高三数学期中考试题(理科)

合集下载

2014-2015学年度第一学期期中考试高三数学理科试题

2014-2015学年度第一学期期中考试高三数学理科试题

2014-2015学年度第一学期期中考试高三数学试卷(理科)一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合13{|()}xM y y ==,2{|log (1)}N x y x ==-,则M R N =( ) A .(0,1) B .(]0,1 C .(1,)+∞ D .(0,+∞)2.若120a b <<<,则( )A .22ab a >B .22ab b >C .2log ()1ab >-D .2log ()2ab <-3.等差数列{}n a 的通项公式是12n a n =-,其前项和为n S ,则数列{}nS n的前11项和为( )A .-44 (B)-66 C .-55 D .554.已知函数2()21(0)f x ax ax a =-+<,若12x x <,120x x +=,则1()f x 与2()f x 的大小关系是( )A .1()f x =2()f xB .1()f x >2()f xC .1()f x <2()f xD .与a 的值有关5.抛物线22y x =-上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .98B .78C .98-D .78-6.已知向量a 与b 的夹角为o 60,3a =,13a b +=,则b 等于( ) A .1 B .3 C .4 D .57.已知m 、n 是两条直线,,,αβγ是三个平面,给出下列四个命题: ①若,,//,m n m n αβ⊥⊥则//αβ; ②若,,//αγβγαβ⊥⊥则;③若βαβα//,//,,则n m n m ⊂⊂; ④若,m α⊥,n β⊥m n ⊥,则αβ⊥.其中真命题是( )A .①和②B .①和③C .③和④D .①和④8.设函数()y f x =的反函数为()1y f x -=,且()21y f x =+的图像过点()1,2,则()131y f x -=-的图像必过点( )A .()1,3B .()3,1C .()2,3D .()2,19.已知(,1)AB k =,(2,4)AC =,若k 为满足||4AB ≤的一随机整数..,则ABC ∆是直角三角形的概率是( )A . 14B .12C .37 D .3410.将正三棱柱截去三个角(如图1所示A 、B 、C 分别是三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )11.若AB 是过椭圆22221x y a b+=(0)a b >>中心的一条弦,M 是椭圆上任意一点,且AM ,BM 与坐标轴不平行,1k ,2k 分别为直线AM ,BM 的斜率(其中222c a b =-),则12k k ⋅=( )A .22c a -B .22c b -C .22b a -D .22a b -12.已知函数3ax y e x =+()a R ∈有大于零的极值点,则( )A .3a >-B .3a <-C .13a >-D .13a <-二、填空题(4×4′=16分):13.在(51)x 展开式中,1x 的系数是: ;14.抛物线C :2y x x =-+与直线l :10x y --=所围成的平面图形的面积是: ;15.过P (-1,2)的直线⎩⎨⎧-=+-=t y tx 4231(t 为参数)与双曲线22(2)1y x --=相交于A 、B 两点,若C 为AB 的中点,则=PC ;E F DIA H GBC EF D AB C侧视 图1图2 BEABEB BECBED16.曲线2cos ρθ=关于直线4πθ=-对称的曲线方程为 .三、解答题(满分74分):17.(12分)在ABC ∆中,内角A ,B ,C ,的对边分别为,,a b c ,已知角3,A a π==B=x ,ABC ∆的周长为y . (1)求函数()y f x =的解析式和定义域; (2)求函数()y f x =的值域.18.(12分)一个口袋中装有编号分别为1,2,3,4,5,6的6个大小相同的球,从中任取3个,用ξ表示取出的3个球中的最大编号.(1)求ξ的分布列;(2)求ξ的数学期望和方差.19.(12分)直三棱柱111ABC-A B C 中,1AC CC 2,AB BC ===,D 是1BA 上一点,且AD ⊥平面1A BC .(1)求证:BC ⊥平面11ABB A ;(2)求异面直线1A C 与AB 所成角的大小; (3)求二面角1A C B A --余弦值的大小.20.(12分)已知中心在原点的双曲线C 的左焦点为)0,2(-,而C 的右准线方程为23=x .(1)求双曲线C 的方程;(2)若过点)2,0(,斜率为k 的直线与双曲线C 恒有两个不同的交点A 和B ,且满足5OA OB ⋅< (其中O 为原点),求实数k 的取值范围.21.(12分)已知1=x 是函数1)1(3)(23+++-=nx x m mx x f 的一个极值点,0,,<∈m R n m(1)求m 与n 的关系表达式; (2)求函数)(x f 的单调区间;(3)当]1,1[-∈x 时,函数)(x f y =的图象上任意一点的切线斜率恒大于m 3,求m 的取值范围.22.(14分)已知函数()20y x x =≥的图象上有一列点()111,P x y ,()222,P x y ,…,(),n n n P x y ,…,以点n P 为圆心的圆n P 与以点n+1P 为圆心的圆n+1P 外切,且均与x 轴相切.若11x =,且1n n x x +<.(1)求数列{}n x 的通项;(2)圆n P 的面积为n S ,n n T S =+,求证:4n T <.高三数学(理科)参考答案一、选择题BDBCD ADACA CB二、填空题13.-80; 14.43; 15.157; 16.2sin ρθ=-三、解答题17.(1)()263)0,y x x ππ=++∈;(2)(y ∈.18.(1)(2) 214E ξ=; 6380D ξ=.19.(1)略; (2)3π ;.20.(1)2213x y -=;(2)(k ∈.21.(1)36n m =+;(2)单调递减区间()()2,1,1,m -∞++∞;单调递增区间()21,1m +; (3)()43,0m ∈-.22.(1)121n x n =-;(2)1n =时,1n T T =<1n >2n ==<=()111111114223141(1)11n n n n T -⎤<+-+-++-=+-⎤⎦⎦。

陕西师范大学附属中学2022-2023学年高三上学期期中理科数学试题含解析

陕西师范大学附属中学2022-2023学年高三上学期期中理科数学试题含解析
9.双曲线 的左,右焦点分别是 ,过 作倾斜角为 的直线交双曲线的右支于点 ,若 垂直于 轴,则双曲线的离心率为()
A. B. C.2D.
【答案】B
【解析】
【分析】将 代入双曲线方程求出点 的坐标,通过解直角三角形列出三参数 , , 的关系,求出离心率的值.
【详解】由于 轴,且 在第一象限,设
所以将 代入双曲线的方程得 即 ,
7.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上,设外围第1个正方形的边长是m,侏罗纪蜘蛛网的长度(蜘蛛网中正方形的周长之和)为Sn,则()
A.Sn无限大B.Sn<3(3+ )m
C.Sn=3(3+ )mD.Sn可以取100m
17.已知 中,角A,B,C的对边分别为a,b,c, .
(1)若 ,求 的值;
(2)若 的平分线交AB于点D,且 ,求 的最小值;
【答案】(1) ;(2)4
【解析】
【分析】(1)由 ,利用正弦定理将边转化为角得到 ,再根据 ,有 ,然后利用两角差的正弦公式展开求解.
(2)根据 的平分线交AB于点D,且 ,由 ,可得 ,化简得到 ,则 ,再利用基本不等式求解.
【详解】设 , ,
则 , ,
如图所示,
连接 交 于点 ,连接 、 ,
因为 平面 , 平面 ,
所以 ,而 ,所以四边形 是直角梯形,
则有 ,
, ,
所以有 ,
故 ,
因为 平面 , 平面 ,
所以 ,又因为 为正方形,所以 ,
而 平面 ,
所以 平面 ,即 平面 ,
,
所以 , ,
故答案为:③④.

高三数学试卷理科及答案

高三数学试卷理科及答案

一、选择题(每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若存在实数a,使得f(a) = 0,则a的取值范围是()。

A. a > 0B. a < 0C. a = 0D. a ≠ 02. 下列函数中,是奇函数的是()。

A. y = x^2B. y = x^3C. y = |x|D. y = x^2 + 13. 在等差数列{an}中,若a1 = 2,d = 3,则第10项an的值为()。

A. 27B. 28C. 29D. 304. 若等比数列{bn}中,b1 = 2,b3 = 8,则公比q的值为()。

A. 2B. 4C. 8D. 165. 下列命题中,正确的是()。

A. 函数y = log2(x + 1)的图像在y轴上无定义B. 函数y = e^x的图像在第一象限内单调递减C. 函数y = sin(x)的周期为πD. 函数y = tan(x)的图像在y轴上无定义6. 已知直线l的方程为2x - y + 3 = 0,点P(1, 2)到直线l的距离为()。

A. 1B. 2C. 3D. 47. 在直角坐标系中,点A(1, 2),B(3, 4),C(5, 6)构成三角形ABC,则三角形ABC的面积S为()。

A. 2B. 3C. 4D. 58. 已知函数f(x) = ax^2 + bx + c,若f(1) = 2,f(2) = 4,则f(3)的值为()。

A. 6B. 8C. 10D. 129. 在等差数列{an}中,若a1 = 3,d = 2,则前n项和Sn的表达式为()。

A. Sn = n^2 + 2nB. Sn = n^2 + 3nC. Sn = n^2 + 4nD. Sn = n^2 + 5n10. 已知等比数列{bn}中,b1 = 3,b3 = 27,则前n项和Tn的表达式为()。

A. Tn = 3^nB. Tn = 3^(n+1)C. Tn = 3^(n-1)D. Tn = 3^(n-2)二、填空题(每小题5分,共25分)11. 若函数y = ax^2 + bx + c的图像开口向上,则a的取值范围是__________。

高三上学期期中考试数学(理)试题 Word版含答案

高三上学期期中考试数学(理)试题 Word版含答案

大庆实验中学2020-2021学年度上学期期中考试高三数学(理科)试题注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每道小题答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

第Ⅰ卷(选择题 共60分)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设命题p :x R ∀∈,2320x x -+≤,则p ⌝为( )A .0x R ∃∈,200320x x -+≤ B .x R ∀∈,320x x -+> C .0x R ∃∈,200320x x -+>D .x R ∀∈,320x x -+≥2.若{}0,1,2A =,{}2,a B x x a A ==∈,则A B ⋃=( ) A .{}0,1,2B .{}0,1,2,3C .{}0,1,2,4D .{}1,2,43.已知复数z 在复平面内对应的点的坐标为()1,2-,则下列结论正确的是( ) A .2z i i ⋅=-B .复数z 的共轭复数是12i -C .5z =D .13122z i i =++ 4.已知3a i j =+,2b i =,其中i ,j 是互相垂直的单位向量,则3a b -=( )A .B .C .28D .245.已知随机变量X 服从二项分布(),B n p ,若()2E X =,()43D X =,则p =( ) A .34B .23C .13D .146.在等差数列{}n a 中,首项10a =,公差0d ≠,n S 是其前n 项和,若6k a S =,则k =( )A .15B .16C .17D .187.若()cos cos2f x x =,则()sin15f ︒=( ) A .3-B .12-C .12D .3 8.已知函数()()31,0,0x x f x g x x ⎧+>⎪=⎨<⎪⎩是奇函数,则()()1g f -的值为( )A .10-B .9-C .7-D .19.为得到函数sin 2y x =-的图象,可将函数sin 23y x π⎛⎫=-⎪⎝⎭的图象( ) A .向右平移3π个单位 B .向左平移6π个单位 C .向左平移3π个单位D .向右平移23π个单位 10.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生A .互联网行业从业人员中90后占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多11.如图,棱长为2的正方体1111ABCD A B C D -中,P 在线段1BC (含端点)上运动,则下列判断不正确的是( )A .11A PB D ⊥B .三棱锥1D APC -的体积不变,为83C .1//A P 平面1ACDD .1A P 与1D C 所成角的范围是0,3π⎡⎤⎢⎥⎣⎦12.已知函数()ln 1f x x =+,若存在互不相等的实数1x ,2x ,3x ,4x ,满足()()()()1234f x f x f x f x ===,则411i if x =⎛⎫= ⎪⎝⎭∑( ) A .0B .1C .2D .3第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~21题为必考题,每个试题考生都必须作答,第22题、第23题为选考题,考生根据要求作答二、填空题(本大题共4小题,每小题5分,共20分) 13.已知点A 的极坐标为22,3π⎛⎫⎪⎝⎭,则它的直角坐标为______. 14.若x ,y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则z x y =+的最小值为______.15.已知三棱锥S ABC -中,SA ⊥面ABC ,且6SA =,4AB =,23BC =,30ABC ∠=︒,则该三棱锥的外接球的表面积为______.16.已知正项数列{}n a 的前n 项和为n S ,且对任意的*n N ∈满足()()2411n n S a +=+,则361111kk kk k kaa a a =++-=-______.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.在ABC △中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足2tan tan tan B bA B c=+(Ⅰ)求角A ;(Ⅱ)若13a =,3b =,求ABC △的面积18.如图,在三棱锥P ABC -中,2PA PB AB ===,3BC =,90ABC ∠=︒,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 中点.(1)求证:AB PE ⊥;(2)求二面角A PB E --的大小.19.在某市高中某学科竞赛中,某一个区4000名考生的参考成绩统计如图所示.(1)求这4000名考生的竞赛平均成绩x (同一组中数据用该组区间中点作代表); (2)由直方图可认为考生竞赛成绩z 服正态分布()2,N μσ,其中μ,2σ分别取考生的平均成绩x 和考生成绩的方差2s ,那么该区4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?(3)如果用该区参赛考生成绩的情况来估计全市的参赛考生的成绩情况,现从全市参赛考生中随机抽取4名学生,记成绩不超过84.81分的考生人数为ξ,求()3P ξ≤(精确到0.001)附:①2204.75s =204.7514.31=;②()2~,z N μσ,则()0.6826P z μσμσ-<<+=,()220.9544P z μσμσ-<<+=;③40.84130.501=20.已知数列{}n a 的前n 项和为n S ,且n 、n a 、n S 成等差数列,()22log 11n n b a =+-. (1)证明数列{}1n a +是等比数列,并求数列{}n a 的通项公式;(2)若数列{}n b 中去掉数列{}n a 的项后余下的项按与按原顺序组成数列{}n c ,求12100c c c +++的值.21.已知函数()ln x xf x xe x=+. (Ⅰ)求证:函数()f x 有唯一零点;(Ⅱ)若对任意的()0,x ∈+∞,ln 1x xe x kx -≥+恒成立,求实数k 的取值范围 请考生在第22、23两题中任意选一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 经过点()23,0P -,其倾斜角为α,设曲线S 的参数方程为141x k k y ⎧=⎪⎪⎨-⎪=⎪⎩(k 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin ρθ=(1)求曲线S 的普通方程和极坐标方程; (2)若直线l 与曲线C 有公共点,求α的取值范围 23.选修4-5:不等式选讲 已知x ,y R ∈,且1x y +=. (1)求证:22334x y +≥; (2)当0xy >时,不等式1121a a x y+≥-++恒成立,求a 的取值范围.大庆实验中学2020-2021学年度上学期期中考试高三理科数学答案1.C 2.C 3.D4.A 5.C 6.B 7.A8.B 9.A 10.D11.B12.A13.(-14.315.52π1617.(Ⅰ)3A π=(Ⅱ)解:(Ⅰ)由2tan tan tan B bA B c =+及正弦定理可知,∴sin 2sin cos sin sin cos cos cos B B B A B C A B =+∴()2sin cos cos sin cos sin sin B A B B B A B C⋅⋅=+, 所以2cos 1A =,又()0,A π∈,所以3A π=(Ⅱ)由余弦定理2222cos a b c bc A =+-, 得21393c c =+-,所以2340c c --=,即()()410c c -+=, 所以4c =,从而11sin 3422ABC S ab A ==⨯⨯=△18.(1)证明见解析;(2)60°解析:(1)连结PD ,∵PA PB =,∴PD AB ⊥,∵//DE BC ,BC AB ⊥,DE AB ⊥ 又∵PD DE D ⋂=,∴AB ⊥平面PDE ,∵PE ⊂平面PDE ,∴AB PE ⊥ (2)法一:∵平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,PD AB ⊥,PD ⊥平面ABC 则DE PD ⊥,又ED AB ⊥,PD ⋂平面AB D =,DE ⊥平面PAB过D 做DF 垂直PB 与F ,连接EF ,则EF PB ⊥,DFE ∠为所求二面角的平面角,32DE =,2DF =,则tan DEDFE DF∠==A PB E --大小为60°法二:∵平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,PD AB ⊥,PD ⊥平面ABC 如图,以D 为原点建立空间直角坐标系,∴()1,0,0B ,()0,0,3P ,30,,02E ⎛⎫⎪⎝⎭,∴()1,0,3PB =-,30,,32PE ⎛⎫=- ⎪⎝⎭设平面PBE 的法向量()1,,z n x y =,∴30,330,2x z y z ⎧-=⎪⎨-=⎪⎩令3z =,得()13,2,3n = ∵DE ⊥平面PAB ,∴平面PAB 的法向量为()20,1,0n = 设二面角A PB E --大小为θ,由图知,1212121cos cos ,2n n n n n n θ⋅===⋅, 所以60θ=︒,即二面角的A PB E --大小为60°19.(1)70.5分;(2)634人;(3)0.499 (1)由题意知: 中间值 45 55 65 75 85 95 概率0.10.150.20.30.150.1∴450.1550.15650.2750.3850.15950.170.5x =⨯+⨯+⨯+⨯+⨯+⨯=, ∴4000名考生的竞赛平均成绩x 为70.5分(2)依题意z 服从正态分布()2N μσ,,其中=70.5x μ=,2204.75D σξ==,14.31σ=,∴z 服从正态分布()()2270.5,14.31N N μσ=,,而()()56.1984.810.6826P z P z μσμσ-<<+=<<=,∴()10.682684.810.15872P z -≥==, ∴竞赛成绩超过84.81分的人数估计为0.158********.8⨯=人634≈人(3)全市竞赛考生成绩不超过84.81分的概率10.15870.8413-=,而()~4,0.8413B ξ,∴()()44431410.841310.5010.499P P C ξξ≤=-==-⋅=-=20.(1)证明见解析,21nn a =-;(2)11202(1)证明:因为n ,n a ,n S 成等差数列,所以2n n S n a +=,① 所以()()11122n n S n a n --+-=≥.②①-②,得1122n n n a a a -+=-,所以()()11212n n a a n -+=+≥. 又当1n =时,1112S a +=,所以11a =,所以112a +=, 故数列{}1n a +是首项为2,公比为2的等比数列, 所以11222n n n a -+=⋅=,即21n n a =-(2)根据(1)求解知,()22log 12121n n b n =+-=-,11b =,所以12n n b b +-=, 所以数列{}n b 是以1为首项,2为公差的等差数列又因为11a =,23a =,37a =,531a =,663a =,7127a =,8255a =,64127b =,106211b =,107213b =,所以()()1210012107127c c c b b b a a a +++=+++-+++()()127107121322272⨯+⎡⎤=-+++-⎣⎦()72121072147212-⨯=-+-281072911202=-+=21.(Ⅰ)见解析;(Ⅱ)k ,,1 解析:(Ⅰ)()()21ln 1x xf x x e x +'=++,易知()f x '在()0,e 上为正,因此()f x 在区间()0,1上为增函数,又1210xe ef e e -⎛⎫=< ⎪⎝⎭,()0f I e =>因此()10f f I e ⎛⎫< ⎪⎝⎭,即()f x 在区间()0,1上恰有一个零点, 由题可知()0f x >在()1,+∞上恒成立,即在()1,+∞上无零点, 则()f x 在()1,+∞上存在唯一零点(Ⅱ)设()f x 的零点为0x ,即000ln 0x x x e x +=,原不等式可化为ln 1x xe x k x--≥, 令()ln 1xxe x g x x--=,则()ln x xxe x g x x+'=,由(Ⅰ)可知()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,00x x e t =故只求()0g x ,设00x x e t =,下面分析0000ln 0x x x e x +=,设00x x e t =,则0ln x t x =-, 可得0000ln ln ln x tx x x t =-⎧⎨+=⎩,即()01ln x t t -=若1t >,等式左负右正不相等,若1t <,等式左右负不相等,只能1t =因此()0000000ln 1ln 1x x e x x g x x x --==-=,即k ,,1求所求 22.(1)S 的普通方程为:2240x y x +-=()04,0x y ≤≤≥或()0,0x y >≥或()0,0x y ≠≥方程写标准式也可S 的极坐标方程为:4cos 02πρθθ⎛⎫=≤< ⎪⎝⎭(不写范围扣2分) (2)0,3πα⎡⎤∈⎢⎥⎣⎦23.(1)见证明;(2)35,22⎡⎤-⎢⎥⎣⎦【详解】解:(1)由柯西不等式得)2222211x x ⎡⎤⎛⎡⎤++≥⋅+⎢⎥ ⎢⎥⎣⎦⎝⎢⎥⎣⎦ ∴()()222433x y x y +⨯≥+,当且仅当3x y =时取等号. ∴22334x y +≥;(2)()1111224y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 要使得不等式1121a a x y+≥-++恒成立,即可转化为214a a -++≤, 当2a ≥时,214a -≤,可得522a ≤≤, 当12a -<<,34≤,可得12a -<<, 当1a ≤-时,214a -+≤,可得312a -≤≤-, ∴a 的取值范围为:35,22⎡⎤-⎢⎥⎣⎦。

2021-2022学年陕西省渭南市蒲城县高三(上)期中数学试卷(理科)

2021-2022学年陕西省渭南市蒲城县高三(上)期中数学试卷(理科)

2021-2022学年陕西省渭南市蒲城县高三(上)期中数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x∈Z|x2<4},B={0,1,2}()A.{﹣1,0,1,2}B.{0,1}C.{0,1,2}D.{﹣2,﹣1,0,1,2}2.(5分)命题“∀x∈R,x3+sin x≥0”的否定是()A.∃x∈R,x3+sin x≥0B.∀x∈R,x3+sin x<0C.∃x∈R,x3+sin x<0D.∃x∈R,x3+sin x≤03.(5分)已知,则tan2α的值为()A.B.C.D.4.(5分)若a,b∈R,则“a3>b3”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)函数f(x)=在[﹣,]上的图象大致为()A.B.C.D.6.(5分)某公司为激励创新,计划逐年加大研发资金投入,若该公司2018年全年投入研发资金130万元,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30)A.2020年B.2021年C.2022年D.2023年7.(5分)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,BC=1,P是DC的中点,则=()A.B.C.3D.98.(5分)将函数的图像向右平移个单位长度()A.B.C.D.9.(5分)设函数,若对于任意的实数x,恒成立()A.0B.1C.D.10.(5分)魏晋南北朝时期,我国数学家祖冲之利用割圆术,求出圆周率π约为,直到近千年后这一记录才被打破.若已知π的近似值还可以表示成4sin52°,则的值为()A.B.C.8D.﹣811.(5分)已知2a+a=log2b+b=log3c+c,则下列关系不可能成立的是()A.a<b<c B.a<c<b C.a<b=c D.c<b<a12.(5分)设f(x)为定义在R上的奇函数,f(﹣3)=0.当x>0时(x)+2f(x)>0(x)为f(x)的导函数(x)>0成立的x的取值范围是()A.(﹣∞,﹣3)∪(0,3)B.(﹣3,0)∪(3,+∞)C.(﹣3,0)∪(0,3)D.(﹣∞,﹣3)∪(3,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知函数f(x)=x sin x+cos x,则f'(﹣π)=.14.(5分)若非零向量,满足||=3|+2|,则与夹角的余弦值为.15.(5分)已知定义在R上的函数f(x),对任意实数x都有f(x+4)=﹣f(x)(x)的图像关于y轴对称,且f(﹣5),则f(2021)=.16.(5分)某校开展数学活动,甲、乙两同学合作用一副三角板测量学校的旗杆高度,如图,乙站在D点测得旗杆顶端E点的仰角为30°.已知甲、乙两同学相距(BD)6米(AB)1.5米,乙的身高(CD),则旗杆的高EF为米.(结果精确到0.1,参考数据:≈1.41,≈1.73)三、解答题(本大题共6小题,共70分.解答应写出文字说明证明过程或演算步骤)17.(10分)已知函数f(x)=cos2x﹣sin2x+2.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)的单调递减区间.18.(12分)已知A、B、C为△ABC的三个内角,它们的对边分别为a、b、c,若2a cos A =c cos B+b cos C.(1)求A;(2)若a=,△ABC的面积S=,求b+c的值.19.(12分)我国作为世界上主要的产茶国,在全球茶叶生产、消费和出口中都占据重要地位.某茶叶销售商通过上一年销售统计发现,某种品牌的茶叶每袋进价为40元(52≤x ≤57,x∈N)与日均销售量之间的函数关系如表:销售价格(元/每袋)575655545352日均销售量(袋)697275788184(Ⅰ)求平均每天的销售量y(袋)与销售单价x(元/袋)之间的函数解析式;(Ⅱ)求平均每天的销售利润w(元)与销售单价x(元/袋)之间的函数解析式;(Ⅲ)当每袋茶叶的售价为多少元时,该茶叶销售商每天可以获得最大利润?最大利润是多少?20.(12分)已知函数f(x)=lnx.(Ⅰ)求函数F(x)=f(x+1)﹣x的单调区间;(Ⅱ)若函数存在两个极值点x1,x2,求实数m的取值范围.21.(12分)已知函数.(Ⅰ)若函数f(x)是R上的奇函数,求a的值;(Ⅱ)若函数f(x)的定义域是一切实数,求a的取值范围;(Ⅲ)若函数f(x)在区间[0,1]上的最大值与最小值的差不小于222.(12分)已知函数f(x)=(x﹣1)(x2+2)e x﹣2x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)证明:f(x)>﹣x2﹣4.2021-2022学年陕西省渭南市蒲城县高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={x∈Z|x2<4},B={0,1,2}()A.{﹣1,0,1,2}B.{0,1}C.{0,1,2}D.{﹣2,﹣1,0,1,2}【解答】解:∵A={x∈Z|x2<4}={﹣3,0,1},6,2},∴A∩B={﹣1,8,1}∩{0,8,1}.故选:B.2.(5分)命题“∀x∈R,x3+sin x≥0”的否定是()A.∃x∈R,x3+sin x≥0B.∀x∈R,x3+sin x<0C.∃x∈R,x3+sin x<0D.∃x∈R,x3+sin x≤0【解答】解:命题为全称命题,则命题的否定为∃x∈R,x3+sin x<0,故选:C.3.(5分)已知,则tan2α的值为()A.B.C.D.【解答】解:∵,∴tan6α====﹣.故选:A.4.(5分)若a,b∈R,则“a3>b3”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:因为函数y=x3为增函数,∴由a>b,可以推出a3>b3,由a3>b3,可以推出a>b,故“a5>b3”是“a>b”的充要条件.故选:C.5.(5分)函数f(x)=在[﹣,]上的图象大致为()A.B.C.D.【解答】解:根据题意,f(x)==﹣f(x),则[﹣,]上,其图象关于原点对称,又由在区间(0,)上,7x>0,2﹣x>6,则f(x)>0;故选:C.6.(5分)某公司为激励创新,计划逐年加大研发资金投入,若该公司2018年全年投入研发资金130万元,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30)A.2020年B.2021年C.2022年D.2023年【解答】解:设2018年全年投入研发资金为130,2018年后n年投入的研发资金为a n,则数列{a n}是以130×1.12为首项,以1.12为公比的等比数列,∴a n=130×(8.12)n,令130×(1.12)n>200,得n>,即当n≥7时.所以2022年会超过200万元.故选:C.7.(5分)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,BC=1,P是DC的中点,则=()A.B.C.3D.9【解答】解:因为=,==﹣,所以||=||=|,故选:C.8.(5分)将函数的图像向右平移个单位长度()A.B.C.D.【解答】解:函数的图像向右平移,所得函数图像的解析式为y=3sin[7(x﹣)+),令5x﹣=kπ(k∈Z)+,k∈Z.令k=0,则x=,即平移后的图像中与y轴最近的对称中心的坐标是(,5),故选:A.9.(5分)设函数,若对于任意的实数x,恒成立()A.0B.1C.D.【解答】解:∵函数,若对于任意的实数x,,∴f()是函数的最小值+=2kπ+π,即ω=3k+,则令k=0,可得ω的最小值为,故选:D.10.(5分)魏晋南北朝时期,我国数学家祖冲之利用割圆术,求出圆周率π约为,直到近千年后这一记录才被打破.若已知π的近似值还可以表示成4sin52°,则的值为()A.B.C.8D.﹣8【解答】解:将π=4sin52°代入中,得=====﹣,故选:B.11.(5分)已知2a+a=log2b+b=log3c+c,则下列关系不可能成立的是()A.a<b<c B.a<c<b C.a<b=c D.c<b<a【解答】解:由题意设2a+a=log2b+b=log4c+c=k,则2a+a=k,log2b+b=k,log2c+c=k,则2a=﹣a+k,log2b=﹣b+k,log4c=﹣c+k,分别画出函数y=2x,y=log2x,y=log2x和y=﹣x+k的图像,如图示:k<1时,a<c<b,k=1时,a<b=c,k>4时,a<b<c,故c<b<a不可能,故选:D.12.(5分)设f(x)为定义在R上的奇函数,f(﹣3)=0.当x>0时(x)+2f(x)>0(x)为f(x)的导函数(x)>0成立的x的取值范围是()A.(﹣∞,﹣3)∪(0,3)B.(﹣3,0)∪(3,+∞)C.(﹣3,0)∪(0,3)D.(﹣∞,﹣3)∪(3,+∞)【解答】解:令g(x)=x2f(x),∵当x>0时,xf'(x)+8f(x)>0,∴当x>0时,g′(x)=7xf(x)+x2f′(x)=x[xf'(x)+2f(x)]>2,∴g(x)=x2f(x)在(0,+∞)上单调递增又f(x)为定义在R上的奇函数,y=x5为定义在R上的偶函数,∴g(x)=x2f(x)为R上的奇函数;②由f(﹣3)=f(3)=3,知g(﹣3)=g(3)=0由①②③,得f(x)>7成立的x的取值范围是(﹣3,+∞),故选:B.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知函数f(x)=x sin x+cos x,则f'(﹣π)=π.【解答】解:由f(x)=x sin x+cos x,得f′(x)=sin x+x cos x﹣sin x=x cos x,∴f'(﹣π)=﹣πcos(﹣π)=﹣πcosπ=﹣π×(﹣1)=π.故答案为:π.14.(5分)若非零向量,满足||=3|+2|,则与夹角的余弦值为﹣.【解答】解:由题意可得=9=+8,化简可得4,∴||•||•|,>,∴cos<,=﹣,故答案为:﹣.15.(5分)已知定义在R上的函数f(x),对任意实数x都有f(x+4)=﹣f(x)(x)的图像关于y轴对称,且f(﹣5),则f(2021)=2.【解答】解:因为函数f(x)的图像关于y轴对称,所以f(x)为偶函数,由f(x+4)=﹣f(x),可得f(x+8)=﹣f(x+2)=f(x),所以函数f(x)的周期为8,则f(2021)=f(5+252×8)=f(5)=f(﹣5)=2.故答案为:3.16.(5分)某校开展数学活动,甲、乙两同学合作用一副三角板测量学校的旗杆高度,如图,乙站在D点测得旗杆顶端E点的仰角为30°.已知甲、乙两同学相距(BD)6米(AB)1.5米,乙的身高(CD),则旗杆的高EF为10.3米.(结果精确到0.1,参考数据:≈1.41,≈1.73)【解答】解:过点A作AM⊥EF于M,过点N作CN⊥EF于N,∴MN=0.25m,∵∠EAM=45°,∴AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣6.25)m,∵∠ECN=30°,∴tan∠ECN===,解得x≈8.7,则EF=EM+MF≈8.8+2.5=10.3m,故答案为:10.4.三、解答题(本大题共6小题,共70分.解答应写出文字说明证明过程或演算步骤)17.(10分)已知函数f(x)=cos2x﹣sin2x+2.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)的单调递减区间.【解答】解:(1)由cos2x=cos2x−sin2x,sin2x=2sin x cos x得:,所以f(x)的最小正周期为π.(2)由(1)知,令,解得.所以f(x)的单调递减区间为[](k∈Z).18.(12分)已知A、B、C为△ABC的三个内角,它们的对边分别为a、b、c,若2a cos A=c cos B+b cos C.(1)求A;(2)若a=,△ABC的面积S=,求b+c的值.【解答】解:(1)因为2a cos A=c cos B+b cos C,由正弦定理得,所以2sin A cos A=sin(B+C)=sin A,由于sin A≠5,即,则A=;(2)因为S△ABC=bc sin A==.则bc=4,由余弦定理知:a7=b2+c2﹣3bc cos Aa2=(b+c)2﹣6bc(1+cos A)所以,所以.19.(12分)我国作为世界上主要的产茶国,在全球茶叶生产、消费和出口中都占据重要地位.某茶叶销售商通过上一年销售统计发现,某种品牌的茶叶每袋进价为40元(52≤x ≤57,x∈N)与日均销售量之间的函数关系如表:销售价格(元/每袋)575655545352日均销售量(袋)697275788184(Ⅰ)求平均每天的销售量y(袋)与销售单价x(元/袋)之间的函数解析式;(Ⅱ)求平均每天的销售利润w(元)与销售单价x(元/袋)之间的函数解析式;(Ⅲ)当每袋茶叶的售价为多少元时,该茶叶销售商每天可以获得最大利润?最大利润是多少?【解答】解:(I)由表可知,每箱销售价格每提高1元,∴y=69﹣3(x﹣57),即y=﹣7x+240(52≤x≤57.(II)∵某种品牌的茶叶每袋进价为40元,∴w=(x﹣4)(﹣3x+240)=﹣6x2+360x﹣9600(52≤x≤57,x∈N).(III)∵w=﹣3x4+360x﹣9600=﹣3(x﹣60)2+1200(52≤x≤57,x∈N).∴当52≤w≤57,x∈N时,∴当x=57时,w取得最大值.20.(12分)已知函数f(x)=lnx.(Ⅰ)求函数F(x)=f(x+1)﹣x的单调区间;(Ⅱ)若函数存在两个极值点x1,x2,求实数m的取值范围.【解答】解:(Ⅰ)∵f(x)=lnx,∴F(x)=f(x+1)﹣x=ln(x+1)﹣x(x>﹣6),∴F′(x)=﹣7=,当x∈(﹣1,2)时,F(x)在(﹣1;当x∈(0,+∞)时,F(x)在(7;∴函数F(x)的单调递增区间为(﹣1,0),+∞);(Ⅱ)∵=lnx﹣mx+,∴g′(x)=﹣m﹣=,令h(x)=mx5﹣x+m,要使g(x)存在两个极值点x1,x2,则方程mx6﹣x+m=0有两个不相等的正数根x1,x6,故只需满足,解得0<m<,).21.(12分)已知函数.(Ⅰ)若函数f(x)是R上的奇函数,求a的值;(Ⅱ)若函数f(x)的定义域是一切实数,求a的取值范围;(Ⅲ)若函数f(x)在区间[0,1]上的最大值与最小值的差不小于2【解答】解:(Ⅰ)函数f(x)是R上的奇函数,则f(0)=0.……………………(2分)又此时f(x)=﹣x是R上的奇函数.所以a=7为所求.………………………………(4分)(Ⅱ)函数f(x)的定义域是一切实数,则恒成立.即恒成立.……………………………………(6分)故只要a≥0即可&nbsp;&nbsp;&nbsp;………………………………………………………………(2分)(Ⅲ)由已知函数f(x)是减函数,故f(x)在区间[02(5+a),最小值是.…………………………………(8分)由题设………(11分)故&nbsp;为所求22.(12分)已知函数f(x)=(x﹣1)(x2+2)e x﹣2x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)证明:f(x)>﹣x2﹣4.【解答】解:(1)函数f(x)=(x﹣1)(x2+3)e x﹣2x的导数为f′(x)=(x3+4x2)e x﹣2,可得曲线y=f(x)在点(2,f(0))处的切线斜率为k=﹣2,﹣2),则曲线y=f(x)在点(8,f(0))处的切线方程为y=﹣2x﹣2;(2)证明:要证f(x)>﹣x8﹣4,即证(x﹣1)(x5+2)e x>2x﹣x2﹣4,设g(x)=(x﹣1)(x6+2)e x,g′(x)=x2(x+4)e x,当x>﹣2时,g′(x)>0;当x<﹣5时,g(x)递减,可得g(x)在x=﹣2处取得极小值,且为最小值﹣18e﹣2;设h(x)=8x﹣x2﹣4,可得h(1)为最大值﹣5.由﹣18e﹣2>﹣3,可得(x﹣4)(x2+2)e x>2x﹣x2﹣4恒成立,则f(x)>﹣x6﹣4.。

2020-2021学年安徽省合肥六中高三上学期期中(理科)数学试卷(解析版)

2020-2021学年安徽省合肥六中高三上学期期中(理科)数学试卷(解析版)

2020-2021学年安徽省合肥六中高三(上)期中数学试卷(理科)一、选择题(共12小题).1.(5分)已知集合A={x|﹣2<x<1},B={x|y=lg(3x﹣x2)},则()A.A∩B=(﹣2,3)B.A∪B=(﹣2,3)C.A∪B=(﹣∞,1)∪(3,+∞)D.A∩B=(﹣2,0)2.(5分)与角2021°终边相同的角是()A.221°B.﹣2021°C.﹣221°D.139°3.(5分)已知m=0.92020,n=20200.9,p=log0.92020,则m,n,p的大小关系是()A.m<n<p B.m<p<n C.p<m<n D.p<n<m4.(5分)已知平面向量=(﹣1,2),=(3,5),若(+λ)⊥,则λ=()A.B.﹣C.D.﹣5.(5分)已知[x]表示不超过实数x的最大整数,g(x)=[x]为取整函数,x0是函数f(x)=lnx+x﹣4的零点,则g(x0)=()A.4B.5C.2D.36.(5分)函数f(x)=ln(﹣kx)的图象不可能是()A.B.C.D.7.(5分)在公差大于0的等差数列{a n}中,2a7﹣a13=1,且a1,a3﹣1,a6+5成等比数列,则数列{(﹣1)n﹣1a n}的前21项和为()A.21B.﹣21C.441D.﹣4418.(5分)已知函数满足,则f(x)图象的一条对称轴是()A.B.C.D.9.(5分)如图,已知三棱锥V﹣ABC,点P是VA的中点,且AC=2,VB=4,过点P作一个截面,使截面平行于VB和AC,则截面的周长为()A.12B.10C.8D.610.(5分)已知数列{a n}满足a n+2=a n+1+a n,n∈N*.若4a5+3a6=16,则a1+a2+…+a9=()A.16B.28C.32D.4811.(5分)如图,长方体ABCD﹣A1B1C1D1中,E、F分别为棱AB、A1D1的中点.直线DB1与平面EFC的交点O,则的值为()A.B.C.D.12.(5分)已知关于x的不等式在(0,+∞)上恒成立,则实数λ的取值范围为()A.B.(e,+∞)C.D.(0,e)二、填空题(共4小题).13.(5分)(cos x+sin x)dx的值为.14.(5分)函数的图象在点(0,f(0))处的切线方程为.15.(5分)已知锐角α、β满足,则的最小值为.16.(5分)在长方体ABCD﹣A1B1C1D1中,,BC=1,点M在正方形CDD1C1内,C1M⊥平面A1CM,则三棱锥M﹣A1CC1的外接球表面积为.三、解答题(共6小题).17.(10分)已知sinθ+cosθ=,θ∈(﹣,).(1)求θ的值:(2)设函数f(x)=sin2x﹣sin2(x+θ)x∈R,求函数f(x)的单调增区间.18.(12分)已知数列{a n}的前n项和S n满足2S n=3n2﹣n,数列{log3b n}是公差为﹣1的等差数列,b1=1.(1)求数列{a n},{b n}的通项公式;(2)设c n=a2n+1+b2n+1,求数列{c n}的前n项和T n.19.(12分)在三棱柱ABC﹣A1B1C1中,AB=2,BC=BB1=4,,且∠BCC1=60°.(1)求证:平面ABC1⊥平面BCC1B1;(2)设二面角C﹣AC1﹣B的大小为θ,求sinθ的值.20.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,S为△ABC的面积,sin(B+C)=.(Ⅰ)证明:A=2C;(Ⅱ)若b=2,且△ABC为锐角三角形,求S的取值范围.21.(12分)已知函数f(x)=cos x.(1)已知α,β为锐角,,,求cos2α及tan(β﹣α)的值;(2)函数g(x)=3f(2x)+1,若关于x的不等式g2(x)≥(a+1)g(x)+3a+3有解,求实数a的最大值.22.(12分)已知函数f(x)=mx﹣xlnx(x>1).(1)讨论f(x)的极值;(2)若m为正整数,且f(x)<2x+m恒成立,求m的最大值.(参考数据:ln4≈1.39,ln5≈1.61)参考答案一、选择题(共12小题).1.(5分)已知集合A={x|﹣2<x<1},B={x|y=lg(3x﹣x2)},则()A.A∩B=(﹣2,3)B.A∪B=(﹣2,3)C.A∪B=(﹣∞,1)∪(3,+∞)D.A∩B=(﹣2,0)解:∵集合A={x|﹣2<x<1},B={x|y=lg(3x﹣x2)}={x|0<x<3},∴A∩B={0<x<1},A∪B={x|﹣2<x<3},故A,C,D均错误,B正确,故选:B.2.(5分)与角2021°终边相同的角是()A.221°B.﹣2021°C.﹣221°D.139°解:与角2021°终边相同的角是:k•360°+2021°,k∈Z,当k=﹣5时,与角2021°终边相同的角是221°.故选:A.3.(5分)已知m=0.92020,n=20200.9,p=log0.92020,则m,n,p的大小关系是()A.m<n<p B.m<p<n C.p<m<n D.p<n<m解:∵0<0.92020<0.90=1,20200.9>20200=1,log0.92020<log0.91=0,∴p<m<n.故选:C.4.(5分)已知平面向量=(﹣1,2),=(3,5),若(+λ)⊥,则λ=()A.B.﹣C.D.﹣解:∵,,且,∴,解得.故选:B.5.(5分)已知[x]表示不超过实数x的最大整数,g(x)=[x]为取整函数,x0是函数f(x)=lnx+x﹣4的零点,则g(x0)=()A.4B.5C.2D.3解:函数f(x)=lnx+x﹣4是在x>0时,函数是连续的增函数,∵f(e)=1+e﹣4<0,f(3)=ln3﹣1>0,∴函数的零点所在的区间为(e,3),g(x0)=[x0]=2.故选:C.6.(5分)函数f(x)=ln(﹣kx)的图象不可能是()A.B.C.D.解:∵A,B选项中,图象关于原点对称,∴f(x)为奇函数,即f(x)+f(﹣x)=0,即,∴k=±1,当k=1时,f(x)的图象为选项A;当k=﹣1时,f(x)的图象为选项B;而C,D选项中,图象关于y轴对称,所以f(x)为偶函数,即f(x)=f(﹣x),即,∴k=0,当k=0时,f(x)≥0,故f(x)的图象为选项D,不可能为选项C.故选:C.7.(5分)在公差大于0的等差数列{a n}中,2a7﹣a13=1,且a1,a3﹣1,a6+5成等比数列,则数列{(﹣1)n﹣1a n}的前21项和为()A.21B.﹣21C.441D.﹣441解:公差d大于0的等差数列{a n}中,2a7﹣a13=1,可得2a1+12d﹣(a1+12d)=1,即a1=1,a1,a3﹣1,a6+5成等比数列,可得(a3﹣1)2=a1(a6+5),即为(1+2d﹣1)2=1+5d+5,解得d=2(负值舍去)则a n=1+2(n﹣1)=2n﹣1,n∈N*,数列{(﹣1)n﹣1a n}的前21项和为a1﹣a2+a3﹣a4+...+a19﹣a20+a21=1﹣3+5﹣7+ (37)39+41=﹣2×10+41=21.故选:A.8.(5分)已知函数满足,则f(x)图象的一条对称轴是()A.B.C.D.解:函数满足,所以φ)=0,由于,故φ=.所以f(x)=A sin(2x+),令(k∈Z),解得(k∈Z).当k=1时,解得.故选:D.9.(5分)如图,已知三棱锥V﹣ABC,点P是VA的中点,且AC=2,VB=4,过点P作一个截面,使截面平行于VB和AC,则截面的周长为()A.12B.10C.8D.6解:如图所示,过点P作PF∥AC,交VC于点F,过点F作FE∥VB交BC于点E,过点E作EQ∥AC,交AB于点Q;由作图可知:EQ∥PF,所以四边形EFPQ是平行四边形;可得EF=PQ=VB=2,EQ=PF=AC=1;所以截面四边形EFPQ的周长为2×(2+1)=6.故选:D.10.(5分)已知数列{a n}满足a n+2=a n+1+a n,n∈N*.若4a5+3a6=16,则a1+a2+…+a9=()A.16B.28C.32D.48解:∵a n+2=a n+1+a n,∴a3=a2+a1,a4=a3+a2=2a2+a1,a5=a4+a3=3a2+2a1,a6=a5+a4=5a2+3a1,a7=a6+a5=8a2+5a1,a8=a7+a6=13a2+8a1,a9=a8+a7=21a2+13a1,∴a1+a2+…+a9=54a2+34a1=2×(27a2+17a1),∵4a5+3a6=16,∴4(3a2+2a1)+3(5a2+3a1)=16,即27a2+17a1=16,∴a1+a2+…+a9=2×(27a2+17a1)=2×16=32,故选:C.11.(5分)如图,长方体ABCD﹣A1B1C1D1中,E、F分别为棱AB、A1D1的中点.直线DB1与平面EFC的交点O,则的值为()A.B.C.D.解:交点O既在平面ECF上,又在平面D1DBB1上,∴O在面ECF与面D1DBB1的交线上,延展平面ECF,得到面ECHF,H在C1D1上,则K,M都即在面ECFH上,又在平面D1DBB1上,∴KM为面ECFH与面D1DBB1的交线,∴O在KM上,∵O在DB1上,∴DB1∩KM=O,取出平面D1DBB1,∵△KOB1∽△MOD,∴=.由△DMC∽△BME,得DM=,设G为C1D1的中点,由三角形相似可得,再由题意可得A1G∥FH,则,则.∴==.故选:A.12.(5分)已知关于x的不等式在(0,+∞)上恒成立,则实数λ的取值范围为()A.B.(e,+∞)C.D.(0,e)解:不等式在(0,+∞)上恒成立,即不等式>lnx在(0,+∞)上恒成立,则(eλx+1)λx>(x+1)lnx=(e lnx+1)lnx恒成立,设f(x)=(e x+1)x(x>0),则f(λx)>f(lnx),∵f′(x)=e x(x+1)+1>0,∴f(x)在(0,+∞)上单调递增,∴λx>lnx,∴λ>,设g(x)=(x>0),∴g′(x)=,令g′(x)=0,解得x=e,当0<x<e时,g′(x)>0,函数g(x)单调递增,当x>e时,g′(x)<0,函数g(x)单调递减,∴g(x)max=g(e)=,∴λ>.故选:A.二、填空题(每小题5分,共20分)13.(5分)(cos x+sin x)dx的值为2.解:(cos x+sin x)dx=(sin x﹣cos x)=(sin﹣cos)﹣(sin0﹣cos0)=(1﹣0)﹣0+1=2.故答案为:2.14.(5分)函数的图象在点(0,f(0))处的切线方程为2x+y =0.解:由,得f′(x)=2f′()+sin x,取x=,得f′()=2f′()+sin,解得f′()=﹣1,∴f′(x)=﹣2+sin x,得f′(0)=﹣2,又f(0)=﹣cos0+1=0,∴f(x)的图象在点(0,f(0))处的切线方程为y=﹣2x,即2x+y=0.故答案为:2x+y=0.15.(5分)已知锐角α、β满足,则的最小值为18.解:∵,∴sin(α+β)=sinαcosβ+cosαsinβ=sin=,设x=sinαcosβ,y=cosαsinβ,则x+y=,∵α、β均为锐角,∴x>0,y>0,∴=+=2(x+y)(+)=2(1+4+)≥2×(5+2)=18,当且仅当=,即=,即x=,y=时,等号成立.∴的最小值为18.故答案为:18.16.(5分)在长方体ABCD﹣A1B1C1D1中,,BC=1,点M在正方形CDD1C1内,C1M⊥平面A1CM,则三棱锥M﹣A1CC1的外接球表面积为11π.解:如图:点M在正方形CDD1C1内,C1M⊥平面A1CM,∴点M为正方形CDD1C1对角线的交点,∴MCC1是等腰直角三角形,M是直角顶点,设E是CC1的中点,则E是△MCC1的外心,取F是BB1的中点,则EF∥BC,而BC⊥平面CDD1C1,∴EF⊥平面CDD1C1,∴三棱锥M﹣A1CC1的外接球的球心O在直线EF上,由已知可计算FC==,A1F==>FC,∴点O在EF的延长线上,设OF=x,则由OA1=OC,可得()2+x2=(x+1)2+()2,解得x=,∴OC==,∴外接球表面积是S=4π×()2=11π,故答案为:11π.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知sinθ+cosθ=,θ∈(﹣,).(1)求θ的值:(2)设函数f(x)=sin2x﹣sin2(x+θ)x∈R,求函数f(x)的单调增区间.解:(1)因为sinθ+cosθ=,所以(sinθ+cosθ)2=sin2θ+cos2θ+2sinθcosθ=1+sin2θ=()2=,即sin2θ=,又θ∈(﹣,),所以2,所以2θ=﹣,θ=﹣.(2)由(1)可得θ=﹣,则f(x)=sin2x﹣sin2(x﹣),所以f(x)=(1﹣cos2x)﹣[1﹣cos(2x﹣)]=cos2x﹣+cos(2x﹣)=﹣cos2x+(cos2x+sin2x)=sin2x﹣cos2x=(sin2x﹣cos2x)=sin(2x﹣),令2k≤2x﹣≤2kπ+,k∈Z,则k≤x≤kπ+,k∈Z,所以函数的单调增区间为[k,kπ+],k∈Z.18.(12分)已知数列{a n}的前n项和S n满足2S n=3n2﹣n,数列{log3b n}是公差为﹣1的等差数列,b1=1.(1)求数列{a n},{b n}的通项公式;(2)设c n=a2n+1+b2n+1,求数列{c n}的前n项和T n.解:(1)数列{a n}的前n项和S n满足2S n=3n2﹣n,当n=1时,解得a1=1,当n≥2时,,两式相减得:a n=3n﹣2.数列{log3b n}是公差为﹣1的等差数列,b1=1.所以log3b n=1﹣n,所以.(2)c n=a2n+1+b2n+1=,所以=19.(12分)在三棱柱ABC﹣A1B1C1中,AB=2,BC=BB1=4,,且∠BCC1=60°.(1)求证:平面ABC1⊥平面BCC1B1;(2)设二面角C﹣AC1﹣B的大小为θ,求sinθ的值.解:(1)证明:在△ABC中,AB2+BC2=20=AC2,所以∠ABC=90°,即AB⊥BC.因为BC=BB1,AC=AB1,AB=AB,所以△ABC≌△ABB1.所以∠ABB1=∠ABC=90°,即AB⊥BB1.又BC∩BB1=B,所以AB⊥平面BCC1B1.又AB⊂平面ABC1,所以平面ABC1⊥平面BCC1B1.(2)解:由题意知,四边形BCC1B1为菱形,且∠BCC1=60°,则△BCC1为正三角形,取CC1的中点D,连接BD,则BD⊥CC1.以B为原点,以的方向分别为x,y,z轴的正方向,建立空间直角坐标系B﹣xyz,则B(0,0,0),B1(0,4,0),A(0,0,2),,.设平面ACC1A1的法向量为=(x,y,z),,.由,得取x=1,得=(1,0,).由四边形BCC1B1为菱形,得BC1⊥B1C;又AB⊥平面BCC1B1,所以AB⊥B1C;又AB∩BC1=B,所以B1C⊥平面ABC1,所以平面ABC1的法向量为.所以cos<>===.设二面角C﹣AC1﹣B的大小为θ,则sinθ==.20.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,S为△ABC的面积,sin(B+C)=.(Ⅰ)证明:A=2C;(Ⅱ)若b=2,且△ABC为锐角三角形,求S的取值范围.【解答】(Ⅰ)证明:由,即,∴,sin A≠0,∴a2﹣c2=bc,∵a2=b2+c2﹣2bc cos A,∴a2﹣c2=b2﹣2bc cos A,∴b2﹣2bc cos A=bc,∴b﹣2c cos A=c,∴sin B﹣2sin C cos A=sin C,∴sin(A+C)﹣2sin C cos A=sin C,∴sin A cos C﹣cos A sin C=sin C,∴sin(A﹣C)=sin C,∵A,B,C∈(0,π),∴A=2C.(Ⅱ)解:∵A=2C,∴B=π﹣3C,∴sin B=sin3C.∵且b=2,∴,∴==,∵△ABC为锐角三角形,∴,∴,∴,∵为增函数,∴.21.(12分)已知函数f(x)=cos x.(1)已知α,β为锐角,,,求cos2α及tan(β﹣α)的值;(2)函数g(x)=3f(2x)+1,若关于x的不等式g2(x)≥(a+1)g(x)+3a+3有解,求实数a的最大值.解:(1)∵函数f(x)=cos x,α,β为锐角,=cos(α+β),∴sin(α+β)==,∴tan(α+β)==﹣2.∵,∴cos2α====﹣.tan2α===﹣,故2α为钝角.tan(β﹣α)=tan[(α+β)﹣2α]===.(2)∵函数g(x)=3f(2x)+1=3cos2x+1∈[﹣2,4],若关于x的不等式g2(x)≥(a+1)g(x)+3a+3=(a+1)[g(x)+3]有解,令t=g(x)+3,则t∈[1,7],且(t﹣3)2≥(a+1)t有解,即a+1≤t+﹣6能成立,即a+7≤(t+)能成立.由于函数h(t)=t+在[1,3]上单调递减,在[3,9]上单调递增,h(1)=10,h(9)=10,故h(t)在[1,7]上的最大值为10,故有a+7≤10,即a≤3,故a的最大值为3.22.(12分)已知函数f(x)=mx﹣xlnx(x>1).(1)讨论f(x)的极值;(2)若m为正整数,且f(x)<2x+m恒成立,求m的最大值.(参考数据:ln4≈1.39,ln5≈1.61)解:(1)由f(x)=mx﹣xlnx(x>1),得f′(x)=m﹣1﹣lnx.当m﹣1≤0,即m≤1时,f′(x)>0对x>1恒成立,∴f(x)在(1,+∞)上单调递减,f(x)无极值;当m﹣1>0,即m>1时,令f′(x)=0,得x=e m﹣1,由f′(x)>0,得1<x<e m﹣1,由f′(x)<0,得x>e m﹣1,∴f(x)在x=e m﹣1处取得极大值,且极大值为f(e m﹣1)=me m﹣1﹣(m﹣1)e m﹣1=e m﹣1.综上所述,当m≤1时,f(x)无极值;当m>1时,f(x)的极大值为e m﹣1,无极小值.(2)∵当x>1时,f(x)<2x+m恒成立,∴当x>1时,mx﹣xlnx<2x+m,即m<对x>1恒成立,令h(x)=,得h′(x)=,令g(x)=x﹣lnx﹣3,则g′(x)=1﹣,∵x>1,∴g′(x)=1﹣>0,得g(x)是增函数,由g(x1)=x1﹣lnx1﹣3=0,得lnx1=x1﹣3,∵g(4)=4﹣ln4﹣3=1﹣ln4≈1﹣1.39=﹣0.39<0,g(5)=5﹣ln5﹣3=2﹣ln5≈2﹣1.61=0.39>0.∵g(x1)=0,g(x)为增函数,∴4<x1<5,当x∈(1,x1)时,h′(x)<0,h(x)单调递减,当x∈(x1,+∞)时,h′(x)>0,h(x)单调递增,∴x=x1时,h(x)取得最小值为h(x1),∴m<h(x1)=,又m为正整数,∴m≤4,故m的最大值为4.。

2022-2023学年江西省高三上学期理科数学期中考试试卷及答案

2022-2023学年江西省高三上学期理科数学期中考试试卷及答案

丰城中学2022-2023学年上学期高三期中考试试卷数学(理科)本试卷总分值为150分考试时长为120分钟考试范围:集合、逻辑、函数、三角、向量一、选择题(本题包括12小题,每小题5分,共60分。

在每小题给出的四个选项中只有一项是符合题目要求的)1.设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()U A B = ð()A .{1,3}B .{0,3}C .{2,1}-D .{2,0}-2.设x ∈R ,则“sin 1x =”是“cos 0x =”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.函数2π2sin tan()16y x x =+-+的最小正周期为()A.2π B.πC.32πD.2π4.函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图像大致为()A. B. C. D.5.为了得到函数2sin 3y x =的图象,只要把函数π2sin 35y x ⎛⎫=+ ⎪⎝⎭图象上所有的点()A.向左平移π5个单位长度 B.向右平移π5个单位长度C .向右平移π15个单位长度 D.向左平移π15个单位长度6.ABC ∆的内角A,B,C 所对的边分别为a,b,c,已知43cos ,47===B c b ,则ABC ∆的面积等于()73.A 273.B 9.C 29.D7.沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图, AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在 AB 上,CD AB ⊥.“会圆术”给出 AB 的弧长的近似值s 的计算公式:2CD s AB OA=+.当2,60OA AOB =∠=︒时,s =()A.112-B.112-C.92-D.92-8.若函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A.3- B.2- C.0D.19.设函数π()sin 3f x x ω⎛⎫=+⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A .513,36⎡⎫⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤⎥⎝⎦D .1319,66⎛⎤⎥⎝⎦10.已知3111,cos ,4sin 3244a b c ===,则()A .c b a >>B .b a c >>C .a b c>>D .a c b>>11.已知O 是三角形ABC 的外心,若()2||||2||||AC AB AB AO AC AO m AO AB AC ⋅+⋅=,且2sin sin B C +=数m 的最大值为()A .34B .35C .23D .1212.已知函数22()2(2)e (1)x x f x a a xe x =+-++有三个不同的零点123,,x x x ,且1230x x x <<<,则3123122)(2(2x x x x x x e e e ---的值为()A .3B .6C .9D .36二、填空题(本大题共4小题,每小题5分,共20分。

河南省南阳市2022-2023学年秋期中考试高三理数答案

河南省南阳市2022-2023学年秋期中考试高三理数答案

2022年秋期高中三年级期中质量评估数学试题(理)参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号123456789101112答案DCDBBDBDCABA二、填空题(本大题共4小题,每小题5分,共20分)13.114.215.13(2,2)()36k k k Z ππππ++∈16.(]1,01e ⎧⎫-∞⋃+⎨⎬⎩⎭三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.【解析】(1)211cos 21cos 221cos 21cos 2322()2222x x x x x f x π⎛⎫-++ ⎪++⎝⎭=+=+31sin 2cos 21sin 24423x x x π⎛⎫=++=++ ⎪⎝⎭.………………………………3分令5222,,2321212k x k k k x k πππππππππ-+≤+≤+∈-+≤≤+Z,∴()y fx =的单调递增区间为5,,1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ……………………5分(2)()12()12233g x x x ππϕϕ⎡⎤⎛⎫=+++=+++ ⎪⎢⎥⎣⎦⎝⎭.………………6分∵()y g x =关于点,12π⎛⎫⎪⎝⎭中心对称,∴222,,2332k k k ππππϕπϕ⋅++=∈=-+Z ,……………………………………7分∵02πϕ<<,∴3πϕ=.∴()1)1sin 222g x x x π=++=-………………………………………8分当2,,2,6333x x ππππ⎡⎤⎡⎤∈∈⎢⎢⎥⎣⎦⎣⎦∴sin 2x ⎤∈⎥⎣⎦…………………………………9分所以1()1,24g x ⎡⎤∈-⎢⎥⎣⎦.………………………………………………………10分18.【解析】(1)由n b =得,2211==a a b ,故211222--=⋅=n n n b …………………………………………………………2分则12212)(-+==n n n n b a a ①所以,12212+++=n n n a a ②………………………………………………………4分由①②得,n n a a 42=+.…………………………………………………………6分(2)由(1)知数列}{2n a 和数列}{12-n a 均为公比为4的等比数列,…………8分所以,1212224--=⋅=n n n a a ,22111-224--=⋅=n n n a a 2122n n n c a a -=+=1122245222---⨯=⋅+n n n .…………………………………10分所以,)14(3541455-=-⨯-=nn n S ………………………………………………12分19.【解析】(1)()f x 的定义域是(0,)+∞,()ln 1f x x '=+,令()0,f x '=则1x e=,……………………………………………………………2分当1(0,)x e∈,()0,f x '<()f x 单调递减,当1(,)x e∈+∞,()0,f x '>()f x 单调递增,所以()f x 在1x e=处取得极小值,………………………………………………4分故()f x 有极小值1e-,无极大值.…………………………………………………5分(2)(法一)由()()f x g x ≥在[)2,+∞上恒成立,即ln 1x x k x ≤-在[)2,+∞上恒成立,只需min ln ()1x xk x ≤-…………………………7分令ln ()1x xh x x =-,则2ln 1()(1)x x h x x --'=-,………………………………………9分令()ln 1x x x ϕ=--,则1()x x xϕ-'=,………………………………………10分易知当(1,)x ∈+∞时,()0x ϕ'>,()x ϕ单调递增,所以()(0)0x ϕϕ≥=,所以ln 10x x -->,即()0h x '>,即()h x 单调递增,故min ()(2)2ln 2h x h ==.…………………………………………………………11分所以k 的取值范围是(],2ln 2-∞.…………………………………………………12分(法二)由题(ln 1)k x x x -≥,即(n 1)l k x x x -≥,令(1)()ln h x x k x x=--………6分则22(11())kx k x x kh x xx x '=--=--,…………………………………………………7分当2k ≤时,0x k ->,()0f x '>,()f x 递增,所以min ()(2)ln 202kh x h ==-≥,所以2ln 2k ≤;…………………………………9分当2k >时,有x k >时,()0f x '>,()f x 递增,x k <时,()0f x '<,()f x 递减,即min ()()ln (1)h x h k k k ==--,可证ln (1)0k k --<,显然不合题意,舍去.…11分综上,所以k 的取值范围是(],2ln 2-∞.…………………………………………………12分20.【解析】(1)当1n =时,则1121a a =+,所以11a =,因为)1(2+=n n a n S ①所以,当2n ≥时,)1(1-21-1-+=n n a n S )(②…………………………2分①-②得:()()()1211,2n n n a n a n --=--≥,③故,()()()12321,3n n n a n a n ---=--≥,④③-④得:()1223n n n a a a n --=+≥,所以{}n a 为等差数列,…………………………5分又213d a a =-=,所以,()13132n a n n =+-=-;…………………………6分(2)由()()21n n S n a n N *=+∈得2)13(-=n n S n ,故1221211(2(33)3(1)31n S n n n n n n n ==⋅=-++++,.………………………9分故1231111211111...)()...()]246232231n n T S S S S n n n =++++=-+-+++++++212(1313(1)nn n =-=++…………………………………………………………12分21.【解析】(1)令3412(0)a b k k ==>,由2222222(4)(3)cos ,32243a b c k k c C ab k k +-+-===⨯⋅3c k ∴=.………………………………………………………………………………2分即4,3,3a k b k c k ===,从而a 边最大,…………………………………………3分又222222(3)(3)(4)21cos 02233189b c a k k k A bc k k +-+-====>⋅⋅,即A 为锐角,………5分∴ABC ∆为锐角三角形.……………………………………………………………6分(2)因为sin cos sin cos sin()A B B A A B ⋅=⋅+⋅=+m n ,而在ABC △中,π,0πA B C C +=-<<,所以sin()sin A B C +=,又sin 2C ⋅=m n ,所以sin 2sin ,C C =得1cos 2C =,所以π3C =.……………………………………7分又ABC ∆为锐角三角形,1022π1032A A ππ⎧<<⎪⎪∴⎨⎪<-<⎪⎩,解得,tan 623A A ππ<<>, (8)分1sin sin sin 1322sin sin sin 2A A Ab B a A A A π⎛⎫+ ⎪⎝⎭==== ,………………………10分结合3tan 3A >12+∈1,22⎛⎫⎪⎝⎭.…………………………………………11分所以1,22b a ⎛⎫∈ ⎪⎝⎭.………………………………………………………………………12分22.【解析】(1)当1=a 时,21()12xf x e x x =---,由题()()()2g x h x f x +=,其中)(x g 为偶函数,)(x h 为奇函数,易知()()()g x f x f x =+-,从而得2()2x x g x e e x -=+--.………2分所以'()2x x g x e e x -=--.令()'()x g x ϕ=,则'()2x x x e e ϕ-=+-.因为'()220x x x e e ϕ-=+-≥=,当且仅当0x =时等号成立,所以'()g x 在R 上单调递增.………………………………………………………………4分注意到()'00g =,当(,0)x ∈-∞时,'()0g x <,(0,)x ∈+∞时,'()0g x >.所以()g x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.………………………………5分(2)由()f x 的定义域是R .'()x f x e x a =--,设函数()x h x e x a =--,则'()1x h x e =-.令'()0h x =,得0x =.……………………6分因为)'(h x 在R 上单调递增,所以当(,0)x ∈-∞时'()0h x <,当(0,)x ∈+∞时'()0h x >.因此()h x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.于是()()010h x h a ≥=-≥,即'()0f x ≥,所以()f x 在R 上单调递增..………………………………………………………………7分注意到()00f =,所以在(),0-∞上()0f x <,在()0,∞+上()0f x >.所以函数(),0()(),0f x x y f x f x x -<⎧==⎨≥⎩,()y f x =在(),0-∞上单调递减,在()0,∞+上单调递增.故()(){}()-1,1max f x maxf f =,…………………………………………………8分又]1,1[-∈a ()()3313311,12222f e a e a f a a e e=--=---=-+=--|(1)||(1)|f f --=013<--e e ,因此max 3|()||(1)|2f x f e a ==--.……………9分又()max max 3|'()|111|()|2f x f e a e a e a f x '≥=--=-->--=,……………11分所以|()||'()|max max f x f x <,即M N <…………………………………………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阳光高中2016-2017学年度第一学期期中考试
高三数学(理)
考生注意:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考生作答时,
将答案答在答题卡上,在本试卷上答题无效.考试时间120分钟。

第一卷(选择题 共60分)
一选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题
目要求的.
1.对命题“∃x 0∈R,x 02-2x 0+4≤0”的否定正确的是 ( ) A .∃x 0∈R,x 02-2x 0+4>0 B .∀x ∈R,x 2-2x+4≤0 C .∀x ∈R,x 2-2x+4>0 D .∀x ∈R,x 2-2x+4≥0 2、设集合∈<≤=x x x A 且30{N }的真子集的个数是
A .15
B .8
C .7
D .3
3. 若为a 实数,且
2i
3i 1i
a +=++,则a =( ) A .4- B .3- C .3 D .4 4、已知曲线y=
12x 2+1的一条切线的斜率为1
2
,则切点的横坐标为( ) A 0 B 1 C 2 D 3
5. 已知函数2
)(x
x e e x f --=,则下列判断中正确的是
A .奇函数,在R 上为增函数
B .偶函数,在R 上为增函数
C .奇函数,在R 上为减函数
D .偶函数,在R 上为减函数 6. 为了得到函数x
y )3
1(3⨯=的图象,可以把函数x
y )3
1(=的图象 A .向左平移3个单位长度 B .向右平移3个单位长度
C .向左平移1个单位长度
D .向右平移1个单位长度
7. 已知函数f (x )=⎩⎨⎧2x , x >0
x +1,x ≤0
,若f(a)+f(1)=0,则实数a 的值等于( )
A .3
B .1
C .-3
D .-1
8. ,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长, 不同的选法总数是( )
A. 20 B .16 C .10 D .6
9
.在8
2
x ⎛ ⎝的展开式中的常数项是( ) A.7 B .7- C .28 D .28- 10. 随机变量~(0,1)N ξ,则()12P ξ≤≤=( )
A.0.0215 B. 0.1359 C. 0.1574 D. 0.2718






()0.6826
P μσξμσ-≤≤+=,
(22)0.9544
P μσξμσ-≤≤+=,
(33)0.9974P μσξμσ-≤≤+=)
11. 如图是函数)(x f y =的导函数)(x f '的图象,则下面判断正确的是 A .在区间(-2,1)上)(x f 是增函数 B .在(1,3)上)(x f 是减函数 C .在(4,5)上)(x f 是增函数 D .当4=x 时,)(x f 取极大值
12、曲线3πcos 02y x x ⎛⎫
= ⎪⎝

≤≤
与x 轴以及直线3π2x =所围图形的面积为( ) A.4
B.2
C.
5
2
D.3
第二卷 (非选择题 共90分)
二.填空题;本大题共4小题,每小题5分. 13. i 是虚数单位,计算
12i
2i
-+ 的结果为 . 14.观察按下列顺序排列的等式:9011⨯+=,91211⨯+=,92321⨯+=,93431⨯+=,…,猜想第*()n n ∈N 个等式应为
15. 曲线34y x x =-在点)3,1(--处的切线方程是
16.
若9
a x ⎛- ⎝
的展开式中3
x 的系数为94,则常数a 的值为 .
三.解答题 (70分)解答应写出文字说明,证明过程或演算步骤。

17.(10分)两个人射击,甲射击一次中靶概率是21
,乙射击一次中靶概率是3
1,
(Ⅰ)两人各射击一次,中靶至少一次就算完成目标,则完成目标概率是多少? (Ⅱ)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少? (Ⅲ)两人各射击5次,是否有99%的把握断定他们至少中靶一次?
18 (12分)设函数f(x)= 为奇函数. 求:(1)实数a 的值;
(2)用定义法判断f (x )在其定义域上的单调性.
19. (12分)甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92,(1)求该题被乙独立解出的概率;(2)求解出该题的人数ξ的数学期望和方差
20(12分)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,
要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为1
2,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为X ,求X 的分布列.
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因. 21. (12分)已知函数ax x x f 3)(3-=.
(1)当1=a 时,求函数)(x f 在闭区间]2,2[-上的极值; (2)讨论函数)(x f 的单调性.
22. ( 12分)设()y f x =是二次函数,方程()0f x =有两个相等的实根,且()22f x x '=+. (1)求()y f x =的表达式;
(2)若直线(01)x t t =-<<把()y f x =的图象与两坐标轴所围成图形的面积二等分,求t 的值.
1
222+-+∙x x
a a
阳光高中2016-2017学年度第一学期期中考试答题卡
高三数学(理)
二、选择题(每小题5分,共20分)
13._____________________ 14._______________________ 15._____________________ 16.________________________。

相关文档
最新文档