函数单调性复习教案

合集下载

高三一轮复习:函数的单调性

高三一轮复习:函数的单调性

高三一轮复习:函数的单调性第一篇:高三一轮复习:函数的单调性高三一轮复习:函数的单调性教学设计一、【教学目标】【知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.二、【教学重点】函数单调性的概念、判断、证明及应用.函数的单调性是函数的最重要的性质之一,它在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际应用,三、【教学难点】归纳抽象函数单调性的定义以及根据定义或导数证明函数的单调性.由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下(1)函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数、三角函数及其他函数单调性的理论基础。

(2)函数的单调性是培养学生数学能力的良好题材,同时还要综合利用前面的知识解决函数单调性的一些问题,有利于学生数学能力的提高。

(3)函数的单调性有着广泛的实际应用。

在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个数学教学。

因此“函数的单调性”在中学数学内容里占有十分重要的地位。

它体现了函数的变化趋势和变化特点,在利用函数观点解决问题中起着十分重要的作用,为培养创新意识和实践能力提供了重要方式和途径。

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)章节一:函数单调性的引入1. 引入概念:单调增加和单调减少2. 讲解实例:设f(x) = x,则f(x)在实数集上单调增加设g(x) = -x,则g(x)在实数集上单调减少3. 总结:函数单调性是描述函数值变化趋势的重要性质,分为单调增加和单调减少两种情况。

章节二:函数单调性的定义1. 定义单调增加:若对于任意的x1 < x2,都有f(x1) ≤f(x2),则称f(x)在区间I上单调增加。

2. 定义单调减少:若对于任意的x1 < x2,都有f(x1) ≥f(x2),则称f(x)在区间I上单调减少。

3. 举例说明:设h(x) = 2x + 3,则h(x)在实数集上单调增加设k(x) = -x^2 + 1,则k(x)在区间[-1, 1]上单调增加,在区间(-∞, -1]和[1, +∞)上单调减少章节三:函数单调性的判断方法1. 导数法:若函数f(x)在区间I上可导,且导数f'(x) ≥0(单调增加)或f'(x) ≤0(单调减少),则f(x)在区间I上单调增加或单调减少。

2. 图像法:绘制函数图像,观察函数值的变化趋势,判断单调性。

3. 表格法:列出函数在不同x值下的函数值,观察函数值的变化规律,判断单调性。

章节四:函数单调性的应用1. 最大值和最小值:对于单调增加的函数,最大值出现在定义域的右端点;对于单调减少的函数,最小值出现在定义域的左端点。

2. 函数的切线:单调增加的函数在切点处的切线斜率为正;单调减少的函数在切点处的切线斜率为负。

3. 函数的图像:单调增加的函数图像上升,单调减少的函数图像下降。

章节五:单调性在实际问题中的应用1. 线性规划:利用函数的单调性确定最优解的位置。

2. 优化问题:求函数的最值,利用函数的单调性判断最值的位置。

3. 经济学:分析市场需求和供给的单调性,预测市场变化趋势。

4. 物理学:研究物体运动的速度和加速度,利用单调性分析物体的运动状态。

《函数单调性教案》

《函数单调性教案》

《函数单调性教案》一、教学目标:1. 理解函数单调性的概念,掌握函数单调增和单调减的定义。

2. 学会利用单调性判断函数的性质,如极值、最值等。

3. 能够运用单调性解决实际问题,如求函数的极值、最值等。

二、教学内容:1. 函数单调性的概念及单调增、单调减的定义。

2. 单调性的判断方法及应用。

3. 实际问题中的单调性应用。

三、教学重点与难点:1. 函数单调性的概念及判断方法。

2. 单调性在实际问题中的应用。

四、教学方法:1. 讲授法:讲解函数单调性的概念、判断方法及应用。

2. 案例分析法:分析实际问题,引导学生运用单调性解决问题。

3. 互动教学法:提问、讨论,激发学生的思考。

五、教学过程:1. 导入:复习函数的概念,引导学生思考函数的性质。

2. 讲解:讲解函数单调性的概念,引导学生理解单调增、单调减的定义。

3. 举例:分析具体函数的单调性,让学生学会判断。

4. 练习:布置练习题,让学生巩固单调性的判断方法。

5. 案例分析:分析实际问题,引导学生运用单调性解决问题。

6. 总结:回顾本节课的内容,强调单调性的重要性。

7. 作业布置:布置课后作业,巩固所学内容。

六、教学评估:1. 课堂提问:通过提问了解学生对函数单调性的理解和掌握程度。

2. 练习题:收集学生练习题的答案,评估学生对单调性判断方法的掌握。

3. 案例分析:评估学生在实际问题中运用单调性的能力。

七、教学拓展:1. 引导学生思考函数单调性在实际生活中的应用,如经济学中的需求曲线、供给曲线等。

2. 介绍函数单调性在数学其他领域的应用,如微分、积分等。

八、教学资源:1. 教材:提供相关教材,为学生提供系统性的学习材料。

2. 课件:制作课件,辅助教学,提高课堂效果。

3. 练习题:准备练习题,巩固所学内容。

4. 实际问题案例:收集实际问题案例,用于教学实践。

九、教学建议:1. 注重概念的理解:在教学过程中,要强调函数单调性概念的理解,让学生明白单调性是什么。

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)第一章:函数单调性的概念及意义1.1 函数单调性的定义引入函数单调性的概念,让学生理解函数单调性的含义。

举例说明函数单调性的两种类型:单调递增和单调递减。

1.2 函数单调性的意义解释函数单调性在数学分析中的重要性,如在求解极值、最值等问题中的应用。

通过实际例子展示函数单调性在现实生活中的应用,如经济学中的需求函数等。

第二章:函数单调性的判断方法2.1 图像法教授如何通过观察函数图像来判断函数的单调性。

引导学生学会识别函数图像中的单调区间。

2.2 导数法介绍导数与函数单调性的关系。

教授如何利用导数的正负来判断函数的单调性。

第三章:函数单调性的应用3.1 求函数的极值讲解如何利用函数单调性来求解函数的极值。

通过例题让学生掌握求解极值的方法。

3.2 求函数的最值介绍如何利用函数单调性来求解函数的最值。

通过例题让学生理解最值的求解过程。

第四章:函数单调性的进一步探讨4.1 单调区间与导数的关系讲解单调区间与导数之间的关系,让学生理解导数在单调性判断中的作用。

通过例题展示导数在单调区间判断中的应用。

4.2 单调性在实际问题中的应用介绍单调性在实际问题中的应用,如优化问题、经济问题等。

通过实际例子让学生学会如何运用单调性解决实际问题。

第五章:综合练习与拓展5.1 综合练习题提供综合练习题,让学生巩固函数单调性的概念、判断方法和应用。

引导学生学会如何运用所学知识来解决问题。

5.2 拓展与应用引导学生思考函数单调性在其他数学领域的应用,如微分方程、线性代数等。

提供一些拓展问题,激发学生的学习兴趣和思考能力。

第六章:函数单调性的高级应用6.1 函数的单调性与其他数学概念的联系探讨函数单调性与其他数学概念的联系,如微分、积分、极限等。

通过例题展示函数单调性在其他数学领域的应用。

6.2 函数单调性在优化问题中的应用介绍函数单调性在优化问题中的应用,如求解最大值、最小值等。

通过实际例子让学生学会如何运用函数单调性来解决优化问题。

函数单调性教案

函数单调性教案

函数单调性教案中的这种变化规律,可以用数学中的函数来描述。

引导学生思考函数与实际生活的联系。

二)函数单调性的概念和判断方法讲解函数单调性的概念和判断方法,引导学生观察图像,数形结合,发现图像上升或下降时函数值的变化规律,推广到一般函数,得出增减函数定义。

学生归纳出判断的方法及步骤并进行简单的应用。

三)函数单调性的证明通过对函数单调性的定义进行探究,引导学生进行推理论证,提高学生的推理论证能力。

四)课后练布置课后练,让学生巩固所学知识,体现层次性,照顾各层次的同学。

通过实际生活中的例子引导学生理解函数的概念,讲解函数单调性的概念和判断方法,引导学生观察图像,数形结合,发现图像上升或下降时函数值的变化规律,推广到一般函数,得出增减函数定义。

通过对函数单调性的定义进行探究,引导学生进行推理论证,提高学生的推理论证能力。

布置课后练,让学生巩固所学知识。

中处处都有数学,因为数学是一门广泛应用于各个领域的学科。

其中,气温变化也蕴含着丰富的数学知识,例如函数的单调性。

函数的单调性指的是在一个区间范围内,函数上升或下降的趋势。

观察函数图像和变量的变化可以帮助我们理解函数的单调性。

上节课的作业中,我们观察了三个函数图像,可以看出它们的变化趋势。

例如,从4点到7点,7点到14点温度是升高的;从点到4点,14点到24点温度是下降的。

通过这样的观察,我们可以感受到生活中处处都蕴含着数学,激发学生的研究热情。

除了观察函数图像,我们还可以通过增减函数的概念来判断函数的单调性。

增减函数是指函数在某个区间内的导数为正或负。

通过这种方法,我们可以更清楚地表述函数的单调性。

需要注意的是,函数的单调性具有局部性,必须在一个区间范围内进行观察和判断。

因此,无论是从图像上还是从变量上,我们都需要借助函数图像来观察和判断函数的单调性。

学中随机选择m个同学回答)。

函数的单调性与增减性是密切相关的,通常我们把具有单调性的函数称为增函数或减函数。

函数的单调性 教案

函数的单调性 教案

函数的单调性教案教案标题:函数的单调性教案目标:1. 理解函数的单调性的概念和意义;2. 掌握判断函数单调性的方法和技巧;3. 能够应用函数的单调性解决实际问题。

教案步骤:引入与导入(5分钟):1. 引入函数的概念,复习函数的定义和表示方法;2. 引入函数的单调性的概念,解释函数的单调性与图像的关系。

讲解与示范(15分钟):1. 解释函数的单调性的定义:若对于函数f(x)的定义域内的任意两个实数a和b,若a < b,则有f(a) < f(b)(单调递增)或f(a) > f(b)(单调递减);2. 示范判断函数的单调性的方法:通过函数的导数、函数的图像、函数的表格等方式。

练习与讨论(20分钟):1. 练习判断函数的单调性:给出一些函数的表达式或图像,学生根据定义判断其单调性;2. 学生讨论判断函数单调性的方法和技巧,分享自己的解题思路。

应用与拓展(15分钟):1. 应用函数的单调性解决实际问题:例如利用函数的单调性解决最优化问题、优化生产过程等;2. 拓展函数的单调性概念:介绍函数的严格单调性和非严格单调性,以及函数的局部单调性和整体单调性。

总结与延伸(5分钟):1. 总结函数的单调性的概念和判断方法;2. 引导学生思考函数的单调性在数学和实际问题中的应用。

教案评估:1. 出示几个函数的图像,要求学生判断其单调性;2. 布置作业,要求学生解决一个实际问题,应用函数的单调性进行分析和求解。

教案拓展:1. 引入函数的凹凸性的概念,与函数的单调性进行比较;2. 引入函数的最值概念,与函数的单调性进行联系和探讨。

函数的单调性优秀教案

函数的单调性优秀教案

函数的单调性优秀教案一、教学目标1、知识与技能目标理解函数单调性的概念,能够根据函数的图象判断函数的单调性。

掌握函数单调性的证明方法,能运用定义证明函数的单调性。

2、过程与方法目标通过观察函数图象,引导学生发现函数单调性的特征,培养学生的观察能力和归纳能力。

通过函数单调性的证明,让学生体会从特殊到一般、从具体到抽象的思维方法,提高学生的逻辑推理能力。

3、情感态度与价值观目标让学生在自主探究中体验成功的喜悦,增强学习数学的信心。

通过函数单调性的应用,让学生感受数学与实际生活的紧密联系,提高学生学习数学的兴趣。

二、教学重难点1、教学重点函数单调性的概念。

运用定义证明函数的单调性。

2、教学难点函数单调性定义的理解。

利用定义证明函数的单调性。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课展示函数图象,如一次函数 y = 2x + 1,二次函数 y = x²的图象。

引导学生观察图象的上升和下降趋势,提问:“从图象中,你能发现函数值随着自变量的变化有什么规律吗?”2、讲授新课给出函数单调性的定义:设函数 f(x) 的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x) 在区间 D 上是增函数(或减函数)。

强调定义中的关键词:定义域、区间、任意、都有。

通过具体例子,如 f(x) = x²在区间 0, +∞)上是增函数,在区间(∞, 0 上是减函数,帮助学生理解函数单调性的概念。

3、例题讲解例 1:判断函数 f(x) = 2x 1 在区间(∞,+∞)上的单调性。

分析:设 x₁,x₂是区间(∞,+∞)上的任意两个实数,且 x₁< x₂,计算 f(x₂) f(x₁),判断其符号。

解:f(x₂) f(x₁) =(2x₂ 1) (2x₁ 1) = 2(x₂ x₁)因为 x₁< x₂,所以 x₂ x₁> 0,所以 2(x₂ x₁) > 0,即 f(x₂) f(x₁) > 0,所以 f(x) = 2x 1 在区间(∞,+∞)上是增函数。

函数的单调性教案

函数的单调性教案

函数的单调性教案第一章:函数单调性的基本概念1.1 引入:引导学生回顾初中阶段学过的函数概念,复习一次函数、二次函数的图像和性质。

提问:函数的图像是否具有单调性?如何描述函数的单调性?1.2 单调性的定义:讲解函数单调性的定义,引导学生理解单调递增和单调递减的概念。

举例说明:如y=x,y=2x+1等函数的单调性。

1.3 单调性的判断:教授如何判断函数的单调性,引导学生掌握利用导数或图像判断单调性的方法。

第二章:单调递增函数的性质2.1 单调递增的定义:复习单调递增的定义,强调函数值随着自变量的增加而增加的特点。

举例说明:如y=x,y=2x+1等函数的单调递增性质。

2.2 单调递增函数的图像:讲解单调递增函数的图像特点,引导学生理解函数图像随着x的增加而上升的趋势。

2.3 单调递增函数的性质:教授单调递增函数的性质,如凹凸性、极值等。

第三章:单调递减函数的性质3.1 单调递减的定义:复习单调递减的定义,强调函数值随着自变量的增加而减少的特点。

举例说明:如y=-x,y=-2x-1等函数的单调递减性质。

3.2 单调递减函数的图像:讲解单调递减函数的图像特点,引导学生理解函数图像随着x的增加而下降的趋势。

3.3 单调递减函数的性质:教授单调递减函数的性质,如凹凸性、极值等。

第四章:单调性的应用4.1 最大值和最小值:讲解如何利用函数的单调性求解最大值和最小值问题。

4.2 函数的单调区间:讲解如何确定函数的单调递增区间和单调递减区间。

4.3 函数的单调性与方程的解:讲解如何利用函数的单调性来解决方程的解的问题。

第五章:单调性的综合应用5.1 函数图像的变换:讲解如何利用单调性来分析和理解函数图像的平移、翻折等变换。

5.2 函数的单调性与实际问题:引导学生将函数的单调性应用于解决实际问题,如优化问题、经济问题等。

5.3 单调性的进一步探讨:引导学生思考单调性的局限性,如非单调函数的特殊情况。

第六章:复合函数的单调性6.1 复合函数的概念:引导学生回顾复合函数的定义,理解复合函数是由两个或多个基本函数通过函数运算组合而成的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京梦飞翔教育个性化辅导教案学生:教师:时间:年月日_____段课时:学管师签字:___________函数的单调性(二)考点分析考点1 函数的单调性题型1:讨论函数的单调性例1. 求函数20.7log (32)y x x =-+的单调区间;例2. 判断函数f(x)=12-x 在定义域上的单调性.例3.设0a >,()x xe af x a e =+是R 上的偶函数.(1)求a 的值;(2)证明()f x 在(0,)+∞上为增函数.题型2:研究抽象函数的单调性例1.定义在R 上的函数)(x f y =,0)0(≠f ,当x >0时,1)(>x f ,且对任意的a 、b ∈R ,有f (a +b )=f (a )·f (b )。

(1)求证:f (0)=1;(2)求证:对任意的x ∈R ,恒有f (x )>0;(3)求证:f (x )是R 上的增函数;(4)若f (x )·f (2x -x 2)>1,求x 的取值范围.例2.已知函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x 都有1212()()()f x x f x f x ⋅=+,且当1x >时()0,(2)1f x f >=,(1)求证:()f x 是偶函数;(2)()f x 在(0,)+∞上是增函数;(3)解不等式2(21)2f x -<.题型3:函数的单调性的应用例1.若函数2)1(2)(2+-+=x a x x f 在区间(-∞,4] 上是减函数,那么实数a 的取值范围是______ 例2.已知函数1()2ax f x x +=+在区间()2,-+∞上为增函数,则实数a 的取值范围_____考点2 函数的值域(最值)的求法题型1:求分式函数的最值例1.(2007上海)已知函数x a x x x f ++=2)(2).,1[,+∞∈x 当21=a 时,求函数)(x f 的最小值。

题型2:利用函数的最值求参数的取值范围例2.(2008广东)已知函数xax x x f ++=2)(2).,1[,+∞∈x 若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a的取值范围。

课后作业:1.下列函数中,在区间(0,+∞)上不是增函数的是( ) A .y =2x +1 B .y =3x 2+1 C .y =2xD .y =|x |2.定义在R 上的偶函数f (x )的部分图象如图所示,则在(-2,0)上,下列函数中与f (x )的单调性不同的是( )A .y =x 2+1 B .y =|x |+1 C .y =⎩⎪⎨⎪⎧ 2x +1,x ≥0,x 3+1,x <0 D .y =⎩⎪⎨⎪⎧e x,x ≥0,e -x ,x <0 3.(2010·北京)给定函数①y =x 12;②y =log 12(x +1);③y =|x -1|;④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是( )A .①②B .②③C .③④D .①④※4.定义在R 上的函数f (x )满足f (-x )=-f (x +4),当x >2时,f (x )单调递增,如果x 1+x 2<4,且(x 1-2)(x 2-2)<0,则f (x 1)+f (x 2)的值( )A .恒小于0B .恒大于0C .可能为0D .可正可负5.若函数f (x )=|log a x |(0<a <1)在区间(a,3a -1)上单调递减,则实数a 的取值范围是________. 6.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值的和为a ,则a =________.7.函数f (x )=ax +1x +2在区间(-2,+∞)上是递增的,求实数a 的取值范围.函数的单调性(一)知识梳理1、函数的单调性定义:设函数)(x f y =的定义域为A ,区间A I ⊆,如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间;如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间。

如果用导数的语言来,那就是:设函数)(x f y =,如果在某区间I 上0)(>'x f ,那么)(x f 为区间I 上的增函数;如果在某区间I 上0)(<'x f ,那么)(x f 为区间I 上的减函数;2、确定函数的单调性或单调区间的常用方法: (1)①定义法(取值――作差――变形――定号);②导数法(在区间(,)a b 内,若总有()0f x '>,则()f x 为增函数;反之,若()f x 在区间(,)a b 内为增函数,则()0f x '≥,(2)在选择填空题中还可用数形结合法、特殊值法等等,特别要注意(0by ax a x=+>0)b >型函数的图象和单调性在解题中的运用:增区间为(,)-∞+∞,减区间为[. (3)复合函数法:复合函数单调性的特点是同增异减(4)若)(x f 与)(x g 在定义域内都是增函数(减函数),那么)()(x g x f +在其公共定义域内是增函数(减函数)。

3、单调性的说明:(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域;(2)函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即)(2121x x x x <<;三是同属于一个单调区间,三者缺一不可;(3)函数的单调性是对某个区间而言的,所以受到区间的限制,如函数xy 1=分别在)0,(-∞和),0(+∞内都是单调递减的,但是不能说它在整个定义域即),0()0,(+∞-∞ 内是单调递减的,只能说函数xy 1=的单调递减区间为)0,(-∞和),0(+∞。

4、函数的最大(小)值设函数)(x f y =的定义域为A ,如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≤恒成立,那么称)(0x f 为)(x f y =的最大值;如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≥恒成立,那么称)(0x f 为)(x f y =的最小值。

(二)考点分析考点1 函数的单调性题型1:讨论函数的单调性例1.(1)求函数20.7log (32)y x x =-+的单调区间;解:(1)单调减区间为:(2,),+∞单调增区间为(,1)-∞,例2. 判断函数f(x)=12-x 在定义域上的单调性.解: 函数的定义域为{x|x ≤-1或x ≥1}, 则f(x)= 12-x ,可分解成两个简单函数.f(x)=)(,)(x u x u =x 2-1的形式.当x ≥1时,u(x)为增函数,)(x u 为增函数.∴f (x )=12-x 在[1,+∞)上为增函数.当x ≤-1时,u (x)为减函数,)(x u 为减函数,∴f(x)=12-x 在(-∞,-1]上为减函数.例3.设0a >,()x xe af x a e =+是R 上的偶函数. (1)求a 的值;(2)证明()f x 在(0,)+∞上为增函数.解:(1)依题意,对一切x R ∈,有()()f x f x -=,即1x xx x e a ae ae a e+=+ ∴11()()xxa e ae --0=对一切x R ∈成立,则10a a-=,∴1a =±,∵0a >,∴1a =. (2)设120x x <<,则12121211()()x xx x f x f x e e e e -=-+-2121121122111()(1)(1)x x x x x x x x x x x e e e e ee e+-++-=--=-,由12210,0,0x x x x >>->,得21120,10x x x x e -+>->,2110x x e +-<,∴12()()0f x f x -<,即12()()f x f x <,∴()f x 在(0,)+∞上为增函数. 题型2:研究抽象函数的单调性例1.定义在R 上的函数)(x f y =,0)0(≠f ,当x >0时,1)(>x f ,且对任意的a 、b ∈R ,有f (a +b )=f (a )·f (b )。

(1)求证:f (0)=1;(2)求证:对任意的x ∈R ,恒有f (x )>0;(3)求证:f (x )是R 上的增函数;(4)若f (x )·f (2x -x 2)>1,求x 的取值范围.[解析](1)证明:令a =b =0,则f (0)=f 2(0).又f (0)≠0,∴f (0)=1.(2)证明:当x <0时,-x >0,∴f (0)=f (x )·f (-x )=1.∴f (-x )=)(1x f >0.又x ≥0时f (x )≥1>0,∴x ∈R 时,恒有f (x )>0. (3)证明:设x 1<x 2,则x 2-x 1>0.∴f (x 2)=f (x 2-x 1+x 1)=f (x 2-x 1)·f (x 1). ∵x 2-x 1>0,∴f (x 2-x 1)>1.又f (x 1)>0,∴f (x 2-x 1)·f (x 1)>f (x 1). ∴f (x 2)>f (x 1).∴f (x )是R 上的增函数.(4)解:由f (x )·f (2x -x 2)>1,f (0)=1得f (3x -x 2)>f (0).又f (x )是R 上的增函数,∴3x -x 2>0.∴0<x <3.例2.已知函数()f x 的定义域是0x ≠的一切实数,对定义域内的任意12,x x 都有1212()()()f x x f x f x ⋅=+,且当1x >时()0,(2)1f x f >=,(1)求证:()f x 是偶函数;(2)()f x 在(0,)+∞上是增函数;(3)解不等式2(21)2f x -<. 解:(1)令121x x ==,得(1)2(1)f f =,∴(1)0f =,令121x x ==-,得∴(1)0f -=, ∴()(1)(1)()()f x f x f f x f x -=-⋅=-+=,∴()f x 是偶函数. (2)设210x x >>,则221111()()()()x f x f x f x f x x -=⋅-221111()()()()x xf x f f x f x x =+-= ∵210x x >>,∴211x x >,∴21()xf x 0>,即21()()0f x f x ->,∴21()()f x f x >∴()f x 在(0,)+∞上是增函数.(3)(2)1f = ,∴(4)(2)(2)2f f f =+=,∵()f x 是偶函数∴不等式2(21)2f x -<可化为2(|21|)(4)f x f -<,又∵函数在(0,)+∞上是增函数,∴2|21|4x -<,解得:x <<,即不等式的解集为(. 题型3:函数的单调性的应用例1.若函数2)1(2)(2+-+=x a x x f 在区间(-∞,4] 上是减函数,那么实数a 的取值范围是______(答:3-≤a ));例2.已知函数1()2ax f x x +=+在区间()2,-+∞上为增函数,则实数a 的取值范围_____(答:1(,)2+∞); ※例3.函数9()log (8)af x x x =+-在[1,)+∞上是增函数,求a 的取值范围.分析:由函数9()log (8)af x x x=+-在[1,)+∞上是增函数可以得到两个信息:①对任意的121,x x ≤<总有12()()f x f x <;②当1x ≥时,80ax x +->恒成立.解:∵函数9()log (8)af x x x=+-在[1,)+∞上是增函数,∴对任意的121,x x ≤<有12()()f x f x <,即919212log (8)log (8)a ax x x x +-<+-,得 121288a a x x x x +-<+-,即1212()(1)0a x x x x -+<, ∵120x x -<,∴1210,a x x +> 121,ax x >- 12a x x >-, ∵211x x >≥,∴要使12a x x >-恒成立, a ≥-1;又∵函数9()log (8)af x x x=+-在[1,)+∞上是增函数,∴180a +->, 即9a <,综上a 的取值范围为[1,9)-.另解:(用导数求解)令()8a g x x x =+-,函数9()log (8)af x x x=+-在[1,)+∞上是增函数, ∴()8a g x x x =+-在[1,)+∞上是增函数,2()1ag x x'=+,∴180a +->,且210ax+≥在[1,)+∞上恒成立,得19a -≤<.考点2 函数的值域(最值)的求法 求最值的方法:(1)若函数是二次函数或可化为二次函数型的函数,常用配方法。

相关文档
最新文档