第2章电磁辐射与地物光谱特征(1)要点
合集下载
第二章 电磁辐射与地物光谱特征B=遥感概论=宁夏大学

3)红外线(0.76 μm—1000 μm) 近红外(0.76 μm—3.0 μm)——光红外,性质 与可见光相似,主要反映地物对太阳光的反射, 不反映地物的热辐射,采用摄影和扫描方式。 中红外(3.0 μm—6.0 μm) 远红外(6.0 μm—15.0 μm) 热红外 超远红外(15 μm—1000 μm) 热红外是产生热感的原因。一般自然界的任何 物体,当温度大于绝对温度0 k(-273oC )时, 能发射红外线,发射能力的大小由其温度来决 定,温度越高,发射能力越强。
2)米氏散射——散射质点的直径与辐射 波长相当时发生的散射。主要由大气中 的烟、尘埃和小水滴引起。 散射特点:散射强度与波长的二次方成 反比,且散射在光线向前方向比向后方 向更强,具有明显的方向性。 如云雾的粒子大小与红外线波长接近, 所以云雾对红外线的散射主要是米氏散 射。
3)无选择性散射 散射质点的直径比波长大得多时发生的 散射。 散射特点:散射强度与波长无关,即在 符合无选择性散射条件的波段中,任何 波长的散射强度都相同。 如云雾粒子直径比可见光波长大很多, 因而对可见光各波长的光散射强度相同, 所以人们看到云雾呈白色。
(三)大气透射窗口 太阳辐射光照射到地球表面的过程中,由于大 气层的反射、吸收和散射作用,绝大部分能量 消失掉了,只有一部ห้องสมุดไป่ตู้大气散射和透射能量透 过大气层到达地球表面。
大气透射窗口:通常把太阳辐射光通过大气层 时没有或较少被反射、吸收和散射的那些透过 率高的波段称为大气透射窗口。 对遥感传感器而言,只能选择大气透射窗口才 对观测有意义。
(二)大气对太阳辐射的影响 1、大气层的反射作用 太阳光进入到大气层以前,它的波长范 围很广,从零到无穷大,但主要波长范 围集中在0.15—4 μm之间,约占99%, 其中可见光50%,红外43%,紫外7%。 地球被大气圈所包围,一般认为大气厚 度约为1000km,且在垂直方向自下而上 分为对流层、平流层、中气层、热层等。 对太阳辐射影响最大的是对流层和平流 层。
第二章 电磁辐射与地物波谱特征

29
→
§2.太阳辐射和地球辐射
太阳是太阳系唯一的恒星,它集中了太阳系 99.865%的质量。太阳是一个炽热的气体星球,没 有固体的星体或核心。太阳从中心到边缘可分为 核反应区、辐射区、对流区和大气层。其能量的 99%是由中心的核反应区的热核反应产生的。太阳 中心的密度和温度极高。太阳大气的主要成分是 氢(质量约占71%)与氦(质量约占27%)。
偏振面
E 电场,M 磁场,C 传播方向
4
电磁波特性
波动性
1860年麦克斯韦(C.Maxwell)提出光是电磁波的 理论。 光在传播时表现出波动性,如光的干涉、衍射、 偏振、反射、折射。
粒子性
1900年,普朗克(Max.Planck)提出了辐射的量子论, 1905年,爱因斯坦(Albert.Einstein)将量子论用于 光电效应之中,提出光子理论。光与物质作用时 表现出粒子性,如光的反射、吸收、散射。
太阳辐射接近于温度为6000K的黑体辐射,最大辐射的对应波长为 0.47µm,地球辐射接近于温度为300K的黑体辐射,最大辐射的对应波 长为9.66 µm,二者相差较远; 太阳辐射主要集中于波长较短的部分,从紫外、可见光到近红外区域, 即0.3-2.5 µm,在这一波段地球的辐射主要是反射太阳的辐射。 地球自身发出的辐射 主要集中在波长较长的 部分,即6 µm以上的热 红外区段。 在2.5-6 µm的中红外 波段,地球对太阳辐照 的反射和地表物体自身 的热辐射均不能忽略。 (重叠区)
12
二、电磁辐射的测量
Concept of Radiant Flux Density
Radiant flux, Φ
辐射通量密度 (radiant flux density)
Irradiance
→
§2.太阳辐射和地球辐射
太阳是太阳系唯一的恒星,它集中了太阳系 99.865%的质量。太阳是一个炽热的气体星球,没 有固体的星体或核心。太阳从中心到边缘可分为 核反应区、辐射区、对流区和大气层。其能量的 99%是由中心的核反应区的热核反应产生的。太阳 中心的密度和温度极高。太阳大气的主要成分是 氢(质量约占71%)与氦(质量约占27%)。
偏振面
E 电场,M 磁场,C 传播方向
4
电磁波特性
波动性
1860年麦克斯韦(C.Maxwell)提出光是电磁波的 理论。 光在传播时表现出波动性,如光的干涉、衍射、 偏振、反射、折射。
粒子性
1900年,普朗克(Max.Planck)提出了辐射的量子论, 1905年,爱因斯坦(Albert.Einstein)将量子论用于 光电效应之中,提出光子理论。光与物质作用时 表现出粒子性,如光的反射、吸收、散射。
太阳辐射接近于温度为6000K的黑体辐射,最大辐射的对应波长为 0.47µm,地球辐射接近于温度为300K的黑体辐射,最大辐射的对应波 长为9.66 µm,二者相差较远; 太阳辐射主要集中于波长较短的部分,从紫外、可见光到近红外区域, 即0.3-2.5 µm,在这一波段地球的辐射主要是反射太阳的辐射。 地球自身发出的辐射 主要集中在波长较长的 部分,即6 µm以上的热 红外区段。 在2.5-6 µm的中红外 波段,地球对太阳辐照 的反射和地表物体自身 的热辐射均不能忽略。 (重叠区)
12
二、电磁辐射的测量
Concept of Radiant Flux Density
Radiant flux, Φ
辐射通量密度 (radiant flux density)
Irradiance
2 第二章 电磁辐射与地物光谱特征

遥感导论
第二章 电磁辐射与地物
光谱特征
文 管理学院 力 地理科学系
第二章 电磁辐射与地物光谱特征
本章主要内容
电磁波与电磁波谱 地物的光谱特性 大气和环境对遥感的影响
§2.1 电磁波谱与电磁辐射
电磁波
– 波:振动的传播称为波。
纵波:如果质点的振动方向与波的传播方向相同,称纵波。 横波:若质点的振动方向与波的传播方向垂直,称横波。
§2.1 电磁波谱与电磁辐射
辐射源:能够向外辐射电磁波的物体。任何物体都能够吸收
其他物体对它的辐射,也能向外辐射电磁波。
太阳辐射——可见光及红外遥感的重要辐射源 自然辐射源 地球电磁辐射——远红外遥感的辐射源
人工辐射源——人为发射,如雷达(微波雷达辐射源,激光雷达辐射源)
§2.1 电磁波谱与电磁辐射
§2.1.3 黑体辐射 2.黑体辐射规律
(2)玻耳兹曼定律
Stefan-Boltzmann‘s law :即黑体总 辐射通量随温度的增加而迅速增加,它与温度的四次方成 正比。因此,温度的微小变化,就会引起辐射通量密度很 大的变化。是红外装臵测定温度的理论基础。
M=σT4
σ为玻尔兹曼常数,σ=5.67×10-8W·-2· -4 m K
电磁波谱
–将各种电磁波在真空中的波长按其长短,依次排列制 成的图表。
–按照波长递增频率递减的顺序可以划分为:γ射线、 χ射线、紫外线、可见光、红外线、微波和无线电波。
–遥感中多使用可见光、红外和微波波段。
§2.1 电磁波谱与电磁辐射
紫外线 波长:0.01~0.38μm 特征:1.对紫外线吸收较强。 2.能使溴化银底片感光。 应用:1.用于测定碳酸岩的分布。 2.用于油污检测。
第二章 电磁辐射与地物
光谱特征
文 管理学院 力 地理科学系
第二章 电磁辐射与地物光谱特征
本章主要内容
电磁波与电磁波谱 地物的光谱特性 大气和环境对遥感的影响
§2.1 电磁波谱与电磁辐射
电磁波
– 波:振动的传播称为波。
纵波:如果质点的振动方向与波的传播方向相同,称纵波。 横波:若质点的振动方向与波的传播方向垂直,称横波。
§2.1 电磁波谱与电磁辐射
辐射源:能够向外辐射电磁波的物体。任何物体都能够吸收
其他物体对它的辐射,也能向外辐射电磁波。
太阳辐射——可见光及红外遥感的重要辐射源 自然辐射源 地球电磁辐射——远红外遥感的辐射源
人工辐射源——人为发射,如雷达(微波雷达辐射源,激光雷达辐射源)
§2.1 电磁波谱与电磁辐射
§2.1.3 黑体辐射 2.黑体辐射规律
(2)玻耳兹曼定律
Stefan-Boltzmann‘s law :即黑体总 辐射通量随温度的增加而迅速增加,它与温度的四次方成 正比。因此,温度的微小变化,就会引起辐射通量密度很 大的变化。是红外装臵测定温度的理论基础。
M=σT4
σ为玻尔兹曼常数,σ=5.67×10-8W·-2· -4 m K
电磁波谱
–将各种电磁波在真空中的波长按其长短,依次排列制 成的图表。
–按照波长递增频率递减的顺序可以划分为:γ射线、 χ射线、紫外线、可见光、红外线、微波和无线电波。
–遥感中多使用可见光、红外和微波波段。
§2.1 电磁波谱与电磁辐射
紫外线 波长:0.01~0.38μm 特征:1.对紫外线吸收较强。 2.能使溴化银底片感光。 应用:1.用于测定碳酸岩的分布。 2.用于油污检测。
二章电磁辐射与地物光谱特征-资料

1.3-2.5μm:
近红外波段的中段。仍属于地物反射光谱,但不 能用胶片摄影,仅能用光谱仪和扫描仪来记录地 物的电磁波信息。透射率都接近80%。
厦门理工学院空间信息科学与工程系
第二章 电磁辐射与地物光谱特征 《遥感导论》课件
目前近红外窗口应用不多,但在某些波段对区分 蚀变岩石有较好的效果,因此在遥感地质应用方 面很有潜力。TM设有1.55-1.75μm和2.082.35μm两个波段。
厦门理工学院空间信息科学与工程系
第二章 电磁辐射与地物光谱特征 《遥感导论》课件
厦门理工学院空间信息科学与工程系
第二章 电磁辐射与地物光谱特征 《遥感导论》课件
氧(O2):
在波长0.155μm处吸收最强。在低层大气内几乎 观测不到小于0.2μm的太阳辐射,在0.69μm 和.76μm附近,各有一个窄吸收带。
厦门理工学院空间信息科学与工程系
第二章 电磁辐射与地物光谱特征 《遥感导论》课件
2)大气的散射作用
大气散射集中于可见光区,是太阳辐射能衰减的 主要原因。散射的强弱可用散射系数表示:
ϕ为波长的指数,它由微粒直径(d)的大小决定。
根据波长与散射微粒的大小之间的关系,散射可 分为三种:
厦门理工学院空间信息科学与工程系
厦门理工学院空间信息科学与工程系
一、电磁波
第二章 电磁辐射与地物光谱特征 《遥感导论》课件
1 概念:
电磁波是交变电场和磁场
在空中的转化和传播 2 特点:
电磁波是横波,传播速度为光速 有反射、吸收、透射、散射等。
厦门理工学院空间信息科学与工程系
第二章 电磁辐射与地物光谱特征 《遥感导论》课件
二、电磁波谱
0.8-25cm:
微波窗口,属于发射光谱范围。不受大气干扰, 透射率可达100%,是全天候的遥感波段。
近红外波段的中段。仍属于地物反射光谱,但不 能用胶片摄影,仅能用光谱仪和扫描仪来记录地 物的电磁波信息。透射率都接近80%。
厦门理工学院空间信息科学与工程系
第二章 电磁辐射与地物光谱特征 《遥感导论》课件
目前近红外窗口应用不多,但在某些波段对区分 蚀变岩石有较好的效果,因此在遥感地质应用方 面很有潜力。TM设有1.55-1.75μm和2.082.35μm两个波段。
厦门理工学院空间信息科学与工程系
第二章 电磁辐射与地物光谱特征 《遥感导论》课件
厦门理工学院空间信息科学与工程系
第二章 电磁辐射与地物光谱特征 《遥感导论》课件
氧(O2):
在波长0.155μm处吸收最强。在低层大气内几乎 观测不到小于0.2μm的太阳辐射,在0.69μm 和.76μm附近,各有一个窄吸收带。
厦门理工学院空间信息科学与工程系
第二章 电磁辐射与地物光谱特征 《遥感导论》课件
2)大气的散射作用
大气散射集中于可见光区,是太阳辐射能衰减的 主要原因。散射的强弱可用散射系数表示:
ϕ为波长的指数,它由微粒直径(d)的大小决定。
根据波长与散射微粒的大小之间的关系,散射可 分为三种:
厦门理工学院空间信息科学与工程系
厦门理工学院空间信息科学与工程系
一、电磁波
第二章 电磁辐射与地物光谱特征 《遥感导论》课件
1 概念:
电磁波是交变电场和磁场
在空中的转化和传播 2 特点:
电磁波是横波,传播速度为光速 有反射、吸收、透射、散射等。
厦门理工学院空间信息科学与工程系
第二章 电磁辐射与地物光谱特征 《遥感导论》课件
二、电磁波谱
0.8-25cm:
微波窗口,属于发射光谱范围。不受大气干扰, 透射率可达100%,是全天候的遥感波段。
第2章电磁辐射与地物光谱特征(1)要点

2. 辐射测量
辐射能量(W):电磁辐射的能量,单位:J 辐射通量(φ):单位时间内通过某一面积的辐射能量,单位:W 辐射通量密度(E):单位时间内通过单位面积的辐射能量,单位:W/m2 辐照度(I):被辐射的物体表面单位面积上的辐射通量,单位: W/m2
辐射出射度(M):辐射源物体表面单位面积上的辐射通量,单位:W/m2
方向:由电磁振荡向各个不同方向传播的. 3.电磁波谱:按照电磁波的波长(频率的大小)长短,依次排列 构成的图表,成为电磁波谱
波段
波长
长波
中波和短波
超短波
微波
超远红外
远红外
电
中红外
磁
近红外
波 谱
红 橙
黄
绿
青
蓝
紫
大于3000m 10~3000m
1 ~10 m 1mm~1m 15~1000μm 6~15 μm 3~6 μm 0.76~3 μm 0.62~0.76 μm 0.59~0.62 μm 0.56~0.59 μm 0.50~0.56 μm 0.47~0.50 μm 0.43~0.47 μm 0.38~0.43 μm
紫外线
10-3~3.8×10-1 μm
X射线 γ 射线
10-6 ~ 10-3 μm 小于10-6μm
4. 电磁波的性质
(1)是横波; (2)在真空以光速传播; (3)满足f•λ= c E=h•f; (4)电磁波具有波粒二象性;
2.1.2 电磁辐射的度量
1. 辐射源
任何物体都是辐射源。不仅能够吸收其他物体对它的辐射,也能够向外 辐射。遥感的辐射源分为自然辐射源和人工辐射源两类。 自然辐射源主要包括太阳辐射和地物的热辐射;太阳辐射是可见光及近 红外遥感的主要辐射源,地球是远红外遥感的主要辐射源。 人工辐射源是指人为发射的具有一定波长的波束;主动遥感采用人工辐 射源,目前较常用的人工辐射源为微波辐射源和激光辐射源。
辐射能量(W):电磁辐射的能量,单位:J 辐射通量(φ):单位时间内通过某一面积的辐射能量,单位:W 辐射通量密度(E):单位时间内通过单位面积的辐射能量,单位:W/m2 辐照度(I):被辐射的物体表面单位面积上的辐射通量,单位: W/m2
辐射出射度(M):辐射源物体表面单位面积上的辐射通量,单位:W/m2
方向:由电磁振荡向各个不同方向传播的. 3.电磁波谱:按照电磁波的波长(频率的大小)长短,依次排列 构成的图表,成为电磁波谱
波段
波长
长波
中波和短波
超短波
微波
超远红外
远红外
电
中红外
磁
近红外
波 谱
红 橙
黄
绿
青
蓝
紫
大于3000m 10~3000m
1 ~10 m 1mm~1m 15~1000μm 6~15 μm 3~6 μm 0.76~3 μm 0.62~0.76 μm 0.59~0.62 μm 0.56~0.59 μm 0.50~0.56 μm 0.47~0.50 μm 0.43~0.47 μm 0.38~0.43 μm
紫外线
10-3~3.8×10-1 μm
X射线 γ 射线
10-6 ~ 10-3 μm 小于10-6μm
4. 电磁波的性质
(1)是横波; (2)在真空以光速传播; (3)满足f•λ= c E=h•f; (4)电磁波具有波粒二象性;
2.1.2 电磁辐射的度量
1. 辐射源
任何物体都是辐射源。不仅能够吸收其他物体对它的辐射,也能够向外 辐射。遥感的辐射源分为自然辐射源和人工辐射源两类。 自然辐射源主要包括太阳辐射和地物的热辐射;太阳辐射是可见光及近 红外遥感的主要辐射源,地球是远红外遥感的主要辐射源。 人工辐射源是指人为发射的具有一定波长的波束;主动遥感采用人工辐 射源,目前较常用的人工辐射源为微波辐射源和激光辐射源。
第二章电磁辐射与地物光谱特征

• 特点:同一地物在不同的波长具有不同的反射 率;地物的不同反射率是可以测定的;反射率 与地物的表面颜色、粗糙度和湿度等有关;同 一波长,不同地物,其反射率不同。但是也会 存在同物异谱和异物同谱的现象。
ρ=Pρ/P0
镜面反射
漫反射
实际反射
• 镜面反射:也叫规则反射,入射角与反射角相等, 发生在平静水面、金属面等,常出现在航空遥感中
瑞利散射d入i入44大气中原子和分子可见光米氏散射d入i入22微粒红外线无选择性散射d入ii与入无关大气散射大气上界地平面太阳高度角大气折射后太阳高度角0折射值0大气折射大气窗口?通常把电磁波通过大气层时较少被反射吸收或散射的透过率较高的波段称为大气窗口
第二章 电磁辐射与地物的光谱特征
贺巧宁
主要内容:
2.2.2 大气对辐射的影响
• 1.大气分层和组成 • 2.大气吸收 • 3.大气散射 • 4.大气折射 • 5.大气反射
• 6.大气窗口
• 7.大气透射分析
外 35000 大 气 1000 层
通讯卫星,气象卫星36000km
质子层
氦层
散逸层
80
电 F电离层 热 离 层 E电离层 层 中间层 平 暖 流 层 O3层 层 同温层
的入北max =0.35 μm,试计算太阳和北极星 的表面温度及每单位表面积上所发射出的功率 是多少?
2.2 太阳辐射及大气对辐射的影响
• 2.2.1 太阳辐射
• 2.2.2 大气对辐射的影响
2.2.1 太阳辐射
• 1.太阳常数:是指在不受大气影响,在距 离太阳一个天文单位内,垂直于太阳光辐 射方向上,单位面积单位时间黑体所接收 的太阳辐射能量.I⊙= 1.360x103W/m2 • 2.太阳光谱
ρ=Pρ/P0
镜面反射
漫反射
实际反射
• 镜面反射:也叫规则反射,入射角与反射角相等, 发生在平静水面、金属面等,常出现在航空遥感中
瑞利散射d入i入44大气中原子和分子可见光米氏散射d入i入22微粒红外线无选择性散射d入ii与入无关大气散射大气上界地平面太阳高度角大气折射后太阳高度角0折射值0大气折射大气窗口?通常把电磁波通过大气层时较少被反射吸收或散射的透过率较高的波段称为大气窗口
第二章 电磁辐射与地物的光谱特征
贺巧宁
主要内容:
2.2.2 大气对辐射的影响
• 1.大气分层和组成 • 2.大气吸收 • 3.大气散射 • 4.大气折射 • 5.大气反射
• 6.大气窗口
• 7.大气透射分析
外 35000 大 气 1000 层
通讯卫星,气象卫星36000km
质子层
氦层
散逸层
80
电 F电离层 热 离 层 E电离层 层 中间层 平 暖 流 层 O3层 层 同温层
的入北max =0.35 μm,试计算太阳和北极星 的表面温度及每单位表面积上所发射出的功率 是多少?
2.2 太阳辐射及大气对辐射的影响
• 2.2.1 太阳辐射
• 2.2.2 大气对辐射的影响
2.2.1 太阳辐射
• 1.太阳常数:是指在不受大气影响,在距 离太阳一个天文单位内,垂直于太阳光辐 射方向上,单位面积单位时间黑体所接收 的太阳辐射能量.I⊙= 1.360x103W/m2 • 2.太阳光谱
第2章电磁辐射地物光谱特征

大连市建成区及周边地表温度分布图
六、地物的反射波谱特征
1)地物波谱:地物的电磁波响应特性随电磁波长改变 而变化的规律,称为地表物体波谱,简称地物波谱。 地物波谱特性是电磁辐射与地物相互作用的一种表 现。
2)地物波谱的作用:不同类型的地物,其电磁波响应 的特性不同,因此地物波谱特征是遥感识别地物的基 础。 3)太阳辐射到达地表后,一部分反射,一部分吸收, 一部分透射,即:
电磁波谱
4、遥感技术使用的电磁波分类
名称和波长(λ)范围: 名称 紫外线 可见光 波长范围 0.01 ---- 0.38 0.38 ---- 0.76 μm μm
近红外
中红外 远红外
0.76 ---- 3.0
3.0 6.0 ---- 6.0 ---- 15.0
μm
μm μm
超远红外
微 波 无线电波
大气上层臭氧的存在,而臭氧对小于0.3
µ m的电磁波 具有极强的吸收能力,所以到达地面的太阳短波辐射 中,已不存在小于0.3 µ m 的短波辐射。 的气体,其中作用最为显著的有臭氧,二氧化碳,甲 烷和水汽
真正对电磁波传播起重要吸收作用的是一些非常少量
O 吸收波长<0.2μm
O3 吸收紫外光 CO2、H2O 吸收红外及长波
2)大气散射
辐射在传播过程中遇到小微粒而使传播方向发生
改变,向各个方向散开,称散射。
太阳辐射通过大气二次影响增加了信号中的噪声
成分,造成遥感图像质量的下降。
大气散射的三种情况:
瑞利散射:当大气中粒子的直径比波长小得多时
发生的散射;主要由大气中的原子和分子引起。
散射强度与波长的四次方成反比。
----天为什么是蓝的?朝霞和夕阳偏橘 红色?
遥感导论:第二章 电磁辐射与地物波谱特征

二、电磁波谱
1. 电磁波谱:将各种电磁波在真空中的波长按其长
短,依次排列制成的图表。
在电磁波谱中,波长最长的是无线电波,其次是 红外线、可见光、紫外线、X射线;波长最短的是γ
射线
电磁波的波长不同,是因为产生它的波源不同。
无线电波是振荡电路中自由电子作周期性的运动产生 的.红外线是由于分子的振动和转动能级跃迁时产生的.可 见光、紫外线是原子外层电子受激发产生的. X射线是原 子内层电子受激发产生的.γ射线是原子核受激发产生的.
• 遥感技术得以实现的基础就是不同地物具有不 同的吸收、反射和发射电磁辐射能力。
第二章 电磁辐射与地物光谱特征
本章主要内容
➢ 电磁波谱与电磁辐射 ➢ 太阳辐射及大气对辐射的影响 ➢ 地球的辐射与地物波谱
第一节 电磁波谱与电磁辐射
❖电磁波及其特性 ❖电磁波谱 ❖电磁辐射的度量 ❖黑体辐射
一、电磁波及其特性
3.偏振 (Polarization)
通常把电场振动方向的平面称为偏振面。若偏振面方向固定, 不随时间而改变,则为线性偏振(线性极化或平面极化)。沿一个固 定方向振动的光为偏振光。
一些人造“光源”(如激光和无线电、雷达发射)常有明确的极 化状态;太阳光是非偏振光(所有方向的振幅相等,无一优势方向); 介于两者之间的为部分偏振光--许多散射光、反射光、透射光均属 此类。
3)电磁波具有波粒二象性:电磁波在传播过程中,主
要表现为波动性 Asint kx ;在与物质相互作用时,
主要表现为粒子性,这就是电磁波的波粒二象性。
❖ 波动性:把电磁振动的传播作为光滑连续的波对待, 用波长、频率、振幅等来描述。
❖ 粒子性:把电磁辐射能分解为非常小的微粒子---光 子,其能量大小用频率来描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方向:由电磁振荡向各个不同方向传播的.
3.电磁波谱:按照电磁波的波长(频率的大小)长短,依次排列 构成的图表,成为电磁波谱
波段 长波 中波和短波 超短波 微波 超远红外 远红外 中红外 近红外 红 橙 黄 绿 青 蓝 紫 紫外线 X射线 γ 射线
波长 大于3000m 10~3000m 1 ~10 m 1mm~1m 15~1000μm 6~15 μm 3~6 μm 0.76~3 μm 0.62~0.76 μm 0.59~0.62 μm 0.56~0.59 μm 0.50~0.56 μm 0.47~0.50 μm 0.43~0.47 μm 0.38~0.43 μm 10-3~3.8×10-1 μm 10-6 ~ 10-3 μm 小于10-6μm
2. 辐射测量
辐射能量(W):电磁辐射的能量,单位:J
辐射通量(φ):单位时间内通过某一面积的辐射能量,单位:W 辐射通量密度(E):单位时间内通过单位面积的辐射能量,单位:W/m2
辐照度(I):被辐射的物体表面单位面积上的辐射通量,单位: W/m2
辐射出射度(M):辐射源物体表面单位面积上的辐射通量,单位:W/m2 辐射亮度(L):假定有一辐射源呈面状,向外辐射的强度随辐射方向而不 同,则L定义为辐射源在某一方向,单位投影表面,单位立体角内的辐射通 量,单位:W/(sr· m2) 朗伯源:辐射亮度L与观察角θ无关的辐射源,称为朗伯源。
实际物体的辐射出射度与同一温度下黑体辐射出射度的比值。发射率等于吸 收率。好的吸收体也是好的发射体,如果不吸收某些波长的电磁波,也不发 射该波长的电磁波。
发射率与物质种类、表面状态、温度等有关,还与波长有关。按照发 射率与波长的关系,辐射源可以分为:
1)黑体 2)灰体:
没有显著的选择吸收,吸收率虽然小于1,但基本不随波长变化
2.1.3 黑体辐射
1. 绝对黑体
如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是 绝对黑体。
实验表明,当电磁波入射到一个不透明的物体上,在物体上只出现 对电磁波的反射现象和吸收现象时,这个物体的光谱吸收系数α与光 谱反射系数ρ之和恒等于1。 光谱吸收系数α :当物体的温度为T,波长在λ~ λ +Δλ范围内, α为 吸收能量与入射能量之比。 光谱反射系数ρ:当物体的温度为T,波长在λ~ λ +Δλ范围内,ρ为反 射能量与入射能量之比。
Wb T
(3)维恩位移定律
4
σ : 斯蒂藩-玻尔兹曼常数,(5.6697+-0.00297)×10-8Wm-2K-4
max T b
b : 常数,2897.8+-0.4 μ m·K
黑体温度越高,曲线的顶峰就越往左移,即往波长短的方向移动。
高温物体发射较短的电磁波,低温物体发射较长的电磁波。 常温(如人体300K左右,发射电磁波的峰值波长9.66μ m )
3)选择性辐射体
(如线谱,带谱)
一般辐射体和发射率
第2章 电磁辐射与地物光谱特征
2.1 电磁波谱与电磁辐射
2.1.1 电磁波谱
1.波:是振动在空间的传播。如声波、水波、地震波等。 分为横波和纵波两种,如果质点的振动方向与波的传播方向 相同,称纵波;若质点振动方向与波的传播方向垂直,称横波. 2.电磁波:当电磁振荡进入空间,变化的磁场激发了涡旋电场,变 化的电场又激发了涡旋磁场,使电磁振荡在空间传播.
3. 实际物体的辐射
(1)基尔霍夫定律
给定温度下,任何地物的辐射出射度与吸收率α 之比是常数,即等于 同温度下黑体的辐射出射度。
M ( , T ) (, T )
Mb(, T )
(2)实际物体的辐射
对于一般物体而言,需要引入发射率(热辐射率、比辐射率),表明 物体的发射本领。
(, T ) M (, T ) Mb(, T )
2
H: 普朗克常数6.6260755*10-34 Js K: 玻尔兹曼常数,k=1.380658*10-23 W· s· K-1 C: 光速; λ : 波长(μ m); T: 绝对温度(K)
M: 辐射出射度
(2) 斯忒藩—玻尔兹曼定律
对普朗克定律在全波段内积分,得到斯蒂藩-玻尔兹曼定律。辐射通量 密度随温度增加而迅速增加,与温度的4次方成正比。
自然界中并不存在绝对的黑体,实用的黑体是由人工方法制成的,它只是 一种理想的黑体模型,基本结构是能保持恒定温度的空腔。
人工制造的接近黑体的吸收体
2. 黑体辐射规律
(1) 普郎克公式 描述黑体辐射通量密度与温度、波长分布的关系。
2h c Mb( , T ) 5 hc kT (e 1)
电 磁 波 谱
4. 电磁波的性质
(1)是横波; (2)在真空以光速传播;
(3)满足f•λ= c
E=h•f;
(4)电磁波具有波 辐射源
任何物体都是辐射源。不仅能够吸收其他物体对它的辐射,也能够向外 辐射。遥感的辐射源分为自然辐射源和人工辐射源两类。 自然辐射源主要包括太阳辐射和地物的热辐射;太阳辐射是可见光及近 红外遥感的主要辐射源,地球是远红外遥感的主要辐射源。 人工辐射源是指人为发射的具有一定波长的波束;主动遥感采用人工辐 射源,目前较常用的人工辐射源为微波辐射源和激光辐射源。