是(C)A、系统的状态空间模型包括状态方程和输出方程B、状态空间模型不仅可以描述时不变系统,还可以描述时变系统C、一个给定的系统只存在一组动态方程D、状态空间模型存在多种等效的标准型10、以下叙述正确的是(A)A、状态空间模型(A,B,C)的极点等于矩阵A的特征根B、状态空间模型中,系统的输出是由微分方程决定的C、如果系统存在多个状态,则系统可建立对角矩阵形式的状态空间模型D、给定系统的状态微分方程,总能够求出状态的数学表达式。
11、某弹簧-质量-阻尼器机械位移系统如下图所示,图中,K为弹簧的弹性系数,M为质量块的质量,f为阻尼器的阻尼系数,y为质量块M的位移,也是系统的输出量。
为建立其状态空间表达式,以下状态变量的选择方式正确的是(D)(单选)12、某单输入-单输出系统的状态空间模型为(D)则该系统的极点为:A、1,3B、-1,3C、1,-3D、-1,-313、线性定常系统的状态解析表达式中包含ABCA、初始状态B、状态转移矩阵C、输入D、过去时刻的状态14、现代控制理论已经应用在哪些领域ABCDA、倒立摆稳定控制B、工业领域C、航天航空领域D、机器人控制15、哪些内容是现代控制理论的知识体系?ABCDA、系统辨识B、线性系统C、最优估计D、最优控制16、以下哪些条件下,状态变量可以描述系统的未来响应:ABDA、给定当前状态B、给定输入C、给定输出D、给定动态方程17、状态方程是唯一的(错)18、系统状态空间模型中的状态变量可能没有实际物理意义(对)19、具有互不相同的极点的系统总能够化成对角线标准型(对)20、时变控制系统是指一个或多个系统参数会随时间变化的系统。
华北电力大学2018-2019第二学期工程电磁场期末试卷及答案

华北电力大学2018-2019学年第二学期期末考试试卷(A)课程名称 工程电磁场 课程编号 00200681考核日期时间 2019.07.05 专业班级 电气17级 需要份数送交日期 考试方式 闭卷试卷页数 4 A B 卷齐全 是 命题教师课程组主任签字备 注班级: 姓名: 学号:矢量表示为E,标量表示为E ,表达式书写规范;有单位的结果要写出单位;自由空间介电常数πε361090-=F/m ,磁导率70104-⨯=πμH/m 。
一、填空题(每空2分,合计40分)1.真空中静电场的电位为222+z x y x ϕ2= (V),在点(1.0m ,-1.0m ,1.0m )处的电场强度为______________,体电荷密度为______________。
2. 使用相对磁导率为1的金属壳体,____________屏蔽外部静电场;____________屏蔽外部恒定磁场。
(请选填“可以”或“不可以”)。
3. 恒定电场情况下,在两种导电媒质分界面处:电场强度____________连续;体电流密度______________连续。
(请选填“切向分量”或“法向分量”)。
4. 对于浅埋于地表的半径为0.2m 的半球形接地体,假设土壤电导率为0.01S/m ,如有100A 的恒定电流经该接地体注入大地,则地表距离该接地体分别为10m 和10.5m 远的两点间的跨步电压为________________;将接地体的半径增大一倍,其它参数保持不变,跨步电压_______________(选填“增大”、“减小”或“不变”)。
5.依据中国国家标准GB 8702-2014《电磁环境控制限值》,工频(50Hz )电场的公众曝露控制限值为4kV/m 。
假设某交流输电线路下方地面存在垂直于地面的4kV/m 的均匀工频电场,当身高为1.7m 的人体站立于该地面时,头部和脚之间的电位差约为___________ __(选填“6.8kV ”或“0V ”));假设人体表面接收空间位移电流的等效面积为0.2m 2,则人体表面接收到的位移电流为___________ _。
华北电力大学2019年硕士研究生入学考试初试科目考试大纲845自动控制原理基础

华北电力大学2019年硕士研究生入学考试初试科目考试大纲
845自动控制原理基础
华北电力大学2019年硕士生入学考试初试科目考试
大纲
考试科目编号:845
考试科目名称:自动控制原理基础
一、考试的总体要求
熟练掌握经典控制理论中控制系统的基本概念、数学模型和分析方法;掌握用时域分析、根轨迹分析法和频率响应分析法综合连续线性定常控制系统;掌握现代控制理论状态空间的基本概念和分析方法。
二、考试的内容
1. 控制系统的基本概念、反馈控制系统的基本组成。
开环、闭环控制。
2.数学模型:
建立实际系统的数学模型。
微分方程和传递函数的关系;由原始方程绘制方框图;通过方框图的简化求各种典型传递函数及相应的微分方程。
3.时域分析:
1。
华北电力大学复变2018-2019-B-试卷及答案

5 2
映射为同心圆环域
2
w
r
,
(1)试求关于圆周
z:
z
1
和 z :
z i
5 2
的一对公共对称点;(5分)
(2)试求该映射及 r 值。(5分)
八、(10 分)求函数 f (t) e|t| ( 0) 的 Fourier 变换,并证明
0
cos(t) 2 2
d
2
e |t|.
华北电力大学 2018-2019 学年第 1 学期考试试卷(B)答案
i)
在圆环域
0
z |1内的 Laurent 展式。
解:当 0 z 1时, 1
1
1
1
z i
i 1 z
i n0
zn
i
n
n0
zn i n1
i1n zn
n0
,
i
------(8 分)
于是
z2
1 zi
i1n zn2 .
n0
-----------------(2 分)
五、计算下列积分(封闭曲线均为正向)(共 25 分, 每小题 5 分): (评分标准:以下 1--5 小题, 过程正确给 4 分,结论正确给 1 分;只是方法正确给 3 分)
z1 0 . z2
-----------------------------------------(4 分)
三、(10 分)已知调和函数 v(x, y) x3 3xy2 ,求解析函数 f (z) u(x, y) iv(x, y) ,使
f (0) 2.
解:由于函数 f (z) u(x, y) iv(x, y) 解析,则 u v = 6xy , x y
现代控制理论习题集及解答(后两部分)

2
16(北航2002) 已知两个系统S1和S2的状态方程及输出方程分别为:
S1 :
X1
=
⎡0 ⎢⎣−3
1⎤ −4⎥⎦
X1
+
⎡0⎤ ⎢⎣1⎥⎦
u1
y1 = [1
−1] X 1
S2 : x2 = −2x2 + u2 y2 = x2 若两个系统按串联方式连接: u1 S1 y1, u2 S2 y2
(1)求串联系统S的状态方程及输出方程;
+
⎡0⎤ ⎢⎣1⎥⎦
u1
,
y1 = [1
−1] X1
显然状态完全能控(思考为什么?)
∵
⎡C ⎤ ⎢⎣CA⎥⎦
=
⎡2 ⎢⎣−3
1⎤ −2⎥⎦
满秩,故状态完全能观测。
系统S2 : x2 = −2x2 + u2 , y2 = x2
状态完全能控且状态完全能观测。
⎡0 1 −4⎤
系统S : ∵ ⎡⎣B
AB
A2B⎤⎦ = ⎢⎢1
⎢⎣ 1 0 −1⎥⎦ ⎢⎣1⎥⎦
y = [1 1 0]x
⎡c⎤
⎡1 1 0⎤
解:
rank
⎢ ⎢
cA
⎥ ⎥
=
rank
⎢⎢−1
−3
−1⎥⎥ = 3 = n
⎢⎣cA2 ⎥⎦
⎢⎣ 0 5 0 ⎥⎦
⎡2 0 0⎤ (2)x = ⎢⎢0 2 0⎥⎥ x,
⎢⎣0 3 1⎥⎦
y = [1 1 1]x
⎡c⎤
⎡1 1 1⎤
可绘出状态变量图:
y1 = [1
−1] X 1
由图可得,
⎡ 0 1 0 ⎤ ⎡0⎤
Z = ⎢⎢−3 −4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年现代控制理论阶段检测
一、 按要求写出状态空间表达式(20分)
(1)已知系统方框图,写出其状态空间表达式(刘豹课本例1-1)
(2)已知系统的微分方程,试将其转变成状态空间表达式
y ⃛+5ÿ+4ẏ+3y =u +6u +2u
(3)已知系统传递函数,试将其转变成能控标准型状态空间表达式
G (s )=s 2+2s s +3s +3s +1
(4)已知系统传递函数,试将其转变成对角标准型状态空间表达式
G (s )=4s (s +1)2(s +2)
二、 将下列状态方程表达式化成约当标准型。
(15分)
ẋ=[4 1 −211 0 2−1 3
]x +[312573]u 三、 线性定常系统的齐次方程为ẋ=Ax(t),已知当x (0)=[1−2
]时,状态方程的解为x (t )=[e −2t −2e −2t ];而当x (0)=[1−1]时,状态方程的解为x (t )=[e −t −e
−t ],试求:
(1) 系统的状态转移矩阵ϕ(t);
(2) 系统的系数矩阵A 。
(20分)
四、 已知系统的传递函数为G (s )=(s+a)(s+10)(s+1)(s+5)(s+6)
(1) 试确定a 的取值,使系统成为不能控或者不能观;
(2) 在上述a 值下,求使系统为能控的状态空间表达式;
(3) 在上述a 值下,求使系统为能观的状态空间表达式。
(15分)
五、 设系统∑(A,C)的系数矩阵为
A =[−a 1−a 2−a 31
00010
],C =[c 100] 其中,−a 1,−a 2,−a 3,c 1为实数。
试问系统∑(A,C)能观的充要条件是什么?要求用A 、C 中的参数具体表示。
(10分)
六、 给定开环传递函数为G (s )=s+1
s 2(s+3)
(1) 要求用状态反馈将闭环极点配置到{-2,-2,-1}。
试计算状态反馈增益矩
阵K,并说明所得到的闭环系统是否可观测;
(2)要求设计状态观测器,使观测器的极点为{-5,-5,-6},并绘制最后的系统框图。
(20分)。