五年级下册数学学案奥数第一讲 不规则图形面积的计算(一)_通用版(习题无答案)
最新北师大版小学五年级数学下册奥数知识讲解第一课(不规则图形面积的计算)

五年级下册数学奥数知识讲解第一课《不规则图形面积的计算1》奥数练习题和答案五年级奥数下册:第一讲不规则图形面积的计算(一)
五年级奥数下册:第一讲不规则图形面积的计算习题
五年级奥数下册:第一讲不规则图形面积的计算习题解答
学生每日提醒
励志名言:
1、播下一个信念,收获一种行动;播下一个行动,收获一种习惯;播下一个习惯,收获一种性格;播下一个性格,收获一种命运。
2、人生的绚丽多彩和卑微只因是平台不同,而决定平台的恰恰是自己平时的行为和习惯。
3、如果把学习看作投资的话,它应该是一本万利的,应该是世界回报最多的投资。
4、伟人所达到并保持着的高处,并不是一飞就到的,而是他们在同伴们都睡着的时候,一步步艰辛地向上攀爬的。
5、学习只是一种状态和一种习惯而已。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲不规则图形面积的计算(一)
我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:
实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例1 如图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
解:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
又因为S甲+S乙=12×12+10×10=244,
所以阴影部分面积=244-(50+132+12)=50(平方厘米)。
例2 如图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积.
解:因为△ABE、△ADF与四边形AECF的面积彼此相等,所以四边形AECF的面积与△ABE、△ADF的面积都等于正方形ABCD
在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,
∴△ECF的面积为2×2÷2=2。
所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。
例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如图那样重合.求重合部分(阴影部分)的面积。
解:在等腰直角三角形ABC中
∵AB=10
∵EF=BF=AB-AF=10-6=4,
∴阴影部分面积=S
△ABG -S
△BEF
=25-8=17(平方厘米)。
例4 如图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求△ABD及△ACE的面积.
解:取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等高,所以它们的面积相等,都等于5平方厘米.
所以△ACD的面积等于15平方厘米,△ABD的面积等于10平方厘米。
又由于△ACE与△ACD等底、等高,所以△ACE的面积是15平方厘米。
例5 如图,在正方形ABCD中,三角形ABE的面积是8平方厘
解:过E作BC的垂线交AD于F。
在矩形ABEF中AE是对角线,所以S
△ABE =S
△AEF
=8.在矩形CDFE中DE是
对角线,所以S
△ECD =S
△EDF。
例6 如图,已知:S
△ABC
=1,解:连结DF。
∵AE=ED,
∴S
△AEF =S
△DEF
;S
△ABE
=S△B
ED
,
例7 如图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的长DG 为5厘米,求它的宽DE等于多少厘米?
解:连结AG,自A作AH垂直于DG于H,在△ADG中,AD=4,DC=4(AD 上的高).
∴S△AGD=4×4÷2=8,又DG=5,
∴S△AGD=AH×DG÷2,
∴AH=8×2÷5=3.2(厘米),
∴DE=3.2(厘米)。
例8 如图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.
解:∵梯形面积=(上底+下底)×高÷2
即45=(AD+BC)×6÷2,
45=(AD+10)×6÷2,
∴AD=45×2÷6-10=5米。
∴△ADE的高是2米。
△EBC的高等于梯形的高减去△ADE的高,即6-2=4米,
例9 如图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.
证明:连结CE,平行四边形ABCD的面积等于△CDE面积的2倍,而平行四边形DEFG的面积也是△CDE面积的2倍。
∴平行四边形ABCD的面积与平行四边形DEFG的面积相等。
习题一
一、填空题(求下列各图中阴影部分的面积):
二、解答题:
1.如图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。
2.如图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米.求四边形CMGN(阴影部分)的面积.
3.如图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。
4.如图,已知CF=2DF,DE=EA,三角形BCF的面积为2,四边形BEDF 的面积为4.求三角形ABE的面积.
5.如图,直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD =5厘米.又三角形ABF、三角形BCE和四边形BEDF的面积相等。
求三角形DEF的面积.
6.如图,四个一样大的长方形和一个小的正方形拼成一个大正方形,其中大、小正方形的面积分别是64平方米和9平方米.求长方形的长、宽各是多少?
7.如图,有一三角形纸片沿虚线折叠得到右下图,它的面积与原三角形面积之比为2:3,已知阴影部分的面积为5平方厘米.求原三角形面积.
8.如右图,平行四边形 ABCD的边长BC=10,直角三角形BCE的直角边EC长8,已知阴影部分的面积比△EFG的面积大10.求CF的长.。