2017年浙江卷数学试题Word解析

合集下载

2017年高考数学真题浙江卷(试题+答案解析)

2017年高考数学真题浙江卷(试题+答案解析)

2017年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页,非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:球的表面积公式 锥体的体积公式24S R =π13V Sh =球的体积公式其中S 表示棱锥的底面面积,h 表示棱锥的高 343V R =π台体的体积公式其中R 表示球的半径1()3a ab b V h S S S S =+⋅+柱体的体积公式 其中S a ,S b 分别表示台体的上、下底面积 V =Sh h 表示台体的高 其中S 表示棱柱的底面面积,h 表示棱柱的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知}11|{<<-=x x P ,}02{<<-=x Q ,则=Q P Y A .)1,2(- B .)0,1(- C .)1,0( D .)1,2(--2.椭圆22194x y +=的离心率是A .133B .53C .23D .593.某几何体的三视图如图所示(单位:cm ), 则该几何体的体积(单位:cm 3)是 A .π2+1 B .π2+3C .3π2+1 D .3π2+3 4.若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则z =x +2y 的取值范围是A .[0,6]B .[0,4]C .[6,+∞]D .[4,+∞]5.若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – m A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,且与b 无关D .与a 无关,但与b 有关6.已知等差数列[a n ]的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6”>2S 5的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是8.已知随机变量ξ1满足P (1ξ=1)=p i ,P (1ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),PQR 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面较为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I OA OB u u u r u u u r =,2·I OB OC u u u r u u u r =,3·I OC OD u u u r u u u r=,则 A .I 1<I 2<I 3 B .I 1<I 3<I 2 C . I 3<I 1<I 2 D .I 2<I 1<I 3非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2017年浙江省高考数学试卷(含解析版)

2017年浙江省高考数学试卷(含解析版)

2017年浙江省高考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)2.(4分)椭圆+=1的离心率是()A.B.C.D.3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1B.+3C.+1D.+34.(4分)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关6.(4分)已知等差数列{an }的公差为d,前n项和为Sn,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.8.(4分)已知随机变量ξi 满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2.若0<p1<p2<,则()A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D ﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6= .12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2= ,ab= .13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4= ,a5= .14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是,cos∠BDC= .15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是,最大值是.16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是.三、解答题(共5小题,满分74分)18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.22.(15分)已知数列{xn }满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<xn+1<xn;(Ⅱ)2xn+1﹣xn≤;(Ⅲ)≤xn≤.2017年浙江省高考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)【考点】1D:并集及其运算.【专题】11:计算题;37:集合思想;5J:集合.【分析】直接利用并集的运算法则化简求解即可.【解答】解:集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q={x|﹣1<x<2}=(﹣1,2).故选:A.【点评】本题考查集合的基本运算,并集的求法,考查计算能力.2.(4分)椭圆+=1的离心率是()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】直接利用椭圆的简单性质求解即可.【解答】解:椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为:=.故选:B.【点评】本题考查椭圆的简单性质的应用,考查计算能力.3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1B.+3C.+1D.+3【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积.【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为××π×12×3+××××3=+1,故选:A.【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.4.(4分)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.【解答】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【考点】3V:二次函数的性质与图象.【专题】32:分类讨论;4C:分类法;51:函数的性质及应用.【分析】结合二次函数的图象和性质,分类讨论不同情况下M﹣m的取值与a,b 的关系,综合可得答案.【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x=﹣为对称轴的抛物线,①当﹣>1或﹣<0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时M﹣m=|f(1)﹣f(0)|=|a+1|,故M﹣m的值与a有关,与b无关②当≤﹣≤1,即﹣2≤a≤﹣1时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)>f(1),此时M﹣m=f(0)﹣f(﹣)=,故M﹣m的值与a有关,与b无关③当0≤﹣<,即﹣1<a≤0时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)<f(1),此时M﹣m=f(1)﹣f(﹣)=1+a+,故M﹣m的值与a有关,与b无关综上可得:M﹣m的值与a有关,与b无关故选:B.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.6.(4分)已知等差数列{an }的公差为d,前n项和为Sn,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11:计算题;35:转化思想;4R:转化法;54:等差数列与等比数列;5L:简易逻辑.【分析】根据等差数列的求和公式和S4+S6>2S5,可以得到d>0,根据充分必要条件的定义即可判断.【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C.【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】31:数形结合;44:数形结合法;52:导数的概念及应用.【分析】根据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数y=f(x)的图象可能【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选:D.【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.8.(4分)已知随机变量ξi 满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2.若0<p1<p2<,则()A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)【考点】CH:离散型随机变量的期望与方差.【专题】11:计算题;34:方程思想;49:综合法;5I:概率与统计.【分析】由已知得0<p1<p2<,<1﹣p2<1﹣p1<1,求出E(ξ1)=p1,E(ξ2)=p2,从而求出D(ξ1),D(ξ2),由此能求出结果.【解答】解:∵随机变量ξi 满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2,…,0<p1<p2<,∴<1﹣p2<1﹣p1<1,E(ξ1)=1×p1+0×(1﹣p1)=p1,E(ξ2)=1×p2+0×(1﹣p2)=p2,D(ξ1)=(1﹣p1)2p1+(0﹣p1)2(1﹣p1)=,D(ξ2)=(1﹣p2)2p2+(0﹣p2)2(1﹣p2)=,D(ξ1)﹣D(ξ2)=p1﹣p12﹣()=(p2﹣p1)(p1+p2﹣1)<0,∴E(ξ1)<E(ξ2),D(ξ1)<D(ξ2).故选:A.【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D ﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α【考点】MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离;5G:空间角;5H:空间向量及应用.【分析】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),Q,R,利用法向量的夹角公式即可得出二面角.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG..可得tanα=.tanβ=,tanγ=.由已知可得:OE>OG>OF.即可得出.【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),B(3,﹣3,0).Q,R,=,=(0,3,6),=(,6,0),=,=.设平面PDR的法向量为=(x,y,z),则,可得,可得=,取平面ABC的法向量=(0,0,1).则cos==,取α=arccos.同理可得:β=arccos.γ=arccos.∵>>.∴α<γ<β.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.设OD=h.则tanα=.同理可得:tanβ=,tanγ=.由已知可得:OE>OG>OF.∴tanα<tanγ<tanβ,α,β,γ为锐角.∴α<γ<β.故选:B.【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3【考点】9O:平面向量数量积的性质及其运算.【专题】31:数形结合;48:分析法;5A:平面向量及应用.【分析】根据向量数量积的定义结合图象边角关系进行判断即可.【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I3<I1<I2,故选:C.【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6= .【考点】CE:模拟方法估计概率.【专题】31:数形结合;4O:定义法;5B:直线与圆.【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【解答】解:如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6××1×1×sin60°=.故答案为:.【点评】本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题.12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2= 5 ,ab=2 .【考点】A5:复数的运算.【专题】34:方程思想;35:转化思想;5N:数系的扩充和复数.【分析】a、b∈R,(a+bi)2=3+4i(i是虚数单位),可得3+4i=a2﹣b2+2abi,可得3=a2﹣b2,2ab=4,解出即可得出.【解答】解:a、b∈R,(a+bi)2=3+4i(i是虚数单位),∴3+4i=a2﹣b2+2abi,∴3=a2﹣b2,2ab=4,解得ab=2,,.则a2+b2=5,故答案为:5,2.【点评】本题考查了复数的运算法则、复数的相等、方程的解法,考查了推理能力与计算能力,属于基础题.13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4= 16 ,a5= 4 .【考点】DA:二项式定理.【专题】11:计算题;35:转化思想;5P:二项式定理.【分析】利用二项式定理的展开式,求解x的系数就是两个多项式的展开式中x与常数乘积之和,a5就是常数的乘积.【解答】解:多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,(x+1)3中,x的系数是:3,常数是1;(x+2)2中x的系数是4,常数是4,a4=3×4+1×4=16;a5=1×4=4.故答案为:16;4.【点评】本题考查二项式定理的应用,考查计算能力,是基础题.14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是,cos∠BDC= .【考点】HT:三角形中的几何计算.【专题】11:计算题;35:转化思想;44:数形结合法;58:解三角形.【分析】如图,取BC得中点E,根据勾股定理求出AE,再求出S△ABC ,再根据S△BDC =S△ABC即可求出,根据等腰三角形的性质和二倍角公式即可求出【解答】解:如图,取BC得中点E,∵AB=AC=4,BC=2,∴BE=BC=1,AE⊥BC,∴AE==,∴S△ABC=BC•AE=×2×=,∵BD=2,∴S△BDC =S△ABC=,∵BC=BD=2,∴∠BDC=∠BCD,∴∠ABE=2∠BDC在Rt△ABE中,∵cos∠ABE==,∴cos∠ABE=2cos2∠BDC﹣1=,∴cos∠BDC=,故答案为:,【点评】本题考查了解三角形的有关知识,关键是转化,属于基础题15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是 4 ,最大值是.【考点】3H:函数的最值及其几何意义;91:向量的概念与向量的模.【专题】11:计算题;31:数形结合;44:数形结合法;51:函数的性质及应用.【分析】通过记∠AOB=α(0≤α≤π),利用余弦定理可可知|+|=、|﹣|=,进而换元,转化为线性规划问题,计算即得结论.【解答】解:记∠AOB=α,则0≤α≤π,如图,由余弦定理可得:|+|=,|﹣|=,令x=,y=,则x2+y2=10(x、y≥1),其图象为一段圆弧MN,如图,令z=x+y,则y=﹣x+z,=1+3=3+1=4,则直线y=﹣x+z过M、N时z最小为zmin当直线y=﹣x+z与圆弧MN相切时z最大,由平面几何知识易知zmax即为原点到切线的距离的倍,也就是圆弧MN所在圆的半径的倍,所以zmax=×=.综上所述,|+|+|﹣|的最小值是4,最大值是.故答案为:4、.【点评】本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有660 种不同的选法.(用数字作答)【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;32:分类讨论;4O:定义法;5O:排列组合.【分析】由题意分两类选1女3男或选2女2男,再计算即可【解答】解:第一类,先选1女3男,有C63C21=40种,这4人选2人作为队长和副队有A42=12种,故有40×12=480种,第二类,先选2女2男,有C62C22=15种,这4人选2人作为队长和副队有A42=12种,故有15×12=180种,根据分类计数原理共有480+180=660种,故答案为:660【点评】本题考查了分类计数原理和分步计数原理,属于中档题17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是(﹣∞,] .【考点】3H:函数的最值及其几何意义.【专题】11:计算题;35:转化思想;49:综合法;51:函数的性质及应用.【分析】通过转化可知|x+﹣a|+a≤5且a≤5,进而解绝对值不等式可知2a﹣5≤x+≤5,进而计算可得结论.【解答】解:由题可知|x+﹣a|+a≤5,即|x+﹣a|≤5﹣a,所以a≤5,又因为|x+﹣a|≤5﹣a,所以a﹣5≤x+﹣a≤5﹣a,所以2a﹣5≤x+≤5,又因为1≤x≤4,4≤x+≤5,所以2a﹣5≤4,解得a≤,故答案为:(﹣∞,].【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分74分)18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.【考点】3G:复合函数的单调性;GF:三角函数的恒等变换及化简求值;H1:三角函数的周期性;H5:正弦函数的单调性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】利用二倍角公式及辅助角公式化简函数的解析式,(Ⅰ)代入可得:f()的值.(Ⅱ)根据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间【解答】解:∵函数f(x)=sin2x﹣cos2x﹣2sinx cosx=﹣sin2x﹣cos2x=2sin (2x+)(Ⅰ)f()=2sin(2×+)=2sin=2,(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,由2x+∈[﹣+2kπ,+2kπ],k∈Z得:x∈[﹣+kπ,﹣+kπ],k∈Z,故f(x)的单调递增区间为[﹣+kπ,﹣+kπ]或写成[kπ+,kπ+],k∈Z.【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档.19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.【考点】LS:直线与平面平行;MI:直线与平面所成的角.【专题】14:证明题;31:数形结合;41:向量法;5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.【解答】证明:(Ⅰ)取AD的中点F,连结EF,CF,∵E为PD的中点,∴EF∥PA,在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,∴CF∥AB,∴平面EFC∥平面ABP,∵EC⊂平面EFC,∴EC∥平面PAB.解:(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,∵PA=PD,∴PF⊥AD,推导出四边形BCDF为矩形,∴BF⊥AD,∴AD⊥平面PBF,又AD∥BC,∴BC⊥平面PBF,∴BC⊥PB,设DC=CB=1,由PC=AD=2DC=2CB,得AD=PC=2,∴PB===,BF=PF=1,∴MF=,又BC⊥平面PBF,∴BC⊥MF,∴MF⊥平面PBC,即点F到平面PBC的距离为,∵MF=,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,∴E到平面PBC的距离为,在,由余弦定理得CE=,设直线CE与平面PBC所成角为θ,则sinθ==.【点评】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】35:转化思想;48:分析法;53:导数的综合应用.【分析】(1)求出f(x)的导数,注意运用复合函数的求导法则,即可得到所求;(2)求出f(x)的导数,求得极值点,讨论当<x<1时,当1<x<时,当x>时,f(x)的单调性,判断f(x)≥0,计算f(),f(1),f(),即可得到所求取值范围.【解答】解:(1)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].【点评】本题考查导数的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题.21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.【考点】KI:圆锥曲线的综合;KN:直线与抛物线的综合.【专题】11:计算题;33:函数思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣<x <可得结论;(Ⅱ)通过(I)知P(x,x2)、﹣<x<,设直线AP的斜率为k,联立直线AP、BQ方程可知Q点坐标,进而可用k表示出、,计算可知|PA|•|PQ|=(1+k)3(1﹣k),通过令f(x)=(1+x)3(1﹣x),﹣1<x<1,求导结合单调性可得结论.【解答】解:(Ⅰ)由题可知P(x,x2),﹣<x<,所以k==x﹣∈(﹣1,1),AP故直线AP斜率的取值范围是:(﹣1,1);(Ⅱ)由(I)知P(x,x2),﹣<x<,所以=(﹣﹣x,﹣x2),设直线AP的斜率为k,则k==x﹣,即x=k+,则AP:y=kx+k+,BQ:y=﹣x++,联立直线AP、BQ方程可知Q(,),故=(,),又因为=(﹣1﹣k,﹣k2﹣k),故﹣|PA|•|PQ|=•=+=(1+k)3(k﹣1),所以|PA|•|PQ|=(1+k)3(1﹣k),令f(x)=(1+x)3(1﹣x),﹣1<x<1,则f′(x)=(1+x)2(2﹣4x)=﹣2(1+x)2(2x﹣1),由于当﹣1<x<时f′(x)>0,当<x<1时f′(x)<0,故f(x)max=f()=,即|PA|•|PQ|的最大值为.【点评】本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题.22.(15分)已知数列{xn }满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<xn+1<xn;(Ⅱ)2xn+1﹣xn≤;(Ⅲ)≤xn≤.【考点】8H:数列递推式;8K:数列与不等式的综合.【专题】15:综合题;33:函数思想;35:转化思想;49:综合法;4M:构造法;53:导数的综合应用;54:等差数列与等比数列;55:点列、递归数列与数学归纳法;5T:不等式.【分析】(Ⅰ)用数学归纳法即可证明,(Ⅱ)构造函数,利用导数判断函数的单调性,把数列问题转化为函数问题,即可证明,(Ⅲ)由≥2xn+1﹣xn得﹣≥2(﹣)>0,继续放缩即可证明【解答】解:(Ⅰ)用数学归纳法证明:x n >0, 当n=1时,x 1=1>0,成立, 假设当n=k 时成立,则x k >0,那么n=k+1时,若x k+1<0,则0<x k =x k+1+ln (1+x k+1)<0,矛盾, 故x n+1>0,因此x n >0,(n ∈N*) ∴x n =x n+1+ln (1+x n+1)>x n+1, 因此0<x n+1<x n (n ∈N *),(Ⅱ)由x n =x n+1+ln (1+x n+1)得x n x n+1﹣4x n+1+2x n =x n+12﹣2x n+1+(x n+1+2)ln (1+x n+1), 记函数f (x )=x 2﹣2x+(x+2)ln (1+x ),x ≥0 ∴f′(x )=+ln (1+x )>0,∴f (x )在(0,+∞)上单调递增, ∴f (x )≥f (0)=0,因此x n+12﹣2x n+1+(x n+1+2)ln (1+x n+1)≥0, 故2x n+1﹣x n ≤;(Ⅲ)∵x n =x n+1+ln (1+x n+1)≤x n+1+x n+1=2x n+1, ∴x n ≥,由≥2x n+1﹣x n 得﹣≥2(﹣)>0, ∴﹣≥2(﹣)≥…≥2n ﹣1(﹣)=2n ﹣2,∴x n ≤, 综上所述≤x n ≤.【点评】本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题。

2017年普通高等学校招生全国统一考试(浙江卷)数学试题(附解析)

2017年普通高等学校招生全国统一考试(浙江卷)数学试题(附解析)

绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页,非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:球的表面积公式 锥体的体积公式24S R =π13V Sh =球的体积公式其中S 表示棱锥的底面面积,h 表示棱锥的高 343V R =π 台体的体积公式其中R 表示球的半径 1()3a b V h S S =++柱体的体积公式其中S a ,S b 分别表示台体的上、下底面积 V =Shh 学%科网表示台体的高其中S 表示棱柱的底面面积,h 表示棱柱的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知}11|{<<-=x x P ,}02{<<-=x Q ,则=Q P A .)1,2(-B .)0,1(-C .)1,0(D .)1,2(--【答案】A【解析】取Q P ,所有元素,得=Q P )1,2(-.2.椭圆22194x y +=的离心率是ABC .23D .59【答案】B【解析】e ==B. 3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .π2+1 B .π2+3 C .3π2+1 D .3π2+3 【答案】A 【解析】2π1211π3(21)1322V ⨯=⨯⨯+⨯⨯=+,选A. 4.若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则z =x +2y 的取值范围是A .[0,6]B .[0,4]C .[6,+∞]D .[4,+∞]【答案】D【解析】可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D. 5.若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B.6.已知等差数列[a n ]的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6”>2S 5的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】4652S S S d +-=,所以为充要条件,选C.7.函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】原函数先减再增,再减再增,因此选D.8.已知随机变量ξ1满足P (1ξ=1)=p i ,P (1ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ8.【答案】A 【解析】112212(),(),()()E p E p E E ξξξξ==∴<111222121212()(1),()(1),()()()(1)0D p p D p p D D p p p p ξξξξ=-=-∴-=---<,选A.9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),PQR 分别为AB ,BC ,CA上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面较为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而高相等,因此αγβ<<所以选B10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I OA OB =,2·I OB OC =,3·I OC OD =,则A .I 1<I 2<I 3B .I 1<I 3<I 2C . I 3<I 1<I 2D .I 2<I 1<I 3【答案】C 【解析】因为90AOB COD ∠=∠> ,所以0(,)OB OC OA OB OC OD OA OC OB OD ⋅>>⋅>⋅<<选C非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

浙江省2017年新高考数学试题 Word版含答案

浙江省2017年新高考数学试题 Word版含答案

2017年浙江省普通高校招生统一考试数 学选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}11P x x =-<<,{}02Q x x =<<,那么PQ =A. (1,2)-B. (0,1)C. (1,0)-D. (1,2)2.椭圆22194y x +=的离心率是B.C. 23D. 593.某几何体的三视图如图所示(单位:cm ),则该几何体的体积 (单位:3cm )是A. π+12B. π+32 C. 3π+12 D. 3π+324.若,x y 满足约束条件0,30,20,x x y x y ⎧⎪+-⎨⎪-⎩≥≥≤则2z x y =+的取值范围是A. [0,6]B. [0,4]C. [6,)+∞D. [4,)+∞5.若函数2()f x x ax b =++在区间[0,1]上的最大值是M ,最小值是m ,则M m - A. 与a 有关,且与b 有关 B. 与a 有关,但与b 无关 C. 与a 无关,且与b 无关 D. 与a 无关,但与b 有关6.已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“4652S S S +>”的 A. 充分不必要条 B. 必要不充分条件 C. 充分必要条件D. 既不充分也不必要条件7.函数()y f x =的导函数()y f x '=的图象如图所示, 则函数()y f x =的图象可能是8.已知随机变量i ξ满足(1)i i P p ξ==,(0)1i i P p ξ==-,1,2i =.若12102p p <<<,则A. 12E()E()ξξ<,12D()D()ξξ<B. 12E()E()ξξ<,12D()D()ξξ>C. 12E()E()ξξ>,12D()D()ξξ<D. 12E()E()ξξ>,12D()D()ξξ>9.如图,已知正四面体D ABC -(所有棱长均相等的三棱锥),,,P Q R 分别为,,AB BC CA 上的点,AP PB =,2BQ CRQC RA==.分别记二面角D PR Q --,D PQ R --,D QR P --的平面角为,,αβγ,则A. γαβ<<B. αγβ<<C. αβγ<<D. βγα<<10.如图,已知平面四边形ABCD ,AB BC ⊥,2AB BC AD ===,3CD =,AC 与BD 交于点O .记1I OA OB =⋅,2I OB OC =⋅,3I OC OD=⋅,则A. 123I I I <<B. 132I I I <<C. 312I I I <<D. 213I I I <<非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2017年浙江省高考数学试卷及解析

2017年浙江省高考数学试卷及解析

2017年浙江省高考数学试卷一、选择题(共10小题,每小题4分,满分40分)1、(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A、(﹣1,2)B、(0,1)C、(﹣1,0)D、(1,2)2、(4分)椭圆+=1的离心率是()A、B、C、D、3、(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A、+1B、+3C、+1D、+34、(4分)若x、y满足约束条件,则z=x+2y的取值范围是()A、[0,6]B、[0,4]C、[6,+∞)D、[4,+∞)5、(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A、与a有关,且与b有关B、与a有关,但与b无关C、与a无关,且与b无关D、与a无关,但与b有关6、(4分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件7、(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A、B、C、D、8、(4分)已知随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2、若0<p1<p2<,则()A、E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B、E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C、E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D、E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)9、(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A、γ<α<βB、α<γ<βC、α<β<γD、β<γ<α10、(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A、I1<I2<I3B、I1<I3<I2C、I3<I1<I2D、I2<I1<I3二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11、(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=、12、(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=,ab=、13、(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=,a5=、14、(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是,cos∠BDC=、15、(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是,最大值是、16、(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法、(用数字作答)17、(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是、三、解答题(共5小题,满分74分)18、(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R)、(Ⅰ)求f()的值、(Ⅱ)求f(x)的最小正周期及单调递增区间、19、(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点、(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值、20、(15分)已知函数f(x)=(x﹣)e﹣x(x≥)、(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围、21、(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q、(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值、22、(15分)已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*),证明:当n ∈N*时,<x n;(Ⅰ)0<x n+1﹣x n≤;(Ⅱ)2x n+1(Ⅲ)≤x n≤、参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1、(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A、(﹣1,2)B、(0,1)C、(﹣1,0)D、(1,2)题目分析:直接利用并集的运算法则化简求解即可、试题解答:解:集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q={x|﹣1<x<2}=(﹣1,2)、故选:A、点评:本题考查集合的基本运算,并集的求法,考查计算能力、2、(4分)椭圆+=1的离心率是()A、B、C、D、题目分析:直接利用椭圆的简单性质求解即可、试题解答:解:椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为:=、故选:B、点评:本题考查椭圆的简单性质的应用,考查计算能力、3、(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A、+1B、+3C、+1D、+3题目分析:根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积、试题解答:解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为××π×12×3+××××3=+1,故选:A、点评:本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目、4、(4分)若x、y满足约束条件,则z=x+2y的取值范围是()A、[0,6]B、[0,4]C、[6,+∞)D、[4,+∞)题目分析:画出约束条件的可行域,利用目标函数的最优解求解即可、试题解答:解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞)、故选:D、点评:本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键、5、(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A、与a有关,且与b有关B、与a有关,但与b无关C、与a无关,且与b无关D、与a无关,但与b有关题目分析:结合二次函数的图象和性质,分类讨论不同情况下M﹣m的取值与a,b的关系,综合可得答案、试题解答:解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x=﹣为对称轴的抛物线,①当﹣>1或﹣<0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时M﹣m=|f(1)﹣f(0)|=|a+1|,故M﹣m的值与a有关,与b无关②当≤﹣≤1,即﹣2≤a≤﹣1时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)>f(1),此时M﹣m=f(0)﹣f(﹣)=,故M﹣m的值与a有关,与b无关③当0≤﹣<,即﹣1<a≤0时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)<f(1),此时M﹣m=f(1)﹣f(﹣)=1+a+,故M﹣m的值与a有关,与b无关综上可得:M﹣m的值与a有关,与b无关故选:B、点评:本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键、6、(4分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件题目分析:根据等差数列的求和公式和S4+S6>2S5,可以得到d>0,根据充分必要条件的定义即可判断、试题解答:解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C、点评:本题借助等差数列的求和公式考查了充分必要条件,属于基础题7、(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A、B、C、D、题目分析:根据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数y=f (x)的图象可能试题解答:解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选:D、点评:本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题、8、(4分)已知随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2、若0<p1<p2<,则()A、E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B、E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C、E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D、E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)题目分析:由已知得0<p1<p2<,<1﹣p2<1﹣p1<1,求出E(ξ1)=p1,E (ξ2)=p2,从而求出D(ξ1),D(ξ2),由此能求出结果、试题解答:解:∵随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2,…,0<p1<p2<,∴<1﹣p2<1﹣p1<1,E(ξ1)=1×p1+0×(1﹣p1)=p1,E(ξ2)=1×p2+0×(1﹣p2)=p2,D(ξ1)=(1﹣p1)2p1+(0﹣p1)2(1﹣p1)=,D(ξ2)=(1﹣p2)2p2+(0﹣p2)2(1﹣p2)=,D(ξ1)﹣D(ξ2)=p1﹣p12﹣()=(p2﹣p1)(p1+p2﹣1)<0,∴E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)、故选:A、点评:本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题、9、(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A、γ<α<βB、α<γ<βC、α<β<γD、β<γ<α题目分析:解法一:如图所示,建立空间直角坐标系、设底面△ABC的中心为O、不妨设OP=3、则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),Q,R,利用法向量的夹角公式即可得出二面角、解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG、、可得tanα=、tanβ=,tanγ=、由已知可得:OE>OG>OF、即可得出、试题解答:解法一:如图所示,建立空间直角坐标系、设底面△ABC的中心为O、不妨设OP=3、则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),B(3,﹣3,0)、Q,R,=,=(0,3,6),=(,6,0),=,=、设平面PDR的法向量为=(x,y,z),则,可得,可得=,取平面ABC的法向量=(0,0,1)、则cos==,取α=arccos、同理可得:β=arccos、γ=arccos、∵>>、∴α<γ<β、解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG、设OD=h、则tanα=、同理可得:tanβ=,tanγ=、由已知可得:OE>OG>OF、∴tanα<tanγ<tanβ,α,β,γ为锐角、∴α<γ<β、故选:B、点评:本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题、10、(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A、I1<I2<I3B、I1<I3<I2C、I3<I1<I2D、I2<I1<I3题目分析:根据向量数量积的定义结合图象边角关系进行判断即可、试题解答:解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I3<I1<I2,故选:C、点评:本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键、二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11、(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=、题目分析:根据题意画出图形,结合图形求出单位圆的内接正六边形的面积、试题解答:解:如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6××1×1×sin60°=、故答案为:、点评:本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题、12、(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=5,ab= 2、题目分析:a、b∈R,(a+bi)2=3+4i(i是虚数单位),可得3+4i=a2﹣b2+2abi,可得3=a2﹣b2,2ab=4,解出即可得出、试题解答:解:a、b∈R,(a+bi)2=3+4i(i是虚数单位),∴3+4i=a2﹣b2+2abi,∴3=a2﹣b2,2ab=4,解得ab=2,,、则a2+b2=5,故答案为:5,2、点评:本题考查了复数的运算法则、复数的相等、方程的解法,考查了推理能力与计算能力,属于基础题、13、(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=16,a5=4、题目分析:利用二项式定理的展开式,求解x的系数就是两个多项式的展开式中x与常数乘积之和,a5就是常数的乘积、试题解答:解:多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,(x+1)3中,x的系数是:3,常数是1;(x+2)2中x的系数是4,常数是4,a4=3×4+1×4=16;a5=1×4=4、故答案为:16;4、点评:本题考查二项式定理的应用,考查计算能力,是基础题、14、(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是,cos∠BDC=、题目分析:如图,取BC得中点E,根据勾股定理求出AE,再求出S△ABC,再根据S△BDC=S△ABC即可求出,根据等腰三角形的性质和二倍角公式即可求出试题解答:解:如图,取BC得中点E,∵AB=AC=4,BC=2,∴BE=BC=1,AE⊥BC,∴AE==,∴S△ABC=BC•AE=×2×=,∵BD=2,∴S△BDC =S△ABC=,∵BC=BD=2,∴∠BDC=∠BCD,∴∠ABE=2∠BDC在Rt△ABE中,∵cos∠ABE==,∴cos∠ABE=2cos2∠BDC﹣1=,∴cos∠BDC=,故答案为:,点评:本题考查了解三角形的有关知识,关键是转化,属于基础题15、(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是4,最大值是、题目分析:通过记∠AOB=α(0≤α≤π),利用余弦定理可可知|+|=、|﹣|=,进而换元,转化为线性规划问题,计算即得结论、试题解答:解:记∠AOB=α,则0≤α≤π,如图,由余弦定理可得:|+|=,|﹣|=,令x=,y=,则x2+y2=10(x、y≥1),其图象为一段圆弧MN,如图,令z=x+y,则y=﹣x+z,则直线y=﹣x+z过M、N时z最小为z min=1+3=3+1=4,当直线y=﹣x+z与圆弧MN相切时z最大,由平面几何知识易知z max即为原点到切线的距离的倍,也就是圆弧MN所在圆的半径的倍,所以z max=×=、综上所述,|+|+|﹣|的最小值是4,最大值是、故答案为:4、、点评:本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题、16、(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有660种不同的选法、(用数字作答)题目分析:由题意分两类选1女3男或选2女2男,再计算即可试题解答:解:第一类,先选1女3男,有C63C21=40种,这4人选2人作为队长和副队有A42=12种,故有40×12=480种,第二类,先选2女2男,有C62C22=15种,这4人选2人作为队长和副队有A42=12种,故有15×12=180种,根据分类计数原理共有480+180=660种,故答案为:660点评:本题考查了分类计数原理和分步计数原理,属于中档题17、(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是(﹣∞,] 、题目分析:通过转化可知|x+﹣a|+a≤5且a≤5,进而解绝对值不等式可知2a ﹣5≤x+≤5,进而计算可得结论、试题解答:解:由题可知|x+﹣a|+a≤5,即|x+﹣a|≤5﹣a,所以a≤5,又因为|x+﹣a|≤5﹣a,所以a﹣5≤x+﹣a≤5﹣a,所以2a﹣5≤x+≤5,又因为1≤x≤4,4≤x+≤5,所以2a﹣5≤4,解得a≤,故答案为:(﹣∞,]、点评:本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题、三、解答题(共5小题,满分74分)18、(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R)、(Ⅰ)求f()的值、(Ⅱ)求f(x)的最小正周期及单调递增区间、题目分析:利用二倍角公式及辅助角公式化简函数的解析式,(Ⅰ)代入可得:f()的值、(Ⅱ)根据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间试题解答:解:∵函数f(x)=sin2x﹣cos2x﹣2sinx cosx=﹣sin2x﹣cos2x=2sin (2x+)(Ⅰ)f()=2sin(2×+)=2sin=2,(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,由2x+∈[﹣+2kπ,+2kπ],k∈Z得:x∈[﹣+kπ,﹣+kπ],k∈Z,故f(x)的单调递增区间为[﹣+kπ,﹣+kπ]或写成[kπ+,kπ+],k ∈Z、点评:本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档、19、(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点、(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值、题目分析:(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB、(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ、试题解答:证明:(Ⅰ)取AD的中点F,连结EF,CF,∵E为PD的中点,∴EF∥PA,在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,∴CF∥AB,∴平面EFC∥平面ABP,∵EC⊂平面EFC,∴EC∥平面PAB、解:(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,∵PA=PD,∴PF⊥AD,推导出四边形BCDF为矩形,∴BF⊥AD,∴AD⊥平面PBF,又AD∥BC,∴BC⊥平面PBF,∴BC⊥PB,设DC=CB=1,由PC=AD=2DC=2CB,得AD=PC=2,∴PB===,BF=PF=1,∴MF=,又BC⊥平面PBF,∴BC⊥MF,∴MF⊥平面PBC,即点F到平面PBC的距离为,∵MF=,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,∴E到平面PBC的距离为,在,由余弦定理得CE=,设直线CE与平面PBC所成角为θ,则sinθ==、点评:本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题、20、(15分)已知函数f(x)=(x﹣)e﹣x(x≥)、(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围、题目分析:(1)求出f(x)的导数,注意运用复合函数的求导法则,即可得到所求;(2)求出f(x)的导数,求得极值点,讨论当<x<1时,当1<x<时,当x>时,f(x)的单调性,判断f(x)≥0,计算f(),f(1),f(),即可得到所求取值范围、试题解答:解:(1)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0、由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0、则f(x)在区间[,+∞)上的取值范围是[0,e]、点评:本题考查导数的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题、21、(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q、(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值、题目分析:(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣<x<可得结论;(Ⅱ)通过(I)知P(x,x2)、﹣<x<,设直线AP的斜率为k,联立直线AP、BQ方程可知Q点坐标,进而可用k表示出、,计算可知|PA|•|PQ|=(1+k)3(1﹣k),通过令f(x)=(1+x)3(1﹣x),﹣1<x<1,求导结合单调性可得结论、试题解答:解:(Ⅰ)由题可知P(x,x2),﹣<x<,所以k AP==x﹣∈(﹣1,1),故直线AP斜率的取值范围是:(﹣1,1);(Ⅱ)由(I)知P(x,x2),﹣<x<,所以=(﹣﹣x,﹣x2),设直线AP的斜率为k,则AP:y=kx+k+,BQ:y=﹣x++,联立直线AP、BQ方程可知Q(,),故=(,),又因为=(﹣1﹣k,﹣k2﹣k),故﹣|PA|•|PQ|=•=+=(1+k)3(k﹣1),所以|PA|•|PQ|=(1+k)3(1﹣k),令f(x)=(1+x)3(1﹣x),﹣1<x<1,则f′(x)=(1+x)2(2﹣4x)=﹣2(1+x)2(2x﹣1),由于当﹣1<x<时f′(x)>0,当<x<1时f′(x)<0,故f(x)max=f()=,即|PA|•|PQ|的最大值为、点评:本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题、22、(15分)已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*),证明:当n ∈N*时,<x n;(Ⅰ)0<x n+1(Ⅱ)2x n﹣x n≤;+1(Ⅲ)≤x n≤、题目分析:(Ⅰ)用数学归纳法即可证明,(Ⅱ)构造函数,利用导数判断函数的单调性,把数列问题转化为函数问题,即可证明,﹣x n得﹣≥2(﹣)>0,继续放缩即可证明(Ⅲ)由≥2x n+1试题解答:解:(Ⅰ)用数学归纳法证明:x n>0,当n=1时,x1=1>0,成立,假设当n=k时成立,则x k>0,那么n=k+1时,若x k<0,则0<x k=x k+1+ln(1+x k+1)<0,矛盾,+1>0,故x n+1因此x n>0,(n∈N*)∴x n=x n+1+ln(1+x n+1)>x n+1,因此0<x n+1<x n(n∈N*),(Ⅱ)由x n=x n+1+ln(1+x n+1)得x n x n+1﹣4x n+1+2x n=x n+12﹣2x n+1+(x n+1+2)ln(1+x n+1),记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0∴f′(x)=+ln(1+x)>0,∴f(x)在(0,+∞)上单调递增,∴f(x)≥f(0)=0,因此x n+12﹣2x n+1+(x n+1+2)ln(1+x n+1)≥0,故2x n+1﹣x n≤;(Ⅲ)∵x n=x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,∴x n≥,由≥2x n+1﹣x n得﹣≥2(﹣)>0,∴﹣≥2(﹣)≥…≥2n﹣1(﹣)=2n﹣2,∴x n≤,综上所述≤x n≤点评:本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题。

2017年普通高等学校招生全国统一考试-数学(浙江卷)解析(参考版)

2017年普通高等学校招生全国统一考试-数学(浙江卷)解析(参考版)

选择题部分(共40分)、选择题:本大题共 10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题 目要求的。

1 .已知P {x |1 x 1} , Q {2 x 0},则 P QA • ( 2,1)B • ( 1,0)C • (0,1)D • ( 2, 1)【答案】A【解析】取P,Q 所有元素,得P Q ( 2,1).绝密★启用前2017年普通高等学校招生全国统一考试 (浙江卷)数学本试题卷分选择题和非选择题两部分。

全卷共 4页,选择题部分1至2页,非选择题部分 3至4页。

满分150分。

考试用时120分钟。

考生注意: 1 •答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定 的位置上。

2 •答题时,请按照答题纸上 注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式: 球的表面积公式 锥体的体积公式S 4 R 2 球的体积公式 1 V -Sh3其中S 表示棱锥的底面面积,h 表示棱锥的高 台体的体积公式 其中R 表示球的半径 柱体的体积公式 V=Sh其中S 表示棱柱的底面面积,h 表示棱柱的高1 ------------------ V §h(S a S a S £)其中S a , $分别表示台体的上、下底面积 h 学%科网表示台体的高2 2x 2 .椭圆一9 y1的离心率是4A .远3 【答案】B【解析】e .9 433 .某几何体的三视图如图所示(单位: cm3)是nF+1【答案】【解析】n 12(_2~ 1)4 .若x, y满足约束条件y2yA. [0,6] B . [0,4] 【答案】Dcm),则该几何体的体积(单位:正视图Q俯视圈C.3n彳T+1D.弓+31,选A.0,则z=x+2y的取值范围是C. [6, +8]D. [4,+ 8【解析】可行域为一开放区域,所以直线过点(2,1)时取最小值4, 无最大值,选D.5.若函数f(x)=x2+ ax+b在区间[0,1]上的最大值是M,最小值是m,则A .与a有关,且与b有关B .与a有关,但与b无关C.与a无关, 且与b无关D.与a无关,但与b有关【答案】B【解析】因为最值在f (0) b, f(1) 12a aa b, f ( )b 中取,所以最值之差2 4b无关,选B.6.已知等差数列[a n ]的公差为d ,前n 项和为3,贝U d>0”是S 4 + S” >S 的A .充分不必要条件B .必要不充分条件C .充分必要条件D •既不充分也不必要条件【答案】C【解析】S 4 S 6 2S 5 d ,所以为充要条件,选 C.【答案】D8.【答案】9 .如图,已知正四面体 D-\BC (所有棱长均相等的三棱锥),PQR 分别为AB , BC , CA 上的点,C . a < B <Y【解析】原函数先减再增,再减再增,因此选 8.已知随机变量A . E( J<E( C . E(1)>E( 1满足P(1 =1) =P)i, P (1=0) =1 —|:)i , i = 12) , D( 1)<D( 2)B.E( 1)<E( 2), D( 1)<D( 2) D.E( 1)>E(1 小,2.若 0<p 1<p 2< ,则22) , D( 1)>D( 2)2) , D(1)>D( 2)【解析】 Q E( i )P i ,E( 2) p 2 , E( 1)E( 2) Q D( 1)P 1(1 pj, D( 2) P 2(1 P 2),D( 1) D( 2) (P 1P 2)(1 P 1 P 2)0,选 A.AP=PB ,BQ QCCR RA2,分别记二面角 D -PR-Q , D -PQ-R , D -QR-P 的平面较为 a B, Y 则7.函数y=f(x)的导函数y f (x)的图像如图所示,则函数y=f(x)的图像可能是D.【答案】B【解析】设0为三角形ABC 中心,贝U O 到PQ 距离最小,0到PR 距离最大,0到RQ 距离居中,而高相 等,因此所以选BLLW iun10.如图,已知平面四边形 ABCD , AB 丄BC, AB = BC = AD = 2, CD = 3, AC 与BD 交于点O ,记Ii = OAOB ,uur Lur LLLT Lur I 2=OB OC , I 3=OC OD ,贝U/)A. I 1 <I 2 < I 3 nB . I 1<I 3 <I 2C . c I 3<I 1 < I 2D . I 2<I 1<I 3【答案】CLUL LILT LLTT L ILT LLL T LLLT【解析】因为 AOBCOD 90°,所以 OB OC 0 OA OB OCOD(QOA OC,OB OD)非选择题部分(共110分)7小题,多空题每题 6分,单空题每题 4分,共36分。

2017高考浙江数学试题和答案解析[解析版]

2017高考浙江数学试题和答案解析[解析版]

2017年普通高等学校招生全国统一考试(浙江卷)数学(理科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2017年浙江,1,4分】已知{|11}P x x =-<<,{20}Q x =-<<,则PQ =( )(A )(2,1)- (B )(1,0)- (C )(0,1) (D )(2,1)-- 【答案】A【解析】取,P Q 所有元素,得P Q =(2,1)-,故选A .【点评】本题考查集合的基本运算,并集的求法,考查计算能力.(2)【2017年浙江,2,4分】椭圆2214x y +=的离心率是( )(A (B(C )23 (D )59【答案】B【解析】e ==,故选B . 【点评】本题考查椭圆的简单性质的应用,考查计算能力. (3)【2017年浙江,3,4分】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )(A )12π+ (B )32π+(C )312π+ (D )332π+【答案】A【解析】由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为2111π3(21)13222V π⨯=⨯⨯+⨯⨯=+,故选A .【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.(4)【2017年浙江,4,4分】若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是( )(A )[]0,6 (B )[]0,4(C )[]6,+∞ (D )[]4,+∞ 【答案】D【解析】如图,可行域为一开放区域,所以直线过点()2,1时取最小值4,无最大值,故选D . 【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.(5)【2017年浙江,5,4分】若函数()2f x x ax b =++在区间[]01,上的最大值是M ,最小值是m ,则–M m ( )(A )与a 有关,且与b 有关 (B )与a 有关,但与b 无关 (C )与a 无关,且与b 无关 (D )与a 无关,但与b 有关 【答案】B【解析】解法一:因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,故选B.解法二:函数()2f x x ax b =++的图象是开口朝上且以直线2a x =-为对称轴的抛物线,①当12a->或02a-<,即2a <-,或0a >时,函数()f x 在区间[]0,1上单调,此时()()10M m f f a -=-=,故M m -的值与a 有关,与b 无关;②当1122a ≤-≤,即21a -≤≤-时,函数()f x 在区间0,2a ⎡⎤-⎢⎥⎣⎦上递减,在,12a ⎡⎤-⎢⎥⎣⎦上递增,且()()01f f >,此时()2024a aM m f f ⎛⎫-=--= ⎪⎝⎭,故M m -的值与a 有关,与b 无关;③当1022a ≤-<,即10a -<≤时,函数()f x 在区间0,2a ⎡⎤-⎢⎥⎣⎦上递减,在,12a ⎡⎤-⎢⎥⎣⎦上递增,且()()01f f <,此时()2024a a M m f f a ⎛⎫-=--=- ⎪⎝⎭,故M m -的值与a 有关,与b 无关.综上可得:M m -的值与a 有关,与b 无关,故选B .【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键. (6)【2017年浙江,6,4分】已知等差数列[]n a 的公差为d ,前n 项和为n S ,则“0d >”是“4652S S S +>”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】C【解析】由()46511210212510S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“0d >”是“4652S S S +>”的充要条件,故选C .【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题.(7)【2017年浙江,7,4分】函数()y f x =的导函数()y f x '=的图像如图所示,则函数()y f x =的图像可能是( )(A )(B )(C )(D ) 【答案】D【解析】解法一:由当()0f x '<时,函数f x ()单调递减,当()0f x '>时,函数f x ()单调递增,则由导函数()y f x =' 的图象可知:()f x 先单调递减,再单调递增,然后单调递减,最后单调递增,排除A ,C ,且第二个拐点(即函数的极大值点)在x 轴上的右侧,排除B ,,故选D .解法二:原函数先减再增,再减再增,且0x =位于增区间内,故选D .【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.(8)【2017年浙江,8,4分】已知随机变量1ξ满足()11i P p ξ==,()101i P p ξ==-,1,2i =.若12102p p <<<,则( )(A )12E()E()ξξ<,12D()D()ξξ<(B )12E()E()ξξ<,12D()D()ξξ>(C )12E()E()ξξ>,12D()D()ξξ< (D )12E()E()ξξ>,12D()D()ξξ< 【答案】A【解析】112212(),(),()()E p E p E E ξξξξ==∴<111222()(1),()(1)D p p D p p ξξ=-=-,121212()()()(1)0D D p p p p ξξ∴-=---<,故选A .【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.(9)【2017年浙江,9,4分】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),PQR分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA==,分别记二面角––D PR Q , ––D PQ R ,––D QR P 的平面较为α,β,γ,则( )(A )γαβ<< (B )αγβ<< (C )αβγ<< (D )βγα<< 【答案】B【解析】解法一:如图所示,建立空间直角坐标系.设底面ABC ∆的中心为O .不妨设3OP =.则()0,0,0O ,()0,3,0P -,()0,6,0C -,(D,)2,0Q,()R -,()PR =-,(PD =,()3,5,0PQ=,()2,0QR =--,(QD =-.设平面PDR 的法向量为(),,n x y z =,则0n PR n PD ⎧⋅=⎪⎨⋅=⎪⎩,可得3030y y ⎧-+=⎪⎨+=⎪⎩,可得()6,21n =-,取平面ABC 的法向量()0,0,1m =. 则cos ,15m n mn m n⋅==-α=.同理可得:β=.γ=>>αγβ<<.解法二:如图所示,连接OD OQ OR ,,,过点O 发布作垂线:OE DR ⊥,OF DQ ⊥,OG QR ⊥,垂足分别为E F G ,,,连接PE PF PG ,,.设OP h =.则cosODR PDR S OES PE α∆∆===cos OF PF β==c ,cos OG PG γ==.由已知可得:OE OG OF >>.∴cos cos cos αγβ>>,αβγ,,为锐角.∴α<γ<β,故选B .【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.(10)【2017年浙江,10,4分】如图,已知平面四边形ABCD ,AB BC ⊥,2AB BC AD ===,3CD =,AC 与BD 交于点O ,记1·I OAOB =,2·I OB OC =,3·I OC OD =,则( )(A )123I I I << (B )132I I I << (C )312I I I << (D )223I I I <<【答案】C【解析】∵AB BC ⊥,2AB BC AD ===,3CD =,∴22AC =,∴90AOB COD ∠=∠>︒,由图象知OA OC <,OB OD <,∴0OA OB OC OD >⋅>⋅,0OB OC ⋅>,即312I I I <<,故选C .【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.第Ⅱ卷(非选择题 共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.(11)【2017年浙江,11,4分】我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度。

2017年高考浙江卷数学试题解析(正式版)(原卷版)

2017年高考浙江卷数学试题解析(正式版)(原卷版)

绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页,非选择题部分3至4页.满分150分.考试用时120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效. 参考公式:球的表面积公式 锥体的体积公式 24S R =π13V Sh =球的体积公式 其中S 表示棱锥的底面面积,h 表示棱锥的高 343V R =π台体的体积公式其中R 表示球的半径 1()3a ab b V h S S S S =+⋅+柱体的体积公式其中S a ,S b 分别表示台体的上、下底面积V =Sh h 表示台体的高其中S 表示棱柱的底面面积,h 表示棱柱的高数学试题选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|11}P x x =-<<,{02}Q x =<<,那么P Q =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)2.椭圆22194x y +=的离心率是A .133B .53C .23D .593.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是(第3题图)A .12π+ B .32π+ C .312π+D .332π+ 4.若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,,,则2z x y =+的取值范围是A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞5.若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – m A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,且与b 无关D .与a 无关,但与b 有关6.已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是(第7题图)8.已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1–p i ,i =1,2. 若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则(第9题图)A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I O A O B =,2·I OB OC =,3·I OC OD =,则(第10题图)A .123I I I <<B .132I I I <<C .312I I I <<D .213I I I <<非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页,非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上―注意事项‖的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:球的表面积公式 锥体的体积公式24S R =π13V Sh =球的体积公式 其中S 表示棱锥的底面面积,h 表示棱锥的高 343V R =π台体的体积公式其中R 表示球的半径 1()3a ab b V h S S S S =+⋅+柱体的体积公式 其中S a ,S b 分别表示台体的上、下底面积 V =Shh 表示台体的高其中S 表示棱柱的底面面积,h 表示棱柱的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知}11|{<<-=x x P ,}02{<<-=x Q ,则=Q P A .)1,2(- B .)0,1(- C .)1,0( D .)1,2(--【答案】A【解析】取Q P ,所有元素,得=Q P )1,2(-.2.椭圆22194x y +=的离心率是 A .133B .53C .23D .59【答案】B 【解析】94533e -==,选B. 3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .π2+1 B .π2+3 C .3π2+1 D .3π2+3 【答案】A 【解析】2π1211π3(21)1322V ⨯=⨯⨯+⨯⨯=+,选A. 4.若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则z =x +2y 的取值范围是A .[0,6]B .[0,4]C .[6,+∞]D .[4,+∞]【答案】D【解析】可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D. 5.若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B.6.已知等差数列[a n ]的公差为d ,前n 项和为S n ,则―d >0‖是―S 4 + S 6‖>2S 5的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】4652S S S d +-=,所以为充要条件,选C.7.函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】原函数先减再增,再减再增,因此选D.8.已知随机变量ξ1满足P (1ξ=1)=p i ,P (1ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ8.【答案】A【解析】112212(),(),()()E p E p E E ξξξξ==∴<111222121212()(1),()(1),()()()(1)0D p p D p p D D p p p p ξξξξ=-=-∴-=---< ,选A.9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),PQR 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面较为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而高相等,因此αγβ<<所以选B10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I O A O B=,2·I OB OC =,3·I OC OD=,则A .I 1<I 2<I 3B .I 1<I 3<I 2C . I 3<I 1<I 2D .I 2<I 1<I 3【答案】C【解析】因为90AOB COD ∠=∠>,所以0(,)OB OC OA OB OC OD OA OC OB OD ⋅>>⋅>⋅<<选C非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

11.我国古代数学家刘徽创立的―割圆术‖可以估算圆周率π,理论上能把π的值计算到任意精度。

祖冲之继承并发展了―割圆术‖,将π的值精确到小数点后七位,其结果领先世界一千多年,―割圆术‖的第一步是计算单位圆内接正六边形的面积S 内,S 内=。

【答案】332【解析】将正六边形分割为6个等边三角形,则:133=611sin 6022S ⎛⎫⨯⨯⨯⨯=⎪⎝⎭内12.已知ab ∈R ,2i 34i a b +=+()(i 是虚数单位)则22a b +=,ab =。

【答案】5,2【解析】由题意可得22234a b abi i -+=+,则2232a b ab ⎧-=⎨=⎩,解得2241a b ⎧=⎨=⎩,则225,2a b ab +==13.已知多项式()1x +1()2x +2=5432112345x a x a x a x a x a +++++,则4a =________________,5a =________. 【答案】16,4【解析】由二项式展开式可得通项公式为:32r r m mC x C x ,分别取0,1r m ==和1,0r m ==可得441216a =+=,令0x =可得325124a =⨯=14.已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD=2,连结CD ,则△BDC 的面积是______,cos∠BDC =_______. 【答案】1510,2415.已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是_______. 【答案】4,25【解析】设向量,a b的夹角为θ,由余弦定理有:2212212cos 54cos a b θθ-=+-⨯⨯⨯=- , ()2212212cos 54cos a b πθθ+=+-⨯⨯⨯-=+,则:54cos 54cos a b a b θθ++-=++-,令54cos 54cos y x x =++-,则[]221022516cos 16,20y θ=+-∈,据此可得:()()maxmin2025,164a b a ba b a b++-==++-==,即a b a b ++-的最小值是4,最大值是25.16.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有______中不同的选法.(用数字作答) 【答案】660【解析】由题意可得:总的选择方法为:411843C C C ⨯⨯种方法,其中不满足题意的选法有411643C C C ⨯⨯种方法,则满足题意的选法有:411411843643660C C C C C C ⨯⨯-⨯⨯=种.17.已知α∈R ,函数f(x)=‖x +4x‖–α+α在区间[1,4]上的最大值是5,则α的取值范围是___________. 【答案】9(,]2-∞三、解答题:本大题共5小题,共74分。

解答应写出文字说明、证明过程或演算步骤。

18.(本题满分14分)已知函数f (x )=sin 2x –cos 2x –23 sin x cos x (x ∈R ).(Ⅰ)求f (2π3)的值. (Ⅱ)求f (x )的最小正周期及单调递增区间. 【答案】(Ⅰ)2;(Ⅱ)最小正周期为单调递增区间为ππππ.36k k k Z ,,⎡⎤-+∈⎢⎥⎣⎦【解析】(Ⅰ)f (x )=22sin cos 23sin cos cos23sin 2x x x x x x --=--=-2πsin 26x ⎛⎫+ ⎪⎝⎭则f (2π3)=-24ππsin 2.36⎛⎫+= ⎪⎝⎭(Ⅱ)f (x )的最小正周期为. 令2ππππππ22πππ.26236k x k k k x k k Z Z ,,得,-≤+≤+∈-≤≤+∈ 函数f (x )的单调递增区间为ππππ.36k k k Z ,,⎡⎤-+∈⎢⎥⎣⎦19.(本题满分15分)如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(Ⅰ)证明:CE ∥平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值. 【答案】(Ⅰ)见解析;(Ⅱ)82. 【解析】方法一:(1)取AD 的中点F ,连接EF ,CF∵E 为PD 的重点∴EF ∥P A在四边形ABCD 中,BC ∥AD ,AD =2DC =2CB ,F 为中点 易得CF ∥AB∴平面EFC ∥平面ABP∵EC ⊂平面EFC ∴EC ∥平面P AB(2)连结BF ,过F 作FM ⊥PB 与M ,连结PF 因为P A =PD ,所以PF ⊥AD易知四边形BCDF 为矩形,所以BF ⊥AD所以AD ⊥平面PBF ,又AD ∥BC ,所以BC ⊥平面PBF ,所以BC ⊥PB 设DC =CB =1,则AD =PC =2,所以PB =2,BF =PF =1所以MF =12,又BC ⊥平面PBF ,所以BC ⊥MF所以MF ⊥平面PBC ,即点F 到平面PBC 的距离为12也即点D 到平面PBC 的距离为12因为E 为PD 的中点,所以点E 到平面PBC 的距离为14在△PCD 中,PC=2,CD =1,PD =2,由余弦定理可得CE =2 设直线CE 与平面PBC 所成的角为θ,则124sin =8CE θ=方法二解:(1)略;构造平行四边形(2)过P 作PH ⊥CD ,交CD 的延长线于点H在Rt △PDH 中,设DH =x ,则易知2222(2)(1)2x x -++=,(Rt △PCH ) 解得DH =12过H 作BC 的平行线,取DH =BC =1, 由题易得B (32,0,0),D (12,1,0),C (32,1,0),P (0,0,32),E (14,12,34) 则513(,,)424CE =-- ,33(,0,)22PB =- ,(0,1,0)BC =设平面PBC 的法向量为(,,)n x y z = ,则330220n PB x z n BC y ⎧⋅=-=⎪⎨⎪⋅==⎩,令x =1,则t =3,故(1,0,3)n = , 设直线CE 与平面PBC 所成的角为θ,则sin θ=531|3|2442|cos <,n|=8251322216416CE θ-+⨯==++⨯故直线CE 与平面PBC 所成角的正弦值为2820.(本题满分15分)已知函数f (x )=(x –21x -)e x -(12x ≥). (Ⅰ)求f (x )的导函数;(Ⅱ)求f (x )在区间1[+)2∞,上的取值范围. 【答案】(Ⅰ)f '(x )=(1-x )(1-221x -)xe -;(Ⅱ)[0, 1212e -]. (Ⅱ)令g (x )= x -21x -,则g '(x )=1-121x -,当12≤x <1时,g '(x )<0,当x >1时,g '(x )>0,则g (x )在x =1处取得最小值,既最小值为0,又xe ->0,则f (x )在区间[12,+∞)上的最小值为0. 当x 变化时,f (x ),f '(x )的变化如下表:x (12,1) 1 (1,52) 52(52,+∞) f '(x ) - 0 + 0 - f (x )↘↗↘又f (12)=1212e -,f (1)=0,f (52)=1252e -,则f (x )在区间[12,+∞)上的最大值为1212e -.综上,f (x )在区间[12,+∞)上的取值范围是[0,1212e -]. 21.(本题满分15分)如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点11()()24P x y x -<<,.过点B 作直线AP 的垂线,垂足为Q.(Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求AP PQ ⋅的最大值. 【答案】(Ⅰ)(-1,1);(Ⅱ)【解析】解:(Ⅰ)由题易得P (x ,x 2),-12<x <32, 故k AP =21412x x -+=x -12∈(-1,1), 故直线AP 斜率的取值范围为(-1,1).(Ⅱ)由(Ⅰ)知P (x ,x 2),-12<x <32,故PA =(-12-x ,14-x 2),设直线AP 的斜率为k , 则AP :y =kx +12k +14,BP :y =13924x k k -++, 由112413924y kx k y x k k ⎧=++⎪⎪⎨⎪=-++⎪⎩222234981(,)2244k k k k Q k k +-++⇒++故23432221(,)11k k k k k k kPQ k k +----++=++ , 又2(1,)PA k k k =----,故323322(1)(1)(1)(1)(1)(1)11k k k k k PA PQ PA PQ k k k k +-+--==+=+-++ , 即3(1)(1)PA PQ k k =+- ,令3()(1)(1),11f x x x x =+--<<, 则22()(1)(24)2(1)(21)f x x x x x '=+-=-+-,当112x -<<时,()0f x '>,当112x <<时,()0f x '<, 故max 127()()216f x f ==,即PA PQ 的最大值为2716. 22.(本题满分15分)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n ∈N*).证明:当n ∈N*时, (Ⅰ)0<x n +1<x n ; (Ⅱ)2x n +1− x n ≤12n n x x +; (Ⅲ)112n +≤x n ≤212n +. 【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.(Ⅰ)证明:令函数()ln(1)f x x x =++,则易得()f x 在[0,)+∞上为增函数. 又1()n n x f x +=,若10()(0)0n n x f x f +>⇒>=恒成立10n x +⇒>, 又由11ln(1)n n n x x x ++=++可知0n x >,由111111ln(1)ln(1)0n n n n n n n n x x x x x x x x ++++++-=++-=+>⇒>. 所以10n n x x +<<.(Ⅱ)令22()[ln(1)][ln(1)]ln(1),0222x x x g x x x x x x x x +=++--+=++->,则121111()ln(1)1ln(1)ln(1)22(1)22(1)22(1)2x x g x x x x x x x x x x +'=+++-=+-+=+++-+++, 令111()ln(1)22(1)2h x x x x =+++-+,11 / 11则22211252()102(1)2(1)2(1)x x h x x x x ++'=-+=>+++,所以()h x 单调递增. 所以()(0)0h x h >=,即()0g x '>,()g x 单调递增. 所以()(0)0[ln(1)]ln(1)2x g x g x x x x >=⇒++>-+. 所以11111112ln(1)[ln(1)]22n n n n n n n n n x x x x x x x x x +++++++-=-+≤++=. 即1122n n n n x x x x ++-≤.。

相关文档
最新文档