高三数学二次函数-精品
《高三数学二次函数》课件

3 二次函数的单调性
二次函数的一般形式为$f(x) = ax^2 + bx + c$,其中 $a neq 0$。二次函数的开口方向由系数$a$决定,当 $a > 0$时,开口向上;当$a < 0$时,开口向下。
4 二次函数的极值
二次函数的一般形式为$f(x) = ax^2 + bx + c$,其中 $a neq 0$。二次函数的开口方向由系数$a$决定,当 $a > 0$时,开口向上;当$a < 0$时,开口向下。
已知二次函数$f(x) = ax^2 + bx + c$的图象经过点$(0, 0)$和$(1, -1)$ ,且在区间$( - infty, - frac{b}{2a})$ 上单调递减,求$a$的取值范围。
提高习题2
已知二次函数$f(x) = ax^2 + bx + c$的图象经过点$(0, 1)$和$(1, -1)$ ,且在区间$( - infty, - frac{b}{2a})$ 上单调递增,求$a$的取值范围。
04
下一步学习计划
01
深入学习其他类型的函数,如 三角函数、指数函数等,进一 步拓展数学知识面。
02
加强数学练习,通过大量的习பைடு நூலகம்题训练提高自己的解题能力和 数学思维能力。
03
学习数学中的其他重要概念和 定理,如导数、积分等,为后 续的学习打下坚实的基础。
04
参加数学竞赛或课外活动,与 其他同学一起探讨数学问题, 共同进步。
基础习题2
已知二次函数$f(x) = ax^2 + bx + c$在$x = 2$处取得最小值,求$a$的取值范围。
基础习题3
高三数学二次函数

-3
0
x
ymin=4.25
ymax=f(1)=2
( 2)
1 2 y = − x − 2 x + 1 x ∈ [−3 , 1] 5
26 y max = 5 6 ymin = − 5
x = −5
∴ 当 x = − 3时 当 x = 1时
y
1 -3 0
x
( 3)
1 2 y = x + 2 x − 1 x ∈ [−1 , 2] x = −2 2
【题型二 二次函数在区间上的最值问题 】
【双基自测】 双基自测】
1、求下列二次函数的最大值 、 或最小值
x=1 4
y
y
x=1
1
0
(1) y = − x + 2 x + 3
2
1
x
0 -2
x=− 3 2
x
( 2) y = 2 x 2 − 4 x 2、求下列二次函数的最大值 或最小值
y
1
( 1) y = x + 3 x − 2 (−3 ≤ x ≤ 1)
1 的图象与x轴的左右两个 (c > ) 的图象与 轴的左右两个 8
交点的横坐标分别为x 的取值范围是( 交点的横坐标分别为 1,x2,则x2-x1的取值范围是( A
)
(0,1)
2 ) B (0, 2
1 2 2 ) D ( ,1) C ( , 2 2 2
4 已知 ,b,c,d成等比数列,且曲线 已知a, , , 成等比数列 且曲线y=x2-2x+3的顶 成等比数列, 的顶 点是( , ), ),则 点是(b,c),则ad=( ) ( A1 B2 C3 D4
ymin 5 =− 2
数学高考复习名师精品教案:第14课时:第二章 函数-二次函数

数学高考复习名师精品教案第14课时:第二章 函数——二次函数一.课题:二次函数 二.教学目标:掌握二次函数的概念、图象及性质;能利用二次函数研究一元二次方程的实根分布条件;能求二次函数的区间最值.三.教学重点:二次函数、一元二次方程及一元二次不等式之间的灵活转化.四.教学过程:(一)主要知识:1.二次函数的解析式的三种形式:一般式,顶点式,两根式.2.二次函数的图象及性质;3.二次函数、一元二次方程及一元二次不等式之间的关系.(二)主要方法:1.讨论二次函数的区间最值问题:①注意对称轴与区间的相对位置;②函数在此区间上的单调性;2.讨论二次函数的区间根的分布情况一般需从三方面考虑:①判别式;②区间端点的函数值的符号;③对称轴与区间的相对位置.(三)例题分析:例1.函数2 ([0,))y x bx c x =++∈+∞是单调函数的充要条件是 ( A )()A 0b ≥ ()B 0b ≤ ()C 0b > ()D 0b <分析:对称轴2b x =-,∵函数2([0,)y x bxc x =++∈+∞是单调函数, ∴对称轴2b x =-在区间[0,)+∞的左边,即02b -≤,得0b ≥.例2.已知二次函数的对称轴为x =x 轴上的弦长为4,且过点(0,1)-,求函数的解析式.解:∵二次函数的对称轴为x =2()(f x a x b =+,又∵()f x 截x 轴上的弦长为4,∴()f x过点(2,0),()f x 又过点(0,1)-,∴4021a b a b +=⎧⎨+=-⎩, 122a b ⎧=⎪⎨⎪=-⎩,∴21()(22f x x =+-.例3.已知函数21sin sin 42a y x a x =-+-+的最大值为2,求a 的值 . 分析:令sin t x =,问题就转二次函数的区间最值问题. 解:令sin t x =,[1,1]t ∈-, ∴221()(2)24a y t a a =--+-+,对称轴为2at =, (1)当112a -≤≤,即22a -≤≤时,2max 1(2)24y a a =-+=,得2a =-或3a =(舍去). (2)当12a >,即2a >时,函数221()(2)24a y t a a =--+-+在[1,1]-单调递增, 由max 111242y a a =-+-+=,得103a =. (3)当12a <-,即2a <-时,函数221()(2)24a y t a a =--+-+在[1,1]-单调递减, 由max 111242y a a =---+=,得2a =-(舍去). 综上可得:a 的值为2a =-或103a =.例4. 已知函数22()(21)2f x x a x a =--+-与非负x 轴至少有一个交点,求a 的取值范围.解法一:由题知关于x 的方程22(21)20x a x a --+-=至少有一个非负实根,设根为12,x x则120x x ≤或1212000x x x x ∆≥⎧⎪>⎨⎪+>⎩,得94a ≤. 解法二:由题知(0)0f ≤或(0)0(21)020f a >⎧⎪--⎪->⎨⎪∆≥⎪⎩,得94a ≤≤.例5.对于函数()f x ,若存在0x R ∈,使00()f x x =,则称0x 是()f x 的一个不动点,已知函数2()(1)(1)(0)f x ax b x b a =+++-≠,(1)当1,2a b ==-时,求函数()f x 的不动点;(2)对任意实数b ,函数()f x 恒有两个相异的不动点,求a 的取值范围;(3)在(2)的条件下,若()y f x =的图象上,A B 两点的横坐标是()f x 的不动点,且,A B 两点关于直线2121y kx a =++对称,求b 的最小值.解:(1)2()3f x x x =--,0x 是()f x 的不动点,则2000()3f x x x x =--=,得01x =-或03x =,函数()f x 的不动点为1-和3.(2)∵函数()f x 恒有两个相异的不动点,∴2()(1)0f x x ax bx b -=++-=恒有两个不等的实根,224(1)440b a b b ab a ∆=--=-+>对b R ∈恒成立, ∴2(4)160a a -<,得a 的取值范围为(0,1).(3)由2(1)0ax bx b ++-=得1222x x b a +=-,由题知1k =-,2121y x a =-++,设,A B 中点为E ,则E 的横坐标为21(,2221b b a a a -++,∴212221b b a a a -=++,∴2112142ab a a a =-=-≥-++,当且仅当12(01)a a a =<<,即2a =时等号成立, ∴b的最小值为4-. (四)巩固练习:1.若函数2(2)3([,]y x a x x a b =+++∈的图象关于1x =对称则b = 6 .2.二次函数()f x 的二次项系数为负值,且(2)(2)()f x f x x R +=-∈,问2(12)f x -与2(12)f x x +-满足什么关系时,有20x -<<.3.m 取何值时,方程227(13)20x m x m m -++--=的一根大于1,一根小于1.。
高三数学第二章第4课时精品课件

解析:选B.A,C,D均不符合幂函数的定义.
目录
1 2 2.(2013· 开封模拟)已知幂函数 f(x)=k·α 的图像过点 , , x 2 2 则 k+α=( ) 1 A. 2 B.1 3 C. 2 D.2
解析:选 C.∵f(x)=k·α 是幂函数,∴k=1. x 2 1 又 f(x)的图像过点 , , 2 2 1 α= 2,∴α=1,∴k+α=1+1=3. ∴2 2 2 2 2
)
目录
4.(教材习题改编)已知函数 f(x)=x2-2x+2 的定义域和值域均 为[1,b],则 b 等于________.
解析:函数 f(x)=x2-2x+2 在[1,b]上是增加的,由已知条件
f1=1, fb=b, b>1,
b -3b+2=0, 即 解得 b=2. b>1.
(m 2
-1 +m)
(m∈N+ )的定义域为[0,+∞),并且该函
数在[0,+∞)上为增函数. (2)∵函数经过点(2, 2), ∴ 2=2
1 2 (m +m) 2
-1
,
即 2 =2
2
(m
+m)
-1
,
∴m2+m=2,解得 m=1 或 m=-2.
1 又∵m∈N+, 2 ∴m=1,f(x)=x ,
目录
又∵f(2-a)>f(a-1),
-
例1
(1)试确定该函数的定义域,并指明该函数在其定义域上的单调 性; (2)若该函数经过点(2, 2),试确定 m 的值,并求满足条件 f(2 -a)>f(a-1)的实数 a 的取值范围.
目录
【解】 (1)∵m2+m=m(m+1)(m∈N+), m 与 m+1 中必有一 而 个为偶数, ∴m2+m 为偶数. ∴函数 f(x)=x
高三数学一轮总复习第二章函数导数及其应用2.4二次函数与幂函数课件

解析:(1)由于 f(x)有两个零点 0 和-2, 所以可设 f(x)=ax(x+2)(a≠0)。 这时 f(x)=ax(x+2)=a(x+1)2-a, 由于 f(x)有最小值-1,
所以必有-a>a0=,-1, 解得 a=1。 因此 f(x)的解析式是 f(x)=x(x+2)=x2+2x。
25
(2)若 g(x)与 f(x)图象关于原点对称,求 g(x)解析式。 解析:(2)设点 P(x,y)是函数 g(x)图象上任一点,它关于原点对称的点 P′(-x, -y)必在 f(x)图象上, 所以-y=(-x)2+2(-x), 即-y=x2-2x,y=-x2+2x, 故 g(x)=-x2+2x。
解析:因为函数 f(x)=4x2-mx+5 的单调递增区间为m8 ,+∞,所以m8 ≤2,即 m≤16。
答案:(-∞,16]
16
5.设函数 f(x)=mx2-mx-1,若 f(x)<0 的解集为 R,则实数 m 的取值范围是 __________。
m<0, 解析:当 m=0 时,显然成立;当 m≠0 时,Δ=-m2+4m<0, 解得-4<m <0。 综上可知,实数 m 的取值范围是(-4,0]。 答案:(-4,0]
26
►名师点拨 二次函数解析式的求法 根据已知条件确定二次函数解析式,一般用待定系数法,选择规律如下: (1)已知三个点坐标,宜选用一般式; (2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式; (3)已知图象与 x 轴两交点坐标,宜选用两根式。
27
通关特训 2 已知二次函数 f(x)同时满足条件: (1)f(1+x)=f(1-x); (2)f(x)的最大值为 15; (3)f(x)=0 的两根平方和等于 17。 求 f(x)的解析式。 解析:依条件, 设 f(x)=a(x-1)2+15 (a<0), 即 f(x)=ax2-2ax+a+15。 令 f(x)=0,即 ax2-2ax+a+15=0, ∴x1+x2=2,x1x2=1+1a5。 x21+x22=(x1+x2)2-2x1x2=4-21+1a5=2-3a0=17, ∴a=-2,∴f(x)=-2x2+4x+13。
高三数学复习课件【二次函数与幂函数】

A.3
B.1- 2
C. 2-1
D.1
解析:设幂函数f(x)=xα,则f(9)=9α=3,即α=
1 2
,所以f(x)
1
=x 2 = x,所以f(2)-f(1)= 2-1,故选C.
答案:C
返回
2.当x∈(0,+∞)时,幂函数y=(m2+m-1)x-5m-3为减函数,
则实数m的值为
()
A.-2
B.1
C.1或-2
D.m≠-12± 5
解析:因为函数y=(m2+m-1)x-5m-3既是幂函数又是(0,+∞)
上的减函数,所以m-25+mm--3<10=,1, 解得m=1. 答案:B
返回
4
2
1
3.已知a=3 5 ,b=4 5 ,c=12 5 ,则a,b,c的大小关系为( )
A.b<a<c
B.a<b<c
C.c<b<a
当k<0时,
2 k
<0,此时抛物线的对称轴在区间[1,2]的左侧,该函数
y=kx2-4x+2在区间[1,2]上是减函数,不符合要求.综上可得实
数k的取值范围是[2,+∞).答案:A
返回
[题型技法] 研究二次函数单调性的思路 (1)二次函数的单调性在其图象对称轴的两侧不同,因此研 究二次函数的单调性时要依据其图象的对称轴进行分类讨论. (2)若已知f(x)=ax2+bx+c(a>0)在区间A上单调递减(单调 递增),则A⊆ -∞,-2ba A⊆-2ba,+∞ ,即区间A一定 在函数对称轴的左侧(右侧).
返回
课 堂 考点突破
练透基点,研通难点,备考不留死角
返回
考点一 幂函数的图象与性质 [考什么·怎么考]
二次函数知识点高三

二次函数知识点高三一、概念和基本形式二次函数是指具有形如y = ax^2 + bx + c的函数,其中a、b、c 为常数,且a不等于0。
其中,x为自变量,y为因变量。
二次函数的图像为抛物线。
二、顶点坐标和轴对称性质1. 顶点坐标:二次函数的图像在平面直角坐标系中的顶点坐标为(h,k),其中h为抛物线的对称轴的横坐标,k为抛物线的最低点(或最高点)的纵坐标。
2. 轴对称性质:二次函数的图像关于抛物线的对称轴对称。
三、开口方向和开口大小1. 开口方向:由二次函数的系数a的取值决定。
- 当a > 0时,抛物线开口向上;- 当a < 0时,抛物线开口向下。
2. 开口大小:由二次函数的系数a的绝对值决定。
- 当|a| > 1时,抛物线开口较为狭窄;- 当0 < |a| < 1时,抛物线开口较为宽阔;- 当|a| = 1时,抛物线为特殊情况,开口方向上等于1。
四、零点(根)和交点1. 零点(根):二次函数零点指的是使得函数值为0的自变量值,即方程ax^2 + bx + c = 0的解。
- 若方程有两个不同实数解,则二次函数与x轴有两个不同交点;- 若方程有两个相等实数解,则二次函数与x轴有一个重复交点;- 若方程无实数解,则二次函数与x轴没有交点。
2. 交点:二次函数与y轴的交点为(0,c)。
五、对称轴和焦点1. 对称轴:二次函数的对称轴是通过顶点的垂直线,对称轴方程为x = h。
2. 焦点:二次函数的焦点是抛物线的最低点(或最高点),焦点坐标为(h,k + 1/4a)。
六、求解二次函数图像与其他函数的交点1. 与直线的交点:将二次函数与直线的方程相等,解方程即可求得交点的横坐标,进而带入二次函数中得到纵坐标。
2. 与其他二次函数的交点:将两个二次函数的方程相等,解方程即可求得交点的横坐标,进而带入任意一个二次函数中得到纵坐标。
七、二次函数的应用1. 建模问题:二次函数可以用于对现实生活中的一些问题进行建模,如抛射问题、物体运动轨迹的描述等。
高三数学复习(理):第4讲 二次函数与幂函数

第4讲 二次函数与幂函数[学生用书P23]1.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质 解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞) (-∞,+∞)值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞⎝⎛⎦⎥⎤-∞,4ac -b 24a 单调性在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递减; 在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递增 在⎝ ⎛⎦⎥⎤-∞,-b 2a 上单调递增; 在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递减 对称性 函数的图象关于x =-b2a 对称常用结论一元二次不等式恒成立的条件(1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0且Δ<0”;(2)“ax2+bx+c<0(a≠0)恒成立”的充要条件是“a<0且Δ<0”.2.幂函数(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y=x 12,y=x-1.(2)五种幂函数的图象(3)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数y=2x 12是幂函数.()(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.()(3)当n<0时,幂函数y=x n是定义域上的减函数.()(4)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是4ac-b24a.()(5)二次函数y=ax2+bx+c,x∈R不可能是偶函数.()(6)在y=ax2+bx+c(a≠0)中,a决定了图象的开口方向和在同一直角坐标系中的开口大小.()答案:(1)×(2)√(3)×(4)×(5)×(6)√二、易错纠偏常见误区|K(1)二次函数图象特征把握不准; (2)二次函数单调性规律掌握不到位;(3)忽视对二次函数的二次项系数的讨论出错; (4)对幂函数的概念理解不到位.1.如图,若a <0,b >0,则函数y =ax 2+bx 的大致图象是________.(填序号)解析:由函数的解析式可知,图象过点(0,0),故④不正确.又a <0,b >0,所以二次函数图象的对称轴为x =-b2a >0,故③正确.答案:③2.若函数y =mx 2+x +2在[3,+∞)上是减函数,则m 的取值范围是________.解析:因为函数y =mx 2+x +2在[3,+∞)上是减函数, 所以⎩⎪⎨⎪⎧m <0,-12m ≤3,即m ≤-16. 答案:⎝ ⎛⎦⎥⎤-∞,-163.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是________. 解析:因为函数f (x )=ax 2+x +5的图象在x 轴上方,所以⎩⎪⎨⎪⎧a >0,Δ=12-20a <0,解得a >120.答案:⎝ ⎛⎭⎪⎫120,+∞4.当x ∈(0,1)时,函数y =x m 的图象在直线y =x 的上方,则m 的取值范围是________.答案:(-∞,1)[学生用书P24]幂函数的图象及性质(自主练透)1.幂函数y =f (x )的图象经过点(3,33),则f (x )是( ) A .偶函数,且在(0,+∞)上是增函数 B .偶函数,且在(0,+∞)上是减函数 C .奇函数,且在(0,+∞)上是增函数 D .非奇非偶函数,且在(0,+∞)上是减函数解析:选C.设幂函数f (x )=x α,代入点(3,33),得33=3α,解得α=13,所以f (x )=x 13,可知函数为奇函数,在(0,+∞)上单调递增.2.若幂函数y =x -1,y =x m 与y =x n 在第一象限内的图象如图所示,则m 与n 的取值情况为( )A .-1<m <0<n <1B .-1<n <0<mC .-1<m <0<nD .-1<n <0<m <1解析:选D.幂函数y =x α,当α>0时,y =x α在(0,+∞)上为增函数,且0<α<1时,图象上凸,所以0<m <1;当α<0时,y =x α在(0,+∞)上为减函数,不妨令x =2,根据图象可得2-1<2n ,所以-1<n <0,综上所述,选D.3.若a =⎝ ⎛⎭⎪⎫1223,b =⎝ ⎛⎭⎪⎫1523,c =⎝ ⎛⎭⎪⎫1213,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <c <aD .b <a <c解析:选D.因为y =x 23在第一象限内是增函数,所以a =⎝ ⎛⎭⎪⎫1223>b =⎝ ⎛⎭⎪⎫1523,因为y =⎝ ⎛⎭⎪⎫12x是减函数,所以a =⎝ ⎛⎭⎪⎫1223<c =⎝ ⎛⎭⎪⎫1213,所以b <a <c .4.若(a +1)12<(3-2a )12,则实数a 的取值范围是________.解析:易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数, 所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.答案:⎣⎢⎡⎭⎪⎫-1,23(1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.二次函数的解析式(师生共研)(一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【解】 方法一:(利用一般式) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f (x )=-4x 2+4x +7. 方法二:(利用顶点式) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12.所以m =12.又根据题意函数有最大值8,所以n =8,所以f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.方法三:(利用零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数有最大值8, 即4a (-2a -1)-a 24a =8.解得a =-4,所以所求函数的解析式为f (x )=-4x 2+4x +7.求二次函数解析式的方法根据已知条件确定二次函数的解析式,一般用待定系数法,但所给条件不同选取的求解方法也不同,选择规律如下:1.已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R .都有f (1+x )=f (1-x )成立,则f (x )的解析式为____________.解析:由f (0)=3,得c =3, 又f (1+x )=f (1-x ),所以函数f (x )的图象关于直线x =1对称, 所以b2=1,所以b =2, 所以f (x )=x 2-2x +3. 答案:f (x )=x 2-2x +32.已知二次函数y =f (x )的顶点坐标为⎝ ⎛⎭⎪⎫-32,49,且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式是________________.解析:设f (x )=a ⎝ ⎛⎭⎪⎫x +322+49(a ≠0),方程a ⎝ ⎛⎭⎪⎫x +322+49=0的两个根分别为x1,x2,则|x1-x2|=2-49a=7,所以a=-4,所以f(x)=-4x2-12x+40.答案:f(x)=-4x2-12x+40二次函数的图象与性质(多维探究)角度一通过图象识别二次函数如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的结论是()A.②④B.①④C.②③D.①③【解析】因为二次函数的图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,①正确;对称轴为x=-1,即-b2a=-1,2a-b=0,②错误;结合图象,当x =-1时,y>0,即a-b+c>0,③错误;由对称轴为x=-1知,b=2a,又函数图象开口向下,所以a<0,所以5a<2a,即5a<b,④正确.故选B.【答案】 B确定二次函数图象应关注的三个要点一是看二次项系数的符号,它确定二次函数图象的开口方向.二是看对称轴和最值,它确定二次函数图象的具体位置.三是看函数图象上的一些特殊点,如函数图象与y轴的交点、与x轴的交点,函数图象的最高点或最低点等.从这三个方面入手,能准确地判断出二次函数的图象.反之,也可以从图象中得到如上信息.角度二 二次函数的单调性函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是单调递减的,则实数a 的取值范围是________.【解析】 当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足条件. 当a ≠0时,f (x )的对称轴为x =3-a 2a ,由f (x )在[-1,+∞)上单调递减知⎩⎨⎧a <0,3-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 【答案】 [-3,0]【迁移探究】 (变条件)若函数f (x )=ax 2+(a -3)x +1的单调递减区间是[-1,+∞),求a 为何值?解:因为函数f (x )=ax 2+(a -3)x +1的单调递减区间为[-1,+∞),所以⎩⎪⎨⎪⎧a <0,a -3-2a=-1,解得a =-3.对于二次函数的单调性,关键是确定其图象的开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.角度三 二次函数的最值问题设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值. 【解】 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1.当t +1<1,即t <0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t >1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值f (t )=t 2-2t +2.综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.角度四 一元二次不等式恒成立问题(1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是____________.(2)已知函数f (x )=x 2+2x +1,f (x )>x +k 在区间[-3,-1]上恒成立,则k 的取值范围为____________.【解析】 (1)作出二次函数f (x )的草图,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0.(2)由题意得x 2+x +1>k 在区间[-3,-1]上恒成立.设g (x )=x 2+x +1,x ∈[-3,-1],则g (x )在[-3,-1]上递减.所以g (x )min =g (-1)=1.所以k <1.故k 的取值范围为(-∞,1).【答案】 (1)⎝ ⎛⎭⎪⎫-22,0 (2)(-∞,1)由不等式恒成立求参数取值范围一般有两个解题思路:一是分离参数,二是不分离参数.两种思路都是将问题归结为求函数的最值,若不分离参数,则一般需要对参数进行分类讨论求解;若分离参数,则a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .1.已知abc >0,则二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D.A 项,因为a <0,-b 2a <0,所以b <0.又因为abc >0,所以c >0,而f (0)=c <0,故A 错.B 项,因为a <0,-b 2a >0,所以b >0.又因为abc >0,所以c <0,而f (0)=c >0,故B 错.C 项,因为a >0,-b 2a <0,所以b >0.又因为abc >0,所以c >0,而f (0)=c <0,故C 错.D 项,因为a >0,-b 2a >0,所以b <0,因为abc >0,所以c <0,而f (0)=c <0,故选D.2.函数f (x )=ax 2-2x +3在区间[1,3]上为增函数的充要条件是( )A .a =0B .a <0C .0<a ≤13D .a ≥1解析:选D.当a =0时,f (x )为减函数,不符合题意;当a ≠0时,函数f (x )=ax 2-2x +3图象的对称轴为x =1a ,要使f (x )在区间[1,3]上为增函数,则⎩⎪⎨⎪⎧a <0,1a≥3或⎩⎪⎨⎪⎧a >0,1a≤1,解得a ≥1.故选D. 3.已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为________.解析:2ax 2+2x -3<0在[-1,1]上恒成立.当x =0时,-3<0,成立;当x ≠0时,a <32⎝ ⎛⎭⎪⎫1x -132-16, 因为1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,所以a <12.综上,实数a 的取值范围是⎝ ⎛⎭⎪⎫-∞,12. 答案:⎝ ⎛⎭⎪⎫-∞,12[学生用书P26]思想方法系列4 分类讨论思想在二次函数问题中的应用已知函数f (x )=ax 2-2x (0≤x ≤1),求函数f (x )的最小值.【解】 (1)当a =0时,f (x )=-2x 在[0,1]上单调递减,所以f (x )min =f (1)=-2;(2)当a >0时,f (x )=ax 2-2x 的图象开口向上且对称轴为x =1a .①当0<1a ≤1,即a ≥1时, f (x )=ax 2-2x 的对称轴在(0,1]内,所以f (x )在⎣⎢⎡⎦⎥⎤0,1a 上单调递减,在⎝ ⎛⎦⎥⎤1a ,1上单调递增. 所以f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a =-1a ; ②当1a >1,即0<a <1时,f (x )=ax 2-2x 的对称轴在[0,1]的右侧,所以f (x )在[0,1]上单调递减.所以f (x )min =f (1)=a -2;(3)当a <0时,f (x )=ax 2-2x 的图象开口向下且对称轴x =1a <0,在y 轴的左侧,所以f (x )=ax 2-2x 在[0,1]上单调递减,所以f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1且a ≠0,-2,a =0,-1a ,a ≥1.二次函数是单峰函数(在定义域上只有一个最值点的函数),x =-b 2a 为其最值点的横坐标,在其两侧二次函数具有相反的单调性,当已知二次函数在某区间上的最值求参数时,要根据对称轴与已知区间的位置关系进行分类讨论确定各种情况的最值,建立方程求解参数.已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值.解:f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.[学生用书P281(单独成册)][A 级 基础练]1.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则a 的值为( )A .-1B .0C .1 D.-2解析:选D.函数f (x )=-x 2+4x +a 的对称轴为直线x =2,开口向下,f (x )=-x 2+4x +a 在[0,1]上单调递增,则当x =0时,f (x )的最小值为f (0)=a =-2.2.设函数f (x )=x 23,若f (a )>f (b ),则( )A .a 2>b 2B .a 2<b 2C .a <bD .a >b解析:选A.函数f (x )=x 23=(x 2)13,令t =x 2,易知y =t 13,在第一象限为单调递增函数.又f (a )>f (b ),所以a 2>b 2.故选A.3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一直角坐标系中的图象大致是( )解析:选C.若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b 2a <0,而二次函数的对称轴在y 轴的右侧,故可排除B.故选C.4.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c ,若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0解析:选A.由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-b 2a =2,所以4a +b =0,又f (0)>f (1),f (4)>f (1),所以f (x )先减后增,于是a >0,故选A.5.若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎢⎡⎦⎥⎤-254,-4,则m 的取值范围是( )A .[0,4]B .⎣⎢⎡⎦⎥⎤32,4 C.⎣⎢⎡⎭⎪⎫32,+∞ D.⎣⎢⎡⎦⎥⎤32,3 解析:选D.二次函数图象的对称轴为x =32,且f ⎝ ⎛⎭⎪⎫32=-254,f (3)=f (0)=-4,结合函数图象(如图所示)可得m ∈⎣⎢⎡⎦⎥⎤32,3.6.已知函数f (x )=(m 2-m -1)x m 2-2m -3是幂函数,且在x ∈(0,+∞)上递减,则实数m=________.解析:根据幂函数的定义和性质,得m2-m-1=1.解得m=2或m=-1,当m=2时,f(x)=x-3在(0,+∞)上是减函数,符合题意;当m=-1时,f(x)=x0=1在(0,+∞)上不是减函数,所以m=2.答案:27.已知二次函数的图象与x轴只有一个交点,对称轴为x=3,与y轴交于点(0,3),则它的解析式为________.解析:由题意知,可设二次函数的解析式为y=a(x-3)2,又图象与y轴交于点(0,3),所以3=9a,即a=13.所以y=13(x-3)2=13x2-2x+3.答案:y=13x2-2x+38.已知二次函数f(x)满足f(2+x)=f(2-x),且f(x)在[0,2]上是增函数,若f(a)≥f(0),则实数a的取值范围是________.解析:由f(2+x)=f(2-x)可知,函数f(x)图象的对称轴为x=2+x+2-x2=2,又函数f(x)在[0,2]上单调递增,所以由f(a)≥f(0)可得0≤a≤4.答案:[0,4]9.已知函数f(x)=x2+(2a-1)x-3.(1)当a=2,x∈[-2,3]时,求函数f(x)的值域;(2)若函数f(x)在[-1,3]上的最大值为1,求实数a的值.解:(1)当a=2时,f(x)=x2+3x-3,x∈[-2,3],对称轴x=-32∈[-2,3],所以f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214, f (x )max =f (3)=15,所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤-214,15. (2)对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,所以6a +3=1,即a =-13满足题意;②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,所以-2a -1=1,即a =-1满足题意.综上可知,a =-13或a =-1.10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.解:(1)设f (x )=ax 2+bx +1(a ≠0),由f (x +1)-f (x )=2x ,得2ax +a +b =2x .所以2a =2且a +b =0,解得a =1,b =-1,因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方, 所以在[-1,1]上,x 2-x +1>2x +m 恒成立;即x 2-3x +1>m 在区间[-1,1]上恒成立.所以令g (x )=x 2-3x +1=⎝ ⎛⎭⎪⎫x -322-54, 因为g (x )在[-1,1]上的最小值为g (1)=-1,所以m <-1.故实数m 的取值范围为(-∞,-1).[B 级 综合练]11.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关解析:选B.f (x )=⎝ ⎛⎭⎪⎫x +a 22-a 24+b ,①当0≤-a 2≤1时,f (x )min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b ,1+a +b },所以M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a 2<0时,f (x )在[0,1]上单调递增,所以M -m =f (1)-f (0)=1+a 与a 有关,与b 无关;③当-a 2>1时,f (x )在[0,1]上单调递减,所以M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关.综上所述,M -m 与a 有关,但与b 无关.故选B.12.已知函数f (x )=2ax 2-ax +1(a <0),若x 1<x 2,x 1+x 2=0,则f (x 1)与f (x 2)的大小关系是( )A .f (x 1)=f (x 2)B .f (x 1)>f (x 2)C .f (x 1)<f (x 2)D .与x 的值无关解析:选C.由题知二次函数f (x )的图象开口向下,图象的对称轴为x =14,因为x 1+x 2=0,所以直线x =x 1,x =x 2关于直线x =0对称,由x 1<x 2,结合二次函数的图象可知f (x 1)<f (x 2).13.定义:如果在函数y =f (x )定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,如y =x 4是[-1,1]上的平均值函数,0就是它的均值点.现有函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,则实数m 的取值范围是________.解析:因为函数f (x )=-x 2+mx +1是[-1,1]上的平均值函数,设x 0为均值点,所以f (1)-f (-1)1-(-1)=m =f (x 0),即关于x 0的方程-x 20+mx 0+1=m 在(-1,1)内有实数根,解方程得x 0=1或x 0=m -1.所以必有-1<m -1<1,即0<m <2,所以实数m 的取值范围是(0,2).答案:(0,2)14.已知幂函数f (x )=(m -1)2xm 2-4m +3(m ∈R )在(0,+∞)上单调递增.(1)求m 的值及f (x )的解析式;(2)若函数g (x )=-3f 2(x )+2ax +1-a 在[0,2]上的最大值为3,求实数a的值.解:(1)幂函数f (x )=(m -1)2xm 2-4m +3(m ∈R )在(0,+∞)上单调递增,故⎩⎪⎨⎪⎧(m -1)2=1,m 2-4m +3>0,解得m =0,故f (x )=x 3. (2)由f (x )=x 3,得g (x )=-3f (x )2+2ax +1-a =-x 2+2ax +1-a , 函数图象为开口方向向下的抛物线,对称轴为x =a .因为在[0,2]上的最大值为3,所以①当a ≥2时,g (x )在[0,2]上单调递增,故g (x )max =g (2)=3a -3=3,解得a =2.②当a ≤0时,g (x )在[0,2]上单调递减,故g (x )max =g (0)=1-a =3,解得a =-2.③当0<a <2时,g (x )在[0,a ]上单调递增,在[a ,2]上单调递减,故g (x )max =g (a )=a 2+1-a =3,解得a =-1(舍去)或a =2(舍去).综上所述,a =±2.[C 级 提升练]15.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值; (2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0,且-b 2a =-1,解得a =1,b =2,所以f (x )=(x +1)2.所以F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.所以F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意知f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2.所以-2≤b ≤0. 故b 的取值范围是[-2,0].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要使f(x)在(-∞,2]上是减函数,只要对称轴 x 222≥a2即可,解得a≥4.
4. (教材改编题)函数y=x2+4x+3在[-1,0]上 的最大值是________,最小值是________.
3 0 解析:
y=x2+4x+3=(x+2)2-1,对称轴x=-2在[-1,0]的 左侧,所以函数在[-1,0]上单调递增. 故当x=0时,f(x)取最大值f(0)=3; 当x=-1时,f(x)取最小值f(-1)=0.
∴抛物线对称轴为x=
2
1 2
1 2
m 1 2
又根据题意函数有最大值y=8,
偶函数,则f(x)在(0,+∞)上( )
A. 为增函数
B. 为减函数
C. 先减后增
D. 先增后减
B 解析:
∵f(x)为R上的偶函数, ∴m=0,∴f(x)=-x2+3. 由二次函数的图象易知f(x)=-x2+3在(0,+∞)上为减函
数.
3. f(x)=x2+2(2-a)x+2在(-∞,2]上是减函数 ,则a的取值范围是________.
__ _ _, _2ba___上是增函数,在__ _2b_a _ _ _上是减函数;
④与y轴的交点是___(0_,__c;)
⑤当Δ=b2-4ac>0时,与x轴两交点的 横坐标x1、x2分别是方程__a_x_2+_b_x+_c_=_0(_a_≠_0)__的 两根; 当Δ=0时,与x轴切于一点___ _2b_a _0 __; 当Δ<0时,与x轴_没__有__交__点_; ⑥当b≠0时,是非奇非偶函数;当b=0时, 是__偶__函__数__; ⑦对于函数f(x),若对任意自变量x的值, 都有f(a+x)=f(a-x),则f(x)的图象关于 直线_x_=_a___对称.
经典例题
题型一 二次函数的解析式
【例2】 已知二次函数f(x)对任意实数t满足关系 f(2+t)=f(2-t),且f(x)有最小值-9,又知函数 f(x)的图象与x轴有两个交点,它们之间的距离为6, 求函数f(x)的解析式. 分析:由f(2+t)=f(2-t)知函数有对称轴x=2,又最小 值为-9,故二次函数可设顶点式y=a(x-2)2-9,再根 据另一个条件求出a即可.另外,也可以根据第二 个条件设解析式的形式,由两根之间的距离为6及 对称轴为x=2可知f(x)=0的两根x1=-1,x2=5,据此设 二次函数为y=a(x+1)(x-5).
第五节 二次函数
基础梳理
1.二次函数的性质与图像
(1)函数__y_=_a_x_2+_b_x_+_c_(_a_≠_0_)叫做二次函数,它的 定义域是___R___ .
(2)二次函数有如下性质:
①函数的图象是__一__条__抛__物__线,抛物线顶点的坐
标是__ 2_ba_, 4_ac4_ab_2 _ ,抛物线的对称轴是__x __2_ba ___;
2. 二次函数、一元二次方程、一元二次 不等式三者之间的关系
判别式Δ= b2-4ac
Δ>0
Δ=0
Δ<0
二次函数 y=ax2+bx +c(a>0)
的图象
一元二次 方程ax2+ bx+c=
0(a>0) 的根
有两相异
实根x1, x2(x1<x2)
有两相等
实数根
x1=x2=
b 2a
没有实数 根
判别式 Δ=b2-4ac
②当a>0时,抛物线开口___向__上_,函小_值____f _ _2ba_ _;在区间____ _ _, _2ba_上是减
函数,在____2ba__ _ _上是增函数;
③当a<0时,抛物线开口___向__下_,函数在
__x __2_ba ___处取最大值__f_ _2b_a ___;在区间
ymax=max{f(m),f(n)}; (2)h∉[m,n]时,当h<m时,f(x)在[m,n]上
单调_递__增___,ymin=__f(_m_) __,ymax=__f(_n)___; 当h>n时,f(x)在[m,n]上单调_递__减___, ymin=_f_(n_)___,ymax=__f(_m_)__.
方法二: 利用二次函数的两根式. 由题意知f(x)=0的两根:x1=-1,x2=5, 故设f(x)=a(x+1)(x-5), 又顶点坐标为(2,-9), 代入解析式得-9=a(2+1)(2-5), ∴a=1,∴f(x)=(x+1)(x-5)=x2-4x-5.
变式1-1
已知二次函数f(x)满足f(2)=-1,f(-1)=-1, 且f(x)的最大值是8,求此二次函数的解析式.
基础达标 1. 已知二次函数y=ax2+bx+c满足a>b>c, 且a+b+c=0,那么它的图象是图中的( )
A 解析: ∵a>b>c且a+b+c=0, ∴a>0,c<0,b2-4ac>0,f(1)=a+b+c=0, ∴图象开口向上,与y轴的截距为负,且过(1,0)点.
2. 若函数f(x)=(m-1)x2+2mx+3是定义在R上的
解析:
方法一:利用二次函数一般式.
设f(x)=ax2+bx+c(a¹0).
由题意得
4a 2b c
1
解得
a
b
c
1
4ac 4a
b2
8
a 4
b
4
c 7
∴所求二次函数为y=-4x2+4x+7.
方法二:
利用二次函数的顶点式.
设f(x)=a(x-m)2+n(a≠0).
∵f(2)=f(-1),
Δ>0 Δ=0 Δ<0
ax2+bx+ ax2+bx+
c>0(a>0)的 c<0(a>0)的解
解集
集
{x|x<x1或x>x2} {x|x≠x1} {x|x∈R}
{x|x1<x<x2} ∅ ∅
aaaxk
3. 二次函数在闭区间上的最值问题 y=f(x)=a(x-h)2+k(a>0)在[m,n]上的最值问题. (1)h∈[m,n]时,ymin=__k__,
解:方法一: 利用二次函数的顶点式. 由f(2+t)=f(2-t)知函数对称轴为x=2,又最小值 为-9,故设f(x)=a(x-2)2-9, 由题意得:f(x)的图象与x轴的两个交点关于x=2 对称,又因为距离为6,所以两交点为(-1,0),(5,0). 将点(-1,0)代入函数解析式:0=a×(-1-2)2-9, ∴a=1,∴f(x)=(x-2)2-9=x2-4x-5.