闸北初中补习班 中考冲刺补习 新王牌各类计算题汇总2-图形

合集下载

闸北高中补习班 秋季新王牌 高考冲刺补习立体几何高二

闸北高中补习班 秋季新王牌 高考冲刺补习立体几何高二

立体几何1.判断下列命题的真假,真的打“√”,假的打“×”①空间三点确定一个平面 ( ) ②平行移动两条异面直线中的任一条,它们所成的角不变 ( ) ③两条相交直线确定一个平面 ( ) ④一条直线和一个点确定一个平面 ( ) ⑤三条平行直线可以确定三个平面 ( ) ⑥两两相交的三条直线确定一个平面 ( ) ⑦两个平面若有不同的三个公共点,则两个平面重合 ( )⑧若四点不共面,那么每三个点一定不共线 ( ) ⑨和两条异面直线都垂直的直线是这两条异面直线的公垂线 ( ) ⑩平行于同一直线的两条直线平行 ( ) ⑾垂直于同一直线的两条直线平行 ( ) ⑿过直线外一点,有且只有一条直线与已知直线平行 ( ) ⒀与已知直线平行且距离等于定长的直线只有两条 ( ) ⒁两条直线和第三条直线成等角,则这两条直线平行 ( )2.过长为a 的正六边形ABCDEF 在平面α内,PA ⊥α,PA=a ,则P 到CD 的距离为 ___, P 到BC 的距离为 .3.AC 是平面α的斜线,且AO=a ,AO 与α成60º角,OC ⊂α, AA '⊥α于A ',∠A 'OC=45º,则A 到直线OC 的距离 是 ____,∠AOC 的余弦值是 _____ .4. 在正方体1111ABCD A BC D -中,E F G H ,,,分别为1AA ,AB ,1BB ,11B C 的中点,则异面直线EF 与GH 所成的角等于___________5.已知正四面体ABCD 的表面积为S ,其四个面中心分别为E 、F 、G 、H ,设四面体EFGH 表面积为T ,则ST等于____________ 6.长方体1111ABCD A BC D -中,AB=AD=23,CC 1=2,则二面角 C 1—BD —C 的大小为______________7 △ABC 是直角三角形,∠ACB=︒90,PA ⊥平面ABC ,此图形中有 个直角三角形11.PA 垂直于⊿ABC 所在的平面,若AB=AC=13,BC=10,PA=12,则P 到BC 的距离为8.已知∠ACB=90º,S 为平面ABC 外一点,且∠SCA=∠SCB=60º,则SC 和平面ABC 所成的角为9.边长为2的正方形ABCD 在平面α内的射影是EFCD ,如果AB 与平面α的距离为2,则AC 与平面α所成角的大小是10.已知AB 是异面直线a 、b 的公垂线段,AB=2,且a 与b 成30°角,在直线a 上取AP=4,则点P 到直线b 的距离为AA ′ C αOAF D B C GE 1BH 1C 1D1A11.已知a 、b 是直线,α、β、γ是平面,给出下列命题:①若α∥β,a ⊂α,则a ∥β②若a 、b 与α所成角相等,则a ∥b ③若α⊥β、β⊥γ,则α∥γ④若a ⊥α, a ⊥β,则α∥β 其中正确的命题的序号是______________12.如图,定点A 和B 都在平面α内,定点α∉P ,α⊥PB ,点C 是α内异于A 和B 的动点,且AC PC ⊥,那么点C 在平面α内的轨迹是( B ) A .一条线段,但要去掉两点 B .一个圆,但要去掉两个点 C .一个椭圆,但要去掉两个点 D .半圆,但要去掉两个点13.下列命题,错误的一个是( )A .经过平面α外一点P ,有且只有一条直线与平面α垂直B .经过平面α外一点P ,有无数条直线与平面α平行C .经过平面α外一点P ,有且只有一个平面与平面α垂直D .经过平面α外一点P ,有且只有一个平面与平面α平行14.若a 、b 是异面直线,l b a =⊂⊂βαβα ,,,则( )A. l 与a 、b 分别相交B. l 与a 、b 都不相交C. l 至多与a 、b 中的一条相交D. l 至少与a 、b 中的一条相交15.直线1l 、2l 互相平行的一个充分条件是( )A .1l 、2l 都平行于同一平面B .1l 、2l 与同一平面所成的角相等C .1l 平行于2l 所在的平面D .1l 、2l 都垂直于同一平面16.若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( )A .若//,,l n αβαβ⊂⊂,则//l nB .若,l αβα⊥⊂,则l β⊥ C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m17.在正三棱柱ABC -111C B A 中,若AB =2,AA 1=1,(1)求其全面积;(2)求则点A 到平面A 1BC 的距离.18.在棱长为2的正方体1111D C B A ABCD -中,O 是底面ABCD 的中心,E 、F 分别是1CC AD 的中点,求异面直线1FD OE 和所成角的余弦值αPCBA19.如图,把长、宽各为3、1的矩形ABCD沿对角线AC折成直二面角,则顶点B和D 的距离.20.如图,已知AP⊥BP,PA⊥PC,∠ABP=∠ACP=60ºPB=PC=2BC,D是BC中点,求AD与平面PBC所成角的余弦值.21.在△ABC所在平面外有点S,斜线SA⊥AC,SB⊥BC,且斜线SA、SB与平面ABC所成角相等.(I)求证:AC=BC;(II)又设点S到平面ABC的距离为4c m,AC⊥BC且AB=6c m,求S与AB的距离.22.已知四边形ACED和四边形CBFE都是矩形,且二面A-CE-B 是直二面角,AM垂直CD交CE于M.(1)求证:AM BD; (2)若AD=6,BC=1,AC=3,求二面角M-AB-C的大小. AB COSB D。

中考数学复习《几何图形初步》专项提升训练题-附答案

中考数学复习《几何图形初步》专项提升训练题-附答案

中考数学复习《几何图形初步》专项提升训练题-附答案学校:班级:姓名:考号:一、单选题1.一个四边形截去一个角后,可以变成()A.三角形B.四边形C.五边形D.以上都有可能2.已知,从顶点O引一条射线,若,则()A.20°B.40°C.80°D.40°或80°3.如图所示,∠BOC=40°,OD平分,则的度数是()A.B.C.D.4.已知点在同一条直线上,若线段,BC=3,AC=2,则下列判断正确的是()A.点在线段上B.点在线段上C.点在线段上D.点在线段的延长线上5.如图,已知线段a,b,画一条射线,在射线上依次截取,在线段上截取.则()A.B.C.D.6.如图,将正方体相邻的两个面上分别画出的正方形网格,并分别用图形“”和“〇”在网格内的交点处做上标记,则该正方体的表面展开图是A. B. C. D.7.如图,线段AB的长为m,点C为AB上一动点(不与A,B重合),D为AC中点,E为BC中点,随着点C的运动,线段DE的长度()A.随之变化B.不改变,且为C .不改变,且为D .不改变,且为8.如图,在同一平面内90AOB COD ∠=∠=︒,COE BOE ∠=∠点F 为OE 反向延长线上一点(图中所有角均指小于180︒的角).下列结论:①AOE DOE ∠=∠;②180AOD COB ∠+∠=︒;③90COB AOD ∠∠=︒-;④180COE BOF ∠+∠=︒.其中正确结论的个数有( ).A .4个B .3个C .2个D .1个 二、填空题9.如图,已知C 、D 是AB 上两点,且AB=20cm ,CD=6cm ,M 是AD 的中点,N 是BC 的中点,则线段MN 的长为 .10.已知直线,垂足为O ,OE 在内部,于点O ,则度.11.已知点 在直线 上,且线段 的长度为 ,线段 的长度为 , E 、 F 分别为线段 OA 、 OB 的中点,则线段 的长度为 . 12.已知线段AB ,延长AB 至点C ,使,反向延长AB 至点D ,使,若,则t 的值为 . 13.如图所示,是直线上一点,是一条射线,平分,在内,则的度数是 .三、解答题14.如图,点O 在直线上,已知,且射线平分,∠EOD=30°,求的度数.15.如图,A 、B 、C 三点在同一条直线上,点是线段的中点,点是线段的中点.(1)如图1,点在线段上,若,BC=4,求线段的长;(2)如图2,点在线段的延长线上,若,求线段的长.16.已知长方形的长为4cm、宽为3cm,将其绕它的一边所在的直线旋转一周,得到一个几何体(1)求此几何体的表面积.(结果保留π)(2)求此几何体的体积;(结果保留π)17.如图,∠AOB=90°,∠AOC=50°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当∠AOC= 时,∠MON等于多少度?18.如图,点O为数轴原点,点A对应的数为-5,点B对应的数为10.(1)点C是数轴上A、B之间的一个点,且,求线段CA的长及点C对应的数.(2)点P从点A出发以每秒2个单位的速度沿数轴正方向运动,点Q从点B出发以每秒1个单位的速度沿数轴负方向运动.P、Q两点同时出发,设运动时间为t秒.当满足,求运动时间t.参考答案:1.D2.D3.A4.C5.D6.C7.D8.B9.7cm10.50或13011.或12.13.90°14.解:∵∴,即∵射线平分∴,则∵∴∴.15.(1)解:是线段的中点,是线段的中点;(2)解:是线段的中点,是线段的中点.16.(1)解:长方形绕一边旋转一周,得圆柱.分两种情况:①绕以长为轴进行旋转,则π×3×2×4+π×32×2=24π+18π=42π(cm2);②绕以宽为轴进行旋转,则π×4×2×3+π×42×2=24π+32π=56π(cm2).(2)解:分两种情况:①绕以长为轴进行旋转,则π×32×4=36π(cm3);②绕以宽为轴进行旋转,则π×42×3=48π(cm3);17.(1)解:∵∠AOB是直角,∠AOC=50°∴∠BOC=∠AOB+∠AOC=90°+50°=140°∵ON是∠AOC的平分线,OM是∠BOC的平分线∴∠COM= 12∠BOC=12×140°=70°∠CON= 12∠AOC=12×50°=25°∴∠MON=∠COM-∠CON=70°-25°=45°(2)解:当∠AOC= α时,∠BOC=∠AOB+∠AOC=90°+ α∵ON是∠AOC的平分线,OM是∠BOC的平分线∴∠COM= 12∠BOC=12(90°+ α)∠CON= 12∠AOC=12α∴∠MON=∠COM-∠CON= 12(90°+ α)-12α =45°18.(1)解:对应的数为02(2)解:点P表示的数为,点Q表示的数为.又,且解得:或10。

闸北初中补习班 秋季最好中考冲刺新王牌 第八讲 匀速直线运动

闸北初中补习班 秋季最好中考冲刺新王牌 第八讲 匀速直线运动

第八讲 匀速直线运动(课后作业)课后作业(一) 1. 坐橡皮艇漂流时,对于两岸的悬崖峭壁来说,探险者是_________的,对于橡皮艇来说,探险者是________的,对于湍急的河水来说,探险者是________的。

2. 之处下列句子中的参照物“轻舟已过万重山”_____________________________________“月上柳梢头”__________________________________________太阳从东方升起__________________________________________同步地球卫星静止在天空某处______________________________火车上的乘客说“上海离我越来越近了”____________________3. 在第一次世界大战期间,有名法国飞行员,在2000米高空飞行时,发现飞机旁边有一条“小虫”正以同样的速度同行,他伸手抓来一看,大吃一惊!原来是一颗德国制造的子弹。

此时飞机与子弹彼此间保持了相对的_____________,在这瞬间,以___________做参照物,子弹保持不动。

4. 2005年底,洋山深水港建成通车。

通往洋山深水港的东海大桥全长32.5千米,一辆轿车匀速通过大桥需要半小时,该轿车的速度为________千米/小时。

轿车上的人看到大桥栏杆在运动,他是选取___________为参照物。

5. 上海的发展日新月异,有着“世博专线”之称的上海城市轨道交通十三号线全长约5000米,将于2010年世博会前投入使用。

若一辆地铁列车全程运行约需250秒,则该车的速度为_________米/秒。

以列车为参照物,坐在车中的乘客是__________的(选填“静止”或“运动”)6. 完成下列单位换算:(1)15m /s = km /h ;(2)72km /h = m /s 。

(3)4.76×105km= dm= μm= nm ;(4)6min= s= h 。

【精选试卷】上海闸北第八中学中考数学填空题专项练习知识点(提高培优)

【精选试卷】上海闸北第八中学中考数学填空题专项练习知识点(提高培优)

一、填空题1.分解因式:2x 3﹣6x 2+4x =__________.2.已知(a -4)(a -2)=3,则(a -4)2+(a -2)2的值为__________.3.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 . 4.正六边形的边长为8cm ,则它的面积为____cm 2.5.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.6.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____. 7.计算:82-=_______________.8.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角∠CBD =60°;(2)根据手中剩余线的长度出风筝线BC 的长度为70米;(3)量出测倾器的高度AB =1.5米.根据测量数据,计算出风筝的高度CE 约为_____米.(精确到0.1米,3≈1.73).9.若a ,b 互为相反数,则22a b ab +=________.10.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数k y x =在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为_____.11.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直角三角形时,BE 的长为 .12.不等式组0125x a x x ->⎧⎨->-⎩有3个整数解,则a 的取值范围是_____. 13.如图,⊙O 是△ABC 的外接圆,∠A =45°,则cos ∠OCB 的值是________.14.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.15.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是 .16.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.17.如图,在Rt△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点C 顺时针旋转至△A′B′C,使得点A′恰好落在AB 上,则旋转角度为_____.18.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频数m3 7 13 29 37 55 69 85 105 138 色盲患者的频率m/n 0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).19.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.20.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()10y x x =>与()50y x x-=<的图象上,则tan BAO ∠的值为_____.21.如图,矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为____________.22.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x 的图象上,则k 的值为________.23.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为______.24.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .25.在函数3y x=-的图象上有三个点(﹣2,y 1),(﹣1,y 2),(12,y 3),则y 1,y 2,y 3的大小关系为_____. 26.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.27.计算:21(1)211x x x x ÷-+++=________. 28.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.29.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.30.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、填空题1.2x(x﹣1)(x﹣2)【解析】分析:首先提取公因式2x再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2)故答案为2x(x﹣1)(x﹣2)点2.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=3.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角4.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD5.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到6.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主7.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键8.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈6219.0【解析】【分析】先提公因式得ab(a+b)而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b)而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数10.【解析】【分析】设D(x2)则E(x+21)由反比例函数经过点DE列出关于x的方程求得x的值即可得出答案【详解】解:设D(x2)则E(x+21)∵反比例函数在第一象限的图象经过点D点E∴2x=x+211.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角12.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得13.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC从而可得cos∠OCB的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC由勾股定理得BC=OC∴cos∠OCB=故答案为【点睛】14.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比15.【解析】【分析】连接BD交AC于点O由勾股定理可得BO=3根据菱形的性质求出BD再计算面积【详解】连接BD交AC于点O根据菱形的性质可得AC⊥BDAO=CO=4由勾股定理可得BO=3所以BD=6即可16.7【解析】【分析】根据非负数的性质列式求出ab的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c的取值范围再根据c是奇数求出c的值【详解】∵ab满足|a﹣7|+(b﹣1)2=0∴a﹣717.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上∴AC=A′C∴△A′AC是等边三角形∴∠ACA18.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故19.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得20.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案21.【解析】试题解析:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵AE垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角22.-6【解析】因为四边形OABC是菱形所以对角线互相垂直平分则点A和点C关于y轴对称点C在反比例函数上设点C的坐标为(x)则点A的坐标为(-x)点B的坐标为(0)因此AC=-2xOB=根据菱形的面积等23.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB=25∵DE 为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:24.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF25.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=26.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多27.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛28.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达29.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为30.【解析】【分析】连接BD根据中位线的性质得出EFBD且EF=BD进而根据勾股定理的逆定理得到△BDC是直角三角形求解即可【详解】连接BD分别是ABAD的中点EFBD且EF=BD又△BDC是直角三角形2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、填空题1.2x(x﹣1)(x﹣2)【解析】分析:首先提取公因式2x再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2)故答案为2x(x﹣1)(x﹣2)点解析:2x(x﹣1)(x﹣2).【解析】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为2x(x﹣1)(x﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.2.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.3.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.4.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆5.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到2,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到2AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴2,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴2AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.6.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为352+=4,故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.7.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键【解析】【分析】.【详解】=..【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.8.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621解析:1.【解析】试题分析:在Rt△CBD中,知道了斜边,求60°角的对边,可以用正弦值进行解答.试题解析:在Rt△CBD中,DC=BC•sin60°=70×2≈60.55(米).∵AB=1.5,∴CE=60.55+1.5≈62.1(米).考点:解直角三角形的应用-仰角俯角问题.9.0【解析】【分析】先提公因式得ab(a+b)而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b)而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab += ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.10.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E∴2x=x+2 解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1), ∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴OD ==故答案为:【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k . 11.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC 先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或32. 【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC=√42+32=5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得x=3,2∴BE=3;2②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.或3.综上所述,BE的长为32故答案为:3或3.212.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得解析:﹣2≤a<﹣1.【解析】先解不等式组确定不等式组的解集(利用含a 的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式x ﹣a >0,得:x >a ,解不等式1﹣x >2x ﹣5,得:x <2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a <﹣1,故答案为:﹣2≤a <﹣1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC 从而可得cos∠OCB 的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC 由勾股定理得BC=OC∴cos∠OCB=故答案为【点睛】解析:2【解析】【分析】根据圆周角定理可得∠BOC=90°,易求OC ,从而可得cos ∠OCB 的值.【详解】∵∠A =45°,∴∠BOC=90°∵OB=OC ,由勾股定理得,OC ,∴cos ∠OCB =2OC BC ==.故答案为2. 【点睛】 本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.14.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比 解析:【解析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果.【详解】解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=. 故答案为8.【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型. 15.【解析】【分析】连接BD 交AC 于点O 由勾股定理可得BO=3根据菱形的性质求出BD 再计算面积【详解】连接BD 交AC 于点O 根据菱形的性质可得AC⊥BDAO=CO=4由勾股定理可得BO=3所以BD=6即可解析:【解析】【分析】连接BD ,交AC 于点O ,由勾股定理可得BO=3,根据菱形的性质求出BD ,再计算面积.【详解】连接BD ,交AC 于点O ,根据菱形的性质可得AC ⊥BD ,AO=CO=4,由勾股定理可得BO=3,所以BD=6,即可得菱形的面积是12×6×8=24.考点:菱形的性质;勾股定理.16.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a ﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 17.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上∴AC=A′C∴△A′AC 是等边三角形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上,∴AC=A′C ,∴△A′AC 是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°. 18.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解: 观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右, 故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.19.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.20.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案 解析:5. 【解析】 【分析】 过A 作AC x ⊥轴,过B 作BD x ⊥轴于D ,于是得到90BDO ACO ∠=∠=︒,根据反比例函数的性质得到52BDO S ∆=,12AOC S ∆=,根据相似三角形的性质得到25BOD OAC S OB S OA ∆∆⎛⎫== ⎪⎝⎭,求得5OB OA =,根据三角函数的定义即可得到结论. 【详解】过A 作AC x ⊥轴,过B 作BD x ⊥轴于,则90BDO ACO ∠=∠=︒,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x -=<的图象上, ∴52BDO S ∆=,12AOC S ∆=, ∵90AOB ∠=︒,∴90BOD DBO BOD AOC ∠+∠=∠+∠=︒,∴DBO AOC ∠=∠,∴BDO OCA ∆∆,∴252512BOD OACS OB S OA ∆∆⎛⎫=== ⎪⎝⎭, ∴5OB OA=, ∴tan 5OB BAO OA ∠==, 故答案为:5.【点睛】本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.21.【解析】试题解析:∵四边形ABCD 是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵AE 垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角解析:【解析】试题解析:∵四边形ABCD 是矩形,∴OB =OD ,OA =OC ,AC =BD ,∴OA=OB ,∵AE 垂直平分OB ,∴AB =AO ,∴OA =AB =OB =3,∴BD =2OB =6,∴AD ==【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键. 22.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 23.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D 为AB 的中点∴DF=AB=25∵DE 为△ABC 的中位线∴DE=BC=4∴EF=DE -DF=15故答案为15【点睛】直角三角形斜边上的中线性质:解析:5【解析】【分析】【详解】试题解析:∵∠AFB=90°,D 为AB 的中点,∴DF=12AB=2.5,∵DE为△ABC的中位线,∴DE=12BC=4,∴EF=DE-DF=1.5,故答案为1.5.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.24.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.25.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y 2>y 1>y 3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .26.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.27.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛 解析:11x + 【解析】【分析】先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+=()21x x +·1x x+ =11x +. 故答案为11x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.28.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R 到达Px=9时点R 到Q 点则PN=4QP=5∴矩形MNPQ 的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R 到达P ,x=9时,点R 到Q 点,则PN=4,QP=5∴矩形MNPQ 的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时, 要注意数形结合.29.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:516. 【解析】【分析】【详解】 画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,。

闸北初中补习班 秋季中考新王牌冲刺补习 初三 单词填空+句子改写

闸北初中补习班  秋季中考新王牌冲刺补习  初三 单词填空+句子改写

单词的适当形式填空及句子改写专项训练1.I. Complete the sentences with given words in their suitable forms.(用括号中所给单词的适当形式完成下列句子,每空格限填一词):1.What a wonderful______ (memorize) the young man has!2.People are quite________ (satisfy) with the service of the five-star hotel.3. Mr. Li will show a group of________ (Germany) around our city this afternoon.4. The baby began to laugh when he saw the________(fun) monkey.5. Please listen________ (careful), then answer my questions.6. The computer is one of the most useful________(invent) in the world.7. Mr. Smith together with his wife, usually________(walk) along the river after supper.II. Rewrite the following sentences as required(根据所给要求,改写下列句子。

没空格限填一词):1.Kitty spent much time going out with friends or shopping or going to parties.(改为否定句)Kitty________ ________ much time going out with friends or shopping or going to parties.2. She’s never late for school.(改为反义疑问句)She’s never late for school, ________ ________?3. Shelly wanted to know where she could buy a pair of gloves.(改为简单句)Shelly wanted to know_______ ________ buy a pair of gloves.4. Dad takes the little son to Shanghai Zoo once a month.(对划线部分提问)________ _______ does Dad take the little son to Shanghai zoo?5.You musn’t look people in the eye for long.(改为同义句)________ ________ people in the eye for long.6.Gold is less valuable than diamond.(改为同义句)Gold is________ ________ valuable as diamond.7. They have already cleaned the room.(改为一般疑问句)________ they cleaned the room________?2.I. Complete the sentences with given words in their suitable forms.(用括号中所给单词的适当形式完成下列句子,每空格限填一词):1.The ancient battlefield looked________(live) without anything living around.2.Floods cause the________(destroy) and removal of soil.3.I was________(water) the flowers at this time yesterday.4.The rivers won’t be________(pollute) if factories don’t let out dirty water.5.Tom________(do) with some business matters yesterday.6.The poor boy had to admit________(eat) the girl’s cake when she was away.7.These colorful candies are really________(attract) to children.8.All of us must stop________(talk) when class begins.II. Rewrite the following sentences as required(根据所给要求,改写下列句子。

闸北中考冲刺补习班第一讲新王牌简单机械

闸北中考冲刺补习班第一讲新王牌简单机械

基础知识I.杠杆在力的作用下绕固定点转动的硬棒叫做杠杆II.几个名词1.支点:杠杆绕着转动的固定点(O)。

2.动力:促使杠杆转动的力(F1)3.阻力:阻碍杠杆转动的力(F2)4.动力臂:支点到动力作用线的距离(L1)5.阻力臂:支点到阻力作用线的距离(L2)III.画力臂的方法及步骤1.先根据实际情况标出杠杆的支点。

2.再通过力的作用点沿力的方向画力的作用线(可以向两端恰当延长)。

3.最后通过支点向力的作用线作垂线。

注意: 1)力的作用线需要延长时,延长部分一定要用虚线。

2)力臂的表示是虚线带大括号。

IV.杠杆的平衡1.平衡状态:指杠杆静止不动或绕支点匀速转动。

2.平衡条件:动力×动力臂=阻力×阻力臂即 F1× L1 = F2× L2V.三类杠杆1.省力杠杆:动力臂>阻力臂特点:省力,费距离。

2.费力杠杆:动力臂<阻力臂特点:费力,省距离。

3.等臂杠杆:动力臂=阻力臂特点:不省力,不费力,不省距离课后练习1.下列杠杆中,O是支点,在图上画出F1、F2的力臂,并且用L1、L2表示它们2.如图所示,O点为均匀直棒的支点,请用力的示意图画出重力G和对应的力臂L。

3.杠杆的平衡条件是_______________________________,用公式表示为_________________或__________________.4.在下列机械中:羊角锤、钓鱼竿、天平、钢丝钳、筷子、切纸刀、理发剪刀、普通剪刀、BOF缝纫机的脚踏板、铡草用的铡刀、镊子、铁锹、天平、筷子,它们中属于省力杠杆的是________________属于费力杠杆的是__________________________ 属于等臂杠杆的是______________.5.如图所示是家用脚踏式垃圾桶的结构图,F为装垃圾时开盖用的脚踏板。

从图中可以看出,其中由DEF组成的杠杆是一根________(选填“省力”、“费力”或“等臂”)杠杆,其支点是_________。

上海市闸北区2019-2020学年中考数学第二次押题试卷含解析

上海市闸北区2019-2020学年中考数学第二次押题试卷含解析

上海市闸北区2019-2020学年中考数学第二次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-22.实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是()A.﹣a<a<a2B.a<﹣a<a2C.﹣a<a2<a D.a<a2<﹣a3.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线C.AC2=BC•CD D.AD DC AB AC=4.2的相反数是()A.﹣2B.2C.2D.25.下列事件是必然事件的是()A.任意作一个平行四边形其对角线互相垂直B.任意作一个矩形其对角线相等C.任意作一个三角形其内角和为360︒D.任意作一个菱形其对角线相等且互相垂直平分6.如果实数a=11,且a在数轴上对应点的位置如图所示,其中正确的是()A.B.C.D.7.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A .84B .336C .510D .13268.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当AB 2=,B 60o ∠=时,AC 等于( )A .2B .2C .6D .229.如图,在Rt △ABC 中,∠ABC=90°,AB=6,BC=8,点E 是△ABC 的内心,过点E 作EF ∥AB 交AC 于点F ,则EF 的长为( )A .52B .154C .83D .10310.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( )A .13∠=∠B .11803∠=-∠oC .1903∠=+∠oD .以上都不对11.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .012.已知a-2b=-2,则4-2a+4b 的值是( )A .0B .2C .4D .8二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD=2,tan ∠OAB=12,则AB 的长是________.14.如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是__________cm.15.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.16.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可).17.在Rt△ABC中,∠C=90°,sinA=12,那么cosA=________.18.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆.如图所示,已知:⊙I是△ABC的BC边上的旁切圆,E、F分别是切点,AD⊥IC于点D.(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论.(2)设AB=AC=5,BC=6,如果△DIE和△AEF的面积之比等于m,DEnEF,试作出分别以mn,nm为两根且二次项系数为6的一个一元二次方程.20.(6分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成.21.(6分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.22.(8分)如图,AB是⊙O的直径,弧CD⊥AB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E.(1)如图(1)连接PC、CB,求证:∠BCP=∠PED;(2)如图(2)过点P作⊙O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:∠APG=12∠F;(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=25,求⊙O的直径AB.23.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?24.(10分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.25.(10分)计算:(﹣2)2+20180﹣36 26.(12分)已知如图,直线y=﹣3 x+43 与x 轴相交于点A ,与直线y=33x 相交于点P . (1)求点P 的坐标; (2)动点E 从原点O 出发,沿着O→P→A 的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF ⊥x 轴于F ,EB ⊥y 轴于B .设运动t 秒时, F 的坐标为(a ,0),矩形EBOF 与△OPA 重叠部分的面积为S .直接写出: S 与a 之间的函数关系式(3)若点M 在直线OP 上,在平面内是否存在一点Q,使以A ,P,M ,Q 为顶点的四边形为矩形且满足矩形两边AP:PM 之比为1:3 若存在直接写出Q 点坐标。

闸北高中冲刺补习班 高三 新王牌牛顿第二定律

闸北高中冲刺补习班 高三 新王牌牛顿第二定律

三、牛顿第二定律例1.求下列情况下物体的加速度:5.牛顿第二定律的简单应用1.运用牛顿运动定律解决的动力学问题常常可以分为两种类型(1)已知受力情况,要求物体的运动情况.如物体运动的位移、速度及时间等. (2)已知运动情况,要求物体的受力情况(求力的大小和方向). 但不管哪种类型,一般总是先根据已知条件求出物体运动的加速度,然后再由此得出问题的答案.常用的运动学公式为匀变速直线运动公式0t v v at =+,2012s v t at =+, 2202t v v as -=,0/22t t v v s v v t +===等。

例1.如图,质量m =4kg 的物体与地面间的动摩擦因数为μ=0.5,在与水平成θ=37°角的恒力F 作用下,从静止起向右前进t 1=2.0s 后撤去F ,又经过t 2=4.0s 物体刚好停下。

求:F 的大小、最大速度v m 、总位移s 。

(54.5 20 60 )例2.一个物体静止在光滑水平面上,在100牛的水平力作用下,2秒前进了10米,若想使静止物体在5秒内前进50米,则水平力应改为 ;若该物体静止在粗糙水平面上,在100牛的水平力作用下2秒内前进8米,则该物体受到的静摩擦力为 ,动摩擦因数为6、超重和失重问题升降机中物体m =50kg ,22a m s =向上或向下,求台秤的示数 1.静止或匀速直线运动N =mg视重=重力 平衡a = 0a aμa0a =2.向上加速或向下减速,a 向上 N -mg =ma视重>重力超重:物体对支持物的压力(或对悬挂物 的拉力)大于物体所受重力的情况称为超重现象.3. 向下加速或向上减速,a 向下 mg -N =ma∴N =mg -ma视重<重力失重:物体对支持物的压力(或对悬挂物 的拉力)小于物体所受重力的情况称为失 重现象。

4.如果a =g 向下,则N =0 台秤无示数完全失重 注意:①、物体处于“超重”或“失重”状态,地球作用于物体的重力始终存在,大小也无变化; ②、发生“超重”或“失重”现象与物体速度方向无关,只决定于物体的加速度方向; ③、在完全失重状态,平常一切由重力产生的物理现象完全消失。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三化学2012图形计算题汇总2
一、溶液的质量的计算
1、在一烧杯中盛有一定质量的MgCO 3固体,向其中滴加溶质的质量分数为10%的H 2SO 4溶液,至恰好完全反应。

得到102g 不饱和溶液。

向所得溶液中逐滴滴人溶质质量分数为l0%的NaOH 溶液,产生沉淀的质量与所滴入NaOH 溶液的质量关系曲线如图所示。

请根据题意回答下列问题: (1)在滴入稀硫酸时,观察到的明显实验现象是______________________________。

(2)当滴入NaOH 溶液至图中A 点时,烧杯中溶液里含有的溶质是(写化学式)
____________________________________________。

(3)当滴入10%的NaOH 溶液80g 时(即B 点),试通过计算,求此时所得不饱和溶液的质量。

(计算结果精确至0.1g)
3、在一烧杯中盛有一定质量的金属镁,向其中加入足量的稀硫酸,至恰好完全反应,在一定温度下得到30g MgSO 4的不饱和溶液。

向所得溶液中逐滴滴入溶质质量分数为10%的NaOH 溶液,溶液的总质量与滴入NaOH 溶液的质量的质量关系曲线如图所示。

请根据题意回答下列问题:
⑴写出在整个实验过程中观察到的一项实验现象: 。

⑵当滴入过量NaOH 溶液至图中B 点时,烧杯中溶液里含有的溶质为 、 。

⑶当滴入10%的NaOH 溶液40g 时(即图中A 点),恰好完全反应。

试通过计算,求此时烧杯中所得不饱和溶液的质量(计算结果精确到0.1g ) 产
生沉淀的质量
/g
A
滴入NaOH 溶液的质量/g
4、在一烧杯中盛有24.3g Na2SO4和NaCl组成的固体混合物,加入100g水使Na2SO4和NaCl 全部溶解。

向其中逐渐滴加溶质质分数为20%的氯化钡溶液。

图所示,请根据题意回答问题:
(1)过程中观察到的现象。

(2)滴加到B点时,溶液中的溶质是。

二、溶质质量的计算
1、在一烧杯中盛有22.3g Na2CO3和NaCl组成的固体混合物,加足量水溶解,制成溶液。

向其中逐渐滴加溶质质量分数为10%的稀盐酸,放出气体的总质量与所滴入稀盐酸的质量关系曲线如图所示:请根据题意回答问题:
(1)当滴加了73g稀盐酸时,放出气体的总质量为g。

(2)当滴加稀盐酸至图中B点时,烧杯中溶液里的溶质是(写化学式)。

3、用“侯氏联合制减法”制得的纯碱含有少量的氯化钠。

为测定某纯碱样品中碳酸钠的含量,取23g 样品置于烧杯中,加水将其溶解,再滴加氯化钙溶液,产生沉淀的质量与加入氯化钙溶液的质量关系如右图所示。

求: (1)当滴入氯化钙溶液至图中B 点时,烧杯中溶液里含有的溶质是(写化学式)_________。

(2)求该纯碱样品中碳酸钠的质量分数(精确到0.1%)。

(3)当滴入氯化钙溶液至图中A 点时,并且反应后烧杯中溶液为不饱和溶液,计算该溶液中溶质的质量。

5、某班同学完成制取二氧化碳的实验后,对回收的盐酸和氯化钙混合溶液(不考虑其他杂质)进行了以下实验:取40mL 该溶液于烧杯中,滴入40g 溶质质量分数为13.8%的K 2CO 3溶液。

滴入K 2CO 3溶液质量与生成沉淀质量的关系如图所示。

求: (1)所取40mL 溶液中HCl 和CaCl 2的质量。

(2)实验结束后,若将烧杯中的物质蒸干,得到固体的质量。

三、溶质的质量分数的计算
1、在一烧杯中盛有100gBaCl 2和HCl 的混合溶液,向其中逐渐滴加溶质质量分数为10%的Na 2CO 3溶液,混合溶液的质量与所滴入Na 2CO 3溶液的质量关系曲线如图所示: 请根据题意回答问题:
(1)在实验过程中,有气体放出,还可以看到的明显实验现象是 。

(2)在实验过程中放出气体的总质量
为g。

(3)当滴入Na2CO3溶液至图中B点时,通过计算求此所得不饱和溶液中溶质质量分数是多少?(计算结果精确到0.1%)
4、某校化学研究性学习课题组的同学们为了测定某氢氧化钙试样中Ca(OH)2的含量(含有的杂质为CaCO3),共做了3次实验,使一定质量的该试样分别与同一种稀盐酸反应,所得相关实验数据记录如下表:
(1)在第次实验中,反应容器内有白色固体剩余。

(2)原试样中Ca(OH)2的质量分数为。

(计算结果精确至0.1%)
(3)经测知,第2次实验反应完全后,所得溶液中溶质只有一种,通过计算求出实验所取稀盐酸中溶质的质量分数为多少?(计算结果精确至0.1%)
6、刘明用石灰石(杂质不与酸反应,也不溶于水)和稀盐酸反应制取二氧化碳,在准备将反应后的废液倒进废液缸时,发现实验桌上有一瓶未知质量分数的Na2CO3溶液,他决定利用该废液,测定Na2CO3溶液中溶质的质量分数。

他将废液过滤,然后向废液中慢慢滴加Na2CO3溶液,加入Na2CO3溶液的质量与生成沉淀质量的关系如右图所示。

(1)在加入Na2CO3溶液的过程中,开始时没有发现沉淀生成,说明滤液中的溶质除含有
CaCl2外,还含有______________________;
(2)计算Na2CO3溶液中溶质的质量分数。

(计算结果精确到0.1%)。

相关文档
最新文档