北京市西城区2016届高三一模试卷_数学

合集下载

北京市西城区2016届高三一模考试数学文试题 含答案

北京市西城区2016届高三一模考试数学文试题 含答案

北京市西城区2016年高三一模试卷数 学(文科) 2016.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1。

设集合2{|}4A x x x =≤,集合{1,2,3,4}B =--,则AB =( )(A ){1,2}- (B){2,4} (C ){3,1}-- (D){1,2,3,4}-- 2. 设命题p :0,sin 21xx x ∃>>-,则⌝p 为( )(A)0,sin 21xx x ∀>-≤ (B )0,sin 21xx x ∃><- (C )0,sin 21xx x ∀><- (D )0,sin 21x x x ∃>-≤3。

如果()f x 是定义在R 上的奇函数,那么下列函数中,一定为偶函数的是( )(A )()y x f x =+ (B )()y xf x = (C )2()y x f x =+ (D )2()y x f x =4.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示。

若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )(A ){2} (B ){1,2} (C){0,1,2} (D){2,3}5。

在平面直角坐标系xOy 中,向量OA =(-1, 2),OB=(2, m ) , 若O , A , B 三点能构成三角形,则( )(A )4m =- (B )4m ≠- (C )1m ≠ (D)m ∈R甲队 乙队 890 1m8236。

执行如图所示的程序框图,若输入的,A S 分别为0, 1,则输出的S =( )(A )4 (B )16 (C )27 (D )36 7. 设函数12()log f x x x a=+-,则“(1,3)a ∈”是 “函数()f x 在(2,8)上存在零点”的( )(A)充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D)既不充分也不必要条件 8。

2016年北京市西城区高三年级第一学期期末练习数学(文科)试卷(含答案)

2016年北京市西城区高三年级第一学期期末练习数学(文科)试卷(含答案)

北京市西城区2015 — 2016学年度第一学期期末试卷高三数学(文科) 2016.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|}A x x a =>,集合{1,1,2}B =-,若A B B = ,则实数a 的取值范围是( ) (A )(1,)+∞ (B )(,1)-∞ (C )(1,)-+∞ (D )(,1)-∞-2. 下列函数中,值域为[0,)+∞的偶函数是( )(A )21y x =+ (B )lg y x = (C )||y x = (D )cos y x x =3.设M 是ABC ∆所在平面内一点,且BM MC = ,则AM =( )(A )AB AC - (B )AB AC + (C )1()2AB AC - (D )1()2AB AC +4.设命题p :“若e 1x >,则0x >”,命题q :“若a b >,则11a b<”,则( ) (A )“p q ∧”为真命题 (B )“p q ∨”为真命题(C )“p ⌝”为真命题 (D )以上都不对5. 一个几何体的三视图如图所示,那么 这个几何体的表面积是( ) (A)16+ (B)16+ (C)20+ (D)20+侧(左)视图正(主)视图 俯视图6. “0mn <”是“曲线221x y m n+=是焦点在x 轴上的双曲线”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7. 设x ,y 满足约束条件1,3,,x y y m y x +-⎧⎪⎨⎪⎩≤≤≥ 若3z x y =+的最大值与最小值的差为7,则实数m =( ) (A )32 (B )32- (C )14 (D )14-8. 某市乘坐出租车的收费办法如下:相应系统收费的程序框图如图所示,其中x (单位:千米)为行驶里程,y (单位:元)为所收费用,用[x ]表示不大于x 的最大整数,则图中1处应填( )(A )12[]42y x =-+(B )12[]52y x =-+(C )12[]42y x =++(D )12[]52y x =++第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 已知复数z 满足(1i)24i z +=-,那么z =____.10.若抛物线22C y px =:的焦点在直线30x y +-=上,则实数p =____;抛物线C 的准线方程为____.11.某校某年级有100名学生,已知这些学生完成家庭作业的时间均在区间[0.5,3.5)内(单位:小时),现将这100人完成家庭作业的时间分为3组:[0.5,1.5),[1.5,2.5),[2.5,3.5)加以统计,得到如图所示的频率分布直方图.在这100人中,采用分层抽样的方法抽取10名学生研究其视力状况与完成作业时间的相关性,则在抽取样本中,完成作业的时间小于2.5个小时的有_____人.12.已知函数()f x 的部分图象如图所示,若不等式2()4f x t -<+<的解集为(1,2)-,则实数t 的值为____.13. 在∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若πsin cos()2A B =-,3a =,2c =,则cos C =____;∆ABC 的面积为____.14. 某食品的保鲜时间t (单位:小时)与储藏温度x (恒温,单位:C )满足函数关系60,264, , 0.kx x t x +⎧=⎨>⎩≤ 且该食品在4C 的保鲜时间是16小时.1 该食品在8C的保鲜时间是_____小时;2 已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示,那么到了a此日13时,甲所购买的食品是否过了保鲜时间______.(填“是”或“否”)三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知数列{}n a 是等比数列,并且123,1,a a a +是公差为3-的等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2n n b a =,记n S 为数列{}n b 的前n 项和,证明:163n S <.16.(本小题满分13分)已知函数3()cos (sin 3)2f x x x x =+-,x ∈R . (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若(0,π)x ∈,求函数()f x 的单调增区间.17.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD ∠=,侧面PAB ⊥底面ABCD ,90BAP ∠= ,6AB AC PA ===, ,E F 分别为,BC AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC ;(Ⅱ)若M 为PD 的中点,求证://ME 平面PAB ;(Ⅲ)当12PM MD =时,求四棱锥M ECDF -的体积.FADPM18.(本小题满分13分)甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分. 两人4局的得分情况如下:甲 6 6 99乙79xy(Ⅰ)已知在乙的4局比赛中随机选取1局时,此局得分小于6分的概率不为零,且在4局比赛中,乙的平均得分高于甲的平均得分,求x y +的值;(Ⅱ)如果6x =,10y =,从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为a ,b ,求b a ≥的概率;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x 的所有可能取值.(结论不要求证明)19.(本小题满分14分)已知椭圆C :22221(0)x y a b a b +=>>,点(1,A 在椭圆C 上,O 为坐标原点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,且l 与圆225x y +=的相交于不在坐标轴上的两点1P ,2P ,记直线1OP ,2OP 的斜率分别为1k ,2k ,求证:12k k ⋅为定值.20.(本小题满分13分)已知函数21()2f x x x =+,直线1l y kx =-:. (Ⅰ)求函数()f x 的极值;(Ⅱ)求证:对于任意k ∈R ,直线l 都不是曲线()y f x =的切线; (Ⅲ)试确定曲线()y f x =与直线l 的交点个数,并说明理由.北京市西城区2015 — 2016学年度第一学期期末高三数学(文科)参考答案及评分标准2016.1一、选择题:本大题共8小题,每小题5分,共40分.1.D 2.C 3.D 4.B 5.B 6.B 7.C 8.D 二、填空题:本大题共6小题,每小题5分,共30分.9.13i -- 10.6 3x =- 11. 9 12.113.7914.4 是 注:第10,13,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:设等比数列{}n a 的公比为q ,因为123,1,a a a +是公差为3-的等差数列,所以213213,(1)3,a a a a +=-⎧⎨=+-⎩………………2分即112114,2,a q a a q a q -=-⎧⎪⎨-=-⎪⎩………………3分解得118,2a q ==. ……………… 5 分所以114118()22n n nn a a q ---==⨯=.……………… 7分 (Ⅱ)证明:因为122214n n n n b a b a ++==, 所以数列{}n b 是以124b a ==为首项,14为公比的等比数列. ……………… 8分所以14[1()]4114n n S -=- ……………… 11分16116[1()]343n =-<. ……………… 13分16.(本小题满分13分)(Ⅰ)解:()cos (sin )f x x x x =2sin cos 1)x x x =-1sin 222x x=+ ……………… 4分πsin(2)3x =+, (6)分所以函数()f x 的最小正周期2π=π2T =. ……………… 8分(Ⅱ)解:由22ππππ2π+232k k x -+≤≤,k ∈Z , ……………… 9分得5ππππ+1212k k x -≤≤, 所以函数()f x 的单调递增区间为[5ππππ+]1212k k -,,k ∈Z . ……………… 11分所以当(0,π)x ∈时,()f x 的增区间为π(0]12,,7π[,π)12. ……………… 13分(注:或者写成增区间为π(0)12,,7π(,π)12. )17.(本小题满分14分)(Ⅰ)证明:在平行四边形ABCD 中,因为AB AC =,135BCD ∠=,所以AB AC ⊥.由,E F 分别为,BC AD 的中点,得//EF AB ,所以EF AC ⊥. ………………1分因为侧面PAB ⊥底面ABCD ,且90BAP ∠=,所以PA ⊥底面ABCD . ………………2分又因为EF ⊂底面ABCD ,所以PA EF ⊥. ………………3分又因为PA AC A = ,PA ⊂平面PAC ,AC ⊂平面PAC ,所以EF ⊥平面PAC . ………………5分(Ⅱ)证明:因为M 为PD 的中点,F 分别为AD 的中点, 所以//MF PA ,又因为MF ⊄平面PAB ,PA ⊂平面PAB , 所以//MF 平面PAB . ………………7分 同理,得//EF 平面PAB .又因为=MF EF F ,MF ⊂平面MEF ,EF ⊂平面MEF , 所以平面//MEF 平面PAB . ………………9分又因为ME ⊂平面MEF ,所以//ME 平面PAB . ………………10分(Ⅲ)解:在PAD ∆中,过M 作//MN PA 交AD 于点N (图略), 由12PM MD =,得23MN PA =, 又因为6PA =,所以4MN =, ……………… 12分因为PA ⊥底面ABCD ,所以MN ⊥底面ABCD , 所以四棱锥M ECDF -的体积1166424332M ECDF ECDF V S MN -⨯=⨯⨯=⨯⨯= . …… 14分18.(本小题满分13分) (Ⅰ)解:由题意,得79669944x y ++++++>,即14x y +>. (2)分因为在乙的4局比赛中,随机选取1局,则此局得分小于6分的概率不为零, 所以,x y 中至少有一个小于6, (4)F CADPMB E分又因为10,10x y ≤≤,且,x y ∈N ,所以15x y +≤, 所以15x y +=. ……………… 5分(Ⅱ)解:设 “从甲、乙的4局比赛中随机各选取1局,且得分满足b a ≥”为事件M , ……………… 6分记甲的4局比赛为1A ,2A ,3A ,4A ,各局的得分分别是6,6,9,9;乙的4局比赛为1B ,2B ,3B ,4B ,各局的得分分别是7,9,6,10.则从甲、乙的4局比赛中随机各选取1局,所有可能的结果有16种,它们是:11(,)A B , 12(,)A B ,13(,)A B ,14(,)A B ,21(,)A B ,22(,)A B ,23(,)A B ,24(,)A B ,31(,)A B ,32(,)A B ,33(,)A B ,34(,)A B ,41(,)A B ,42(,)A B ,43(,)A B ,44(,)A B . ……………… 7分而事件M 的结果有8种,它们是:13(,)A B ,23(,)A B ,31(,)A B ,32(,)A B ,33(,)A B ,41(,)A B ,42(,)A B ,43(,)A B , ……………… 8分因此事件M 的概率81()162P M ==. ……………… 10分(Ⅲ)解:x 的可能取值为6,7,8. ……………… 13分19.(本小题满分14分)(Ⅰ)解:由题意,得c a =,222a b c =+, ……………… 2分又因为点(1,2A 在椭圆C 上, 所以221314a b +=, ……………… 3分解得2a =,1b =,c =所以椭圆C 的方程为2214x y +=. (5)分(Ⅱ)证明:当直线l 的斜率不存在时,由题意知l 的方程为2x =±, 易得直线1OP ,2OP 的斜率之积1214k k ⋅=-. …………… 6分当直线l 的斜率存在时,设l 的方程为y kx m =+. …………… 7分由方程组22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(41)8440k x kmx m +++-=, ………………8分因为直线l 与椭圆C 有且只有一个公共点, 所以22(8)4(41kmk m ∆=-+-=,即2241m k =+. ……………… 9分由方程组22,5,y kx m x y =+⎧⎨+=⎩ 得222(1)250k x kmx m +++-=, ………………10分设111(,)P x y ,222(,)P x y ,则12221kmx x k -+=+,212251m x x k -⋅=+, ……………… 11分所以221212121212121212()()()y y kx m kx m k x x km x x m k k x x x x x x +++++⋅=== 222222222252511551m km k km m m k k k m m k --⋅+⋅+-++==--+, ……………… 13分将2241m k =+代入上式,得212211444k k k k -+⋅==--. 综上,12k k ⋅为定值14-. ……………… 14分20.(本小题满分13分)(Ⅰ)解:函数()f x 定义域为{|0}x x ≠, ……………… 1分求导,得32()2f x x '=-, ……………… 2分令()0f x '=,解得1x =.当x 变化时,()f x '与()f x 的变化情况如下表所示:所以函数()y f x =的单调增区间为(,0)-∞,(1,)+∞,单调减区间为(0,1),……………… 3分所以函数()y f x =有极小值(1)3f =,无极大值. ……………… 4分(Ⅱ)证明:假设存在某个k ∈R ,使得直线l 与曲线()y f x =相切, ……………… 5分设切点为00201(,2)A x x x +,又因为32()2f x x'=-, 所以切线满足斜率3022k x =-,且过点A , 所以002300122(2)1x x x x +=--, ……………… 7分 即2031x =-,此方程显然无解, 所以假设不成立.所以对于任意k ∈R ,直线l 都不是曲线()y f x =的切线. ……………… 8分(Ⅲ)解:“曲线()y f x =与直线l 的交点个数”等价于“方程2121x kx x +=-的根的个数”.由方程2121x kx x +=-,得3112k x x=++. ……………… 9分 令1t x=,则32k t t =++,其中t ∈R ,且0t ≠. 考察函数3()2h t t t =++,其中t ∈R , 因为2()310h t t '=+>时,所以函数()h t 在R 单调递增,且()h t ∈R . ………………11分而方程32k t t =++中, t ∈R ,且0t ≠.所以当(0)2k h ==时,方程32k t t =++无根;当2k ≠时,方程32k t t =++有且仅有一 根,故当2k =时,曲线()y f x =与直线l 没有交点,而当2k ≠时,曲线()y f x =与直线l 有且仅有一个交点. ……………… 13分。

北京市西城区2016届高三上学期期末考试数学理试题(WORD版)-含答案

北京市西城区2016届高三上学期期末考试数学理试题(WORD版)-含答案

北京市西城区2015 — 2016学年度第一学期期末试卷高三数学(理科) 2016.1第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|1}A x x =>,集合{2}B a =+,若A B =∅,则实数a 的取值范围是( )(A )(,1]-∞- (B )(,1]-∞(C )[1,)-+∞(D )[1,)+∞2. 下列函数中,值域为R 的偶函数是( )(A )21y x =+ (B )e e x x y -=- (C )lg ||y x = (D )2y x =3. 设命题p :“若1sin 2α=,则π6α=”,命题q :“若a b >,则11a b<”,则( ) (A )“p q ∧”为真命题 (B )“p q ∨”为假命题 (C )“q ⌝”为假命题 (D )以上都不对4. 在数列{}n a 中,“对任意的*n ∈N ,212n n n a a a ++=”是“数列{}n a 为等比数列”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 5. 一个几何体的三视图如图所示,那么这个 几何体的表面积是( ) (A )1623+ (B )1625+ (C )2023+ (D )2025+侧(左)视图正(主)视图俯视图22 1 1开始 4x >输出y 结束否 是 输入xy=12○1 6. 设x ,y 满足约束条件1,3,,x y y m y x +-⎧⎪⎨⎪⎩≤≤≥ 若3z x y =+的最大值与最小值的差为7,则实数m =( )(A )32 (B )32- (C )14(D )14-7. 某市乘坐出租车的收费办法如下:不超过4千米的里程收费12元;超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);当车程超过4千米时,另收燃油附加费1元.相应系统收费的程序框图如图所示,其中x (单位:千米)为行驶里程,y (单位:元)为所收费用,用[x ]表示不大于x 的最大整数,则图中○1处应填( ) (A )12[]42y x =-+(B )12[]52y x =-+(C )12[]42y x =++(D )12[]52y x =++8. 如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.如果对于常数λ,在正方形ABCD 的四条边上,有且只有6个不同的点P 使得=PE PF λ⋅成立,那么λ的取值范围是( ) (A )(0,7) (B )(4,7) (C )(0,4) (D )(5,16)-第Ⅱ卷(非选择题 共110分)E FD P C A BB OC A NM二、填空题:本大题共6小题,每小题5分,共30分. 9. 已知复数z 满足(1i)24i z +=-,那么z =____.10.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c . 若A B =,3a =,2c =,则cos C =____.11.双曲线C :221164x y -=的渐近线方程为_____;设12,F F 为双曲线C 的左、右焦点,P 为C 上一点,且1||4PF =,则2||PF =____.12.如图,在ABC ∆中,90ABC ∠=,3AB =,4BC =,点O 为BC 的中点,以BC 为直径的半圆与AC ,AO 分别相交于点M ,N ,则AN =____;AMMC= ____.13. 现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有____种.(用数字作答)14. 某食品的保鲜时间t (单位:小时)与储藏温度x (单位:C )满足函数关系60,264, , 0.kx x t x +⎧=⎨>⎩≤ 且该食品在4C 的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示. 给出以下四个结论: ○1 该食品在6C 的保鲜时间是8小时;○2 当[6,6]x ∈-时,该食品的保鲜时间t 随着x 增大而逐渐减少; ○3 到了此日13时,甲所购买的食品还在保鲜时间内; ○4 到了此日14时,甲所购买的食品已然过了保鲜时间. 其中,所有正确结论的序号是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数3()cos (sin 3cos )2f x x x x =+-,x ∈R . (Ⅰ)求()f x 的最小正周期和单调递增区间;(Ⅱ)设0α>,若函数()()g x f x α=+为奇函数,求α的最小值.16.(本小题满分13分)甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分. 两人4局的得分情况如下: 甲 6 6 9 9 乙79xy(Ⅰ)若从甲的4局比赛中,随机选取2局,求这2局的得分恰好相等的概率;(Ⅱ)如果7x y ==,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为X ,求X 的分布列和数学期望;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x 的所有可能取值.(结论不要求证明)17.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD ∠=,侧面PAB ⊥底面ABCD ,90BAP ∠=,2AB AC PA ===, ,E F 分别为,BC AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC ;(Ⅱ)若M 为PD 的中点,求证://ME 平面PAB ; (Ⅲ)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所成的角相等,求PMPD的值.18.(本小题满分13分)F CADPMB E已知函数2()1f x x =-,函数()2ln g x t x =,其中1t ≤.(Ⅰ)如果函数()f x 与()g x 在1x =处的切线均为l ,求切线l 的方程及t 的值; (Ⅱ)如果曲线()y f x =与()y g x =有且仅有一个公共点,求t 的取值范围.19.(本小题满分14分)已知椭圆C :)0(12222>>=+b a by a x 的离心率为23,点3(1,)2A 在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满足此圆与l 相交两点1P ,2P (两点均不在坐标轴上),且使得直线1OP ,2OP 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.20.(本小题满分13分)在数字21,2,,()n n ≥的任意一个排列A :12,,,n a a a 中,如果对于,,i j i j *∈<N ,有i j a a >,那么就称(,)i j a a 为一个逆序对. 记排列A 中逆序对的个数为()S A .如=4n 时,在排列B :3, 2, 4, 1中,逆序对有(3,2),(3,1),(2,1),(4,1),则()4S B =.(Ⅰ)设排列 C : 3, 5, 6, 4, 1, 2,写出()S C 的值;(Ⅱ)对于数字1,2,,n 的一切排列A ,求所有()S A 的算术平均值;(Ⅲ)如果把排列A :12,,,n a a a 中两个数字,()i j a a i j <交换位置,而其余数字的位置保持不变,那么就得到一个新的排列A ':12,,,n b b b ,求证:()()S A S A '+为奇数.北京市西城区2015 — 2016学年度第一学期期末高三数学(理科)参考答案及评分标准2016.1一、选择题:本大题共8小题,每小题5分,共40分.1.A 2.C 3.B 4.B 5.B 6.C 7.D 8.C 二、填空题:本大题共6小题,每小题5分,共30分.9.13i -- 10.7911.12y x =±12 12. 132- 91613.54 14.○1 ○4 注:第11,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:3()cos (sin 3cos )2f x x x x =+- 23sin cos (2cos 1)2x x x =+-13sin 2cos222x x=+ ………………4分πsin(2)3x =+,………………6分所以函数()f x 的最小正周期2π=π2T =. ………………7分由ππππ2π+23222x k k -+≤≤,k ∈Z ,得5ππππ+1212x k k -≤≤, 所以函数()f x 的单调递增区间为5ππππ+]1212[k k -,,k ∈Z . ………………9分 (注:或者写成单调递增区间为5ππππ+)1212(k k -,,k ∈Z . ) (Ⅱ)解:由题意,得π()()sin(22)3g x f x x αα=+=++,因为函数()g x 为奇函数,且x ∈R ,所以(0)0g =,即πsin(2)03α+=, ………………11分所以π2π3k α+=,k ∈Z , 解得ππ26k α=-,k ∈Z ,验证知其符合题意. 又因为0α>, 所以α的最小值为π3. ………………13分16.(本小题满分13分)(Ⅰ)解:记 “从甲的4局比赛中,随机选取2局,且这2局的得分恰好相等”为事件A , ………………1分 由题意,得2421()C 3P A ==, 所以从甲的4局比赛中,随机选取2局,且这2局得分恰好相等的概率为13. ……4分(Ⅱ)解:由题意,X 的所有可能取值为13,15,16,18, ………………5分且3(13)8P X ==,1(15)8P X ==,3(16)8P X ==,1(18)8P X ==,………………7分所以X 的分布列为:X 13 15 16 18P38 1838 18……………… 8分 所以3131()13151618158888E X =⨯+⨯+⨯+⨯=. ………………10分(Ⅲ)解:x 的可能取值为6,7,8. ………………13分17.(本小题满分14分)(Ⅰ)证明:在平行四边形ABCD 中,因为AB AC =,135BCD ∠=, 所以AB AC ⊥.由,E F 分别为,BC AD 的中点,得//EF AB ,所以EF AC ⊥. ………………1分 因为侧面PAB ⊥底面ABCD ,且90BAP ∠=,所以PA ⊥底面ABCD . ………………2分又因为EF ⊂底面ABCD ,所以PA EF ⊥. ………………3分 又因为PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以EF ⊥平面PAC . ………………4分 (Ⅱ)证明:因为M 为PD 的中点,F 分别为AD 的中点, 所以//MF PA ,又因为MF ⊄平面PAB ,PA ⊂平面PAB ,FADPMz所以//MF 平面PAB . ………………5分 同理,得//EF 平面PAB . 又因为=MFEF F ,MF ⊂平面MEF ,EF ⊂平面MEF ,所以平面//MEF 平面PAB . ………………7分又因为ME ⊂平面MEF ,所以//ME 平面PAB . ………………9分(Ⅲ)解:因为PA ⊥底面ABCD ,AB AC ⊥,所以,,AP AB AC 两两垂直,故以,,AB AC AP 分别为x 轴、y 轴和z 轴,如上图建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(0,0,2),(2,2,0),(1,1,0)A B C P D E -,所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-, ………………10分 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--, 所以(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--,易得平面ABCD 的法向量(0,0,1)=m . ………………11分 设平面PBC 的法向量为(,,)x y z =n , 由0BC ⋅=n ,0PB ⋅=n ,得220,220,x y x z -+=⎧⎨-=⎩ 令1x =, 得(1,1,1)=n . ………………12分因为直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等,所以|cos ,||cos ,|ME ME <>=<>m n ,即||||||||||||ME ME ME ME ⋅⋅=⋅⋅m n m n , ………………13分所以 2|22|||3λλ-=, 解得332λ-=,或332λ+=(舍). ………………14分18.(本小题满分13分)(Ⅰ)解:求导,得()2f x x '=,2()tg x x'=,(0)x >. ………………2分 由题意,得切线l 的斜率(1)(1)k f g ''==,即22k t ==,解得1t =. ……………3分 又切点坐标为(1,0),所以切线l 的方程为220x y --=. ………………4分(Ⅱ)解:设函数2()()()12ln h x f x g x x t x =-=--,(0,)x ∈+∞. ………………5分 “曲线()y f x =与()y g x =有且仅有一个公共点”等价于“函数()y h x =有且仅有一 个零点”.求导,得2222()2t x th x x x x-'=-=. ………………6分① 当0t ≤时,由(0,)x ∈+∞,得()0h x '>,所以()h x 在(0,)+∞单调递增.又因为(1)0h =,所以()y h x =有且仅有一个零点1,符合题意. ………………8分② 当1t =时,当x 变化时,()h x '与()h x 的变化情况如下表所示:x(0,1)1(1,)+∞()h x '-0 +()h x↘↗所以()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以当1x =时,min()(1)0h x h ==,故()y h x =有且仅有一个零点1,符合题意. ………………10分③ 当01t <<时, 令()0h x '=,解得x t =.当x 变化时,()h x '与()h x 的变化情况如下表所示:x(0,)tt(,)t +∞()h x '-0 +()h x↘↗所以()h x 在(0,)t 上单调递减,在(,)t +∞上单调递增, 所以当x t =时,min()()h x h t =. ………………11分因为(1)0h =,1t <,且()h x 在(,)t +∞上单调递增, 所以()(1)0h t h <=.又因为存在12e(0,1)t-∈ ,111122()12ln 0tttth t ----=--=>ee ee ,所以存在0(0,1)x ∈使得0()0h x =,所以函数()y h x =存在两个零点0x ,1,与题意不符.综上,曲线()y f x =与()y g x =有且仅有一个公共点时,t 的范围是0{|t t ≤,或1}t =.………………13分19.(本小题满分14分) (Ⅰ)解:由题意,得32c a =,222a b c =+, ………………2分 又因为点3(1,)2A 在椭圆C 上,所以221314ab+=, ………………3分解得2a =,1b =,3c =,所以椭圆C 的方程为1422=+y x . ………………5分(Ⅱ)结论:存在符合条件的圆,且此圆的方程为225x y +=. ………………6分 证明如下:假设存在符合条件的圆,并设此圆的方程为222(0)x y r r +=>.当直线l 的斜率存在时,设l 的方程为m kx y +=. ………………7分由方程组22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩ 得0448)14(222=-+++m kmx x k , ………………8分 因为直线l 与椭圆C 有且仅有一个公共点,所以2221(8)4(41)(44)0km k m ∆=-+-=,即2241m k =+. ………………9分由方程组222,,y kx m x y r =+⎧⎨+=⎩ 得2222(1)20k x kmx m r +++-=, ………………10分则22222(2)4(1)()0km k m r ∆=-+->.设111(,)P x y ,222(,)P x y ,则12221km x x k -+=+,221221m r x x k -⋅=+, ………………11分设直线1OP ,2OP的斜率分别为1k ,2k , 所以221212121212121212()()()y y kx m kx m k x x km x x m k k x x x x x x +++++=== 222222222222222111m r km k km m m r k k k m r m r k --⋅+⋅+-++==--+, ………………12分将2241m k =+代入上式,得221222(4)14(1)r k k k k r -+⋅=+-.要使得12k k 为定值,则224141r r-=-,即25r =,验证符合题意. 所以当圆的方程为225x y +=时,圆与l 的交点12,P P 满足12k k 为定值14-. ………………13分当直线l 的斜率不存在时,由题意知l 的方程为2x =±, 此时,圆225x y +=与l 的交点12,P P 也满足1214k k =-. 综上,当圆的方程为225x y +=时,圆与l 的交点12,P P 满足斜率之积12k k 为定值14-. ………………14分 20.(本小题满分13分)(Ⅰ)解:()10S C =; ………………2分 (Ⅱ)解:考察排列D :121,,,,n n d d d d -与排列1121,,,,n n D d d d d -:,因为数对(,)i j d d 与(,)j i d d 中必有一个为逆序对(其中1i j n <≤≤), 且排列D 中数对(,)i j d d 共有2(1)C 2n n n -=个, ………………3分 所以1(1)()()2n n S D S D -+=. ………………5分 所以排列D 与1D 的逆序对的个数的算术平均值为(1)4n n -. ………………6分 而对于数字1,2,,n 的任意一个排列A :12,,,n a a a ,都可以构造排列A 1:121,,,,n n a a a a -,且这两个排列的逆序对的个数的算术平均值为(1)4n n -. 所以所有()S A 的算术平均值为(1)4n n -. ………………7分(Ⅲ)证明:○1当1j i =+,即,i j a a 相邻时, 不妨设1i i a a +<,则排列A '为12112,,,,,,,,i i i i n a a a a a a a -++,此时排列A '与排列A :12,,,n a a a 相比,仅多了一个逆序对1(,)i i a a +,所以()()1S A S A '=+,所以()()2()1S A S A S A '+=+为奇数. ………………10分 ○2当1j i ≠+,即,i j a a 不相邻时,假设,i j a a 之间有m 个数字,记排列A :1212,,,,,,,,,,i m j n a a a k k k a a ,先将i a 向右移动一个位置,得到排列A 1:12112,,,,,,,,,,,,i i m j n a a a k a k k a a -,由○1,知1()S A 与()S A 的奇偶性不同, 再将i a 向右移动一个位置,得到排列A 2:121123,,,,,,,,,,,,i i m j n a a a k k a k k a a -,由○1,知2()S A 与1()S A 的奇偶性不同,以此类推,i a 共向右移动m 次,得到排列A m :1212,,,,,,,,,,m i j n a a k k k a a a , 再将j a 向左移动一个位置,得到排列A m +1:1211,,,,,,,,,,i m j i n a a a k k a a a -,以此类推,j a 共向左移动m +1次,得到排列A 2m +1:121,,,,,,,,,j m i n a a a k k a a ,即为排列A ',由○1,可知仅有相邻两数的位置发生变化时,排列的逆序对个数的奇偶性发生变化, 而排列A 经过21m +次的前后两数交换位置,可以得到排列A ', 所以排列A 与排列A '的逆序数的奇偶性不同, 所以()()S A S A '+为奇数.综上,得()()S A S A '+为奇数. ………………13分。

高三西城一模文科数学解析

高三西城一模文科数学解析

北京市西城区2016 年高三一模试卷参考答案及评分标准高三数学(文科)2016.4 一、选择题:本大题共8 小题,每小题5 分,共40分.1.B2.A3.B4.C5.B6.D7.A8.D二、填空题:本大题共6 小题,每小题5 分,共30分.9.-210.211.12.233 13.1464 14.32y = ±3x3 b > a > c注:第11,14 题第一问2 分,第二问3 分.三、解答题:本大题共6 小题,共80 分.其他正确解答过程,请参照评分标准给分.15.(本小题满分13 分)33 3 3 ⎪ 【解析】⑴因为 f (x ) = sin x cos x - sin 2 ⎛ x - π ⎫4 ⎪ ⎝ ⎭1 - cos ⎛2x - π ⎫= 1 sin 2x -⎝ 2 ⎭ (4 分)2 2= 1 sin 2x - 1 + 1 cos ⎛ 2x - π ⎫ 2 2 2 2 ⎪⎝ ⎭= 1 sin 2x - 1 + 1sin 2x 2 2 2= sin 2x - 1 .(6 分) 2所以函数 f ( x ) 的最小正周期为n . (7 分)⑵由⑴,得 f ⎛ x - π ⎫ = sin ⎛2x - π ⎫ - 1 .(8 分)6 ⎪ 3 ⎪ 2 ⎝ ⎭ ⎝ ⎭因为 0 ≤ x ≤ π.2所以 - π ≤ 2x - π ≤ 2π,333所以 - ≤ sin ⎛2x - π ⎫ ≤1. 2 3 ⎪ ⎝ ⎭所以 - - 1 ≤ sin ⎛2x - π ⎫ - 1 ≤ 1 .(11 分)2 23 ⎪ 2 2⎝ ⎭且当 x =5π 时, f ⎛ x - π ⎫ 取到最大值 1; 12 6 ⎪ 2⎝ ⎭当 x = 0 时, f ⎛ x - π ⎫取到最小值 - - 1 .(13 分)6 ⎪ 2 2 ⎝ ⎭16.(本小题满分 13 分)⎧⎪(a 1 + d ) + (a 1 + 5d ) = 10⊂【解析】⑴由题意,得 ⎨⎪⎩(a 1 + d )(a 1 + 5d ) = 21.(3 分)⎩ ⎩ 解得 ⎧a 1 = 8⊂ ⎨d = -1. 或 ⎧a 1 = 2⊂ ⎨d = 1 (舍). (5 分)所 以 a n = a 1 + (n - 1) d = 9 - n . ( 7分)⑵由⑴,得 b n = 29-n .所以 T n = 2a 1⨯ 2a 2⨯… ⨯ 2a n= 2a 1+ a 2+… + a n.所 以 只 需 求 出 S n = a 1 + a 2 +… 分)+ a n 的 最 大 值 .( 9由⑴,得 S = a + a +… + a = na n (n -1) n 2 17+ ⨯ (-1) = - + n .n 1 2n 1 2 2 2因 为 S = - 1 ⎛ n - n 2 17 ⎫ 2 ⎪ + 289 . ( 118 ⎝⎭ 分)所以当 n = 8 ,或 n = 9 时, S n 取到最大值 S 8 = S 9 = 36 . 所以 T n 的最大值为 T 8 = T 9 = 2 .(13 分)17.(本小题满分 14 分)【解析】⑴因为 AD ∥ BC , BC ⊄ 平面 ADD 1 A 1 , AD ⊂ 平面 ADD 1 A 1 ,所以 BC ∥平面 ADD 1 A 1 .(2 分)因为 CC 1 ∥ DD 1 , CC 1 ⊄ 平面 ADD 1 A 1 , DD 1 ⊂ 平面 ADD 1 A 1 , 所以 CC 1 ∥平面 ADD 1 A 1 . 又因为 BC CC 1 = C ,所 以 平 面 BCC 1B 1 ∥平 面 分)ADD 1 A 1 . ( 3又因为 B 1C ⊂ 平面 BCC 1B 1 .2 36A 1D 1B 1DBC所 以 B 1C ∥平 面 分)ADD 1 A 1 . ( 4⑵因为 BB 1 ⊥底面 ABCD , AC ⊂ 底面 ABCD ,所 以 BB 1 ⊥ AC .( 5分)又因为 AC ⊥ BD , BB 1 ∩BD = B ,所 以 AC ⊥平 面 分)BB 1D . ( 7又因为 B 1D ⊂ 底面 BB 1D .所 以 AC ⊥ B 1D . ( 9分)⑶直线 B 1D 与平面 ACD 1 不垂直.(10 分)证明:假设 B 1D ⊥平面 ACD 1 ,由 AD 1 ⊂ 分)平 面 ACD 1 , 得 B 1D ⊥ AD 1 .( 11由棱柱 ABCD - A 1B 1C 1D 1 中, BB 1 ⊥底面 ABCD , ∠BAD = 90︒可得 A 1B 1 ⊥ AA 1 , A 1B 1 ⊥ A 1D 1 .又因为 AA 1 ∩ A 1D 1 = A 1 .所以 A 1B 1 ⊥平面 AA 1D 1D .所 以 A 1B 1 ⊥ AD 1 .( 12分)又因为 A 1B 1 ∩B 1D = B 1 .C 1A所以 AD 1 ⊥平面 A 1B 1D .所 以 AD 1 ⊥ A 1D . ( 13分)这与四边形 AA 1D 1D 为矩形,且 AD = 2 A A 1 矛盾.故直线 B 1D 与平面 ACD 1 不垂直. ( 14分)18.(本小题满分 13 分)【解析】⑴由折线图,知样本中体育成绩大于或等于 70 分的学生有 30 人. (2 分)所以该校高一年级学生中,“体育良好”的学生人数大约有1000 ⨯ 30= 750 人.40( 5分)⑵设“至少有 1 人体育成绩在[60⊂ 70) ”为事件 M .(5 分)记体育成绩在 [60⊂ 70) 的数据为 A 1 , A 2 ,体育成绩在 [80⊂ 90) 的数据为 B 1 , B 2 , B 3 ,则从这两组数据中随机抽取 2 个,所有可能的结果有 10 种,它们 是 : ( A 1 ⊂ A 2 ) , ( A 1 ⊂ B 1 ) , ( A 1 ⊂ B 2 ) , ( A 1 ⊂ B 3 ) , ( A 2 ⊂ B 1 ) , ( A 2 ⊂ B 2 ) , ( A 2 ⊂ B 3 ) ,(B 1 ⊂ B 2 ) , (B 1 ⊂ B 3 ) , (B 2 ⊂ B 3 ) .而事件 M 的结果有 7 种,它们是: ( A 1 ⊂ A 2 ) , ( A 1 ⊂ B 1 ) , ( A 1 ⊂ B 2 ) , ( A 1 ⊂ B 3 ) , ( A 2 ⊂ B 1 ) , ( A 2 ⊂ B 2 ) , ( A 2 ⊂ B 3 ) . ( 7分)因 此 事 件 M 的 概 率 P (M ) =分)7.( 910⑶ a , b , c 的值分别是为 70,80,100.(13 分)19.(本小题满分 14 分)【解析】⑴因为椭圆 C : x y 2 + = 1 .3m m所 以 a 2 = 3m , 分)b 2 = m . ( 123m 6 ⎪故 2a = 2 = 2 ,解得 m = 2 .所 以 椭 圆 C 的 方 程 为 x 2 y 2+ = 1 .( 3分) 因为 c = 6 2= 2 . 所 以 离 心 率 e = c=a 6 . ( 53分)⑵由题意,直线 l 的斜率存在,设点 P (x 0 ⊂则线段 AP 的中点 D 的坐标为 ⎛ x 0 + 3⊂ y 0 )( y 0 ≠ 0) .y 0 ⎫ .2 2 ⎪⎝ ⎭且 直 线 分)AP 的斜 率 k AP = y0 x 0 - 3 . ( 7由点 A (3⊂ 0) 关于直线 l 的对称点为 P ,得直线 l ⊥ AP .故直线 l 的斜率为 -1 k AP= 3 - x 0 ,且过点 D . y 0所以直线 l 的方程为: y -y 0 = 3 - x 0 ⎛ x - x 0+ 3 ⎫9 分2 y 0 ⎝ 2 ⎭x 2 + y 2 - 9 ⎛ x 2 + y 2 - 9 ⎫ 令 x = 0 ,得 y = 0 0 ,则 B 0 , 0 0⎪ ,2 y 0 ⎝ 2 y 0 ⎭x 2 y 2 由 0 + 0 = 1 ,得 x 2 = 6 - 3y 2 ,6 20 0⎛ -2 y 2 - 3 ⎫化简,得 B 0 , ⎝ 0 2 y 0 ⎪ .11 分⎭-2 y 2- 3所以 OB =2 y 03 = y 0 +≥ 2 a 2 - b 2 2 y 0y ×0 3 2 y 062 y62 6=13 分当且仅当y = 3,即y= ±∈ ⎡- ,2 ⎤ 时等号成立.0 0 2 ⎣⎦所以OB 的最小值为.14 分20.(本小题满分13 分)【解析】⑴对f ( x) 求导,得f '( x) = 1 + ln x + 2ax , 1 分所以f '(1) = 1 + 2a = -1 ,解得a = -1 ,所以f ( x) = x ln x - x2 - 1. 3 分⑵由f ( x) - mx ≤-1 ,得x ln x - x2 - mx ≤ 0 ,因为x ∈(0 ,+ ∞) .所以对于任意x ∈(0 ,+ ∞) ,都有ln x - x ≤设g ( x) = ln x - x ,则g'( x) = 1 - 1.xm . 4 分令g'( x) = 0 ,解得x = 1 . 5 分当x 变化时,g ( x) 与g'( x) 的变化情况如下表:x(0 ,1) 1 (1,+ ∞)g'( x) + 0 -g ( x) 极大值所以当x = 1时, ( )max() .…………7分因为对于任意x ∈(0⊂+∞),都有g(x)≤m成立.所以m ≥-1 .所以m 的最小值为-1 .…………8分⑶“函数y = f ( x) - x e x + x2 的图象在直线y = -2x +1 的下方”等价于“f ( x) - x e x + x2 + 2x +1 < 0 ”即要证x ln x - x e x + 2x < 0 .所以只要证ln x < e x - 2 .由⑵,得g (x)= ln x -x ≤-1 ,即ln x≤x-1(当且仅当x =1 时等号成立).所以只要证明当x ∈(0⊂+∞)时,x-1<e x -2即可.…………10 分设h(x)=(e x - 2)-(x-1)= e x -x -1 .所以h'( x) = e x -1 .令h'( x) = 0 ,解得x = 0由h'(x)> 0 ,得x>0,所以h(x)在(0⊂+ ∞) 上为增函数.所以h( x) > h(0) = 0 ,即x -1 < e x - 2 ,所以ln x < e x - 2 .故函数y = f ( x) - x e x + x2 的图象在直线y = -2x -1的下方.…………13分。

2016年北京市西城区高考数学一模试卷(理科)(解析版)

2016年北京市西城区高考数学一模试卷(理科)(解析版)

北京市西城区2016年高考数学一模试卷(理科)(解析版)一、选择题(共8小题,每小题5分,满分40分)1.设集合A={x|x2+4x<0},集合B={n|n=2k﹣1,k∈Z},则A∩B=()A.{﹣1,1} B.{1,3}C.{﹣3,﹣1}D.{﹣3,﹣1,1,3}2.在平面直角坐标系中xOy中,曲线C的参数方程为(θ为参数),则曲线C是()A.关于x轴对称的图形B.关于y轴对称的图形C.关于原点对称的图形D.关于直线y=x对称的图形3.如果f(x)是定义在R上的奇函数,那么下列函数中,一定为偶函数的是()A.y=x+f(x)B.y=xf(x)C.y=x2+f(x)D.y=x2f(x)4.在平面直角坐标系xOy中,向量=(﹣1,2),=(2,m),若O,A,B三点能构成三角形,则()A.m=﹣4 B.m≠﹣4 C.m≠1 D.m∈R5.执行如图所示的程序框图,若输入的A,S分别为0,1,则输出的S=()A.4 B.16 C.27 D.366.设x∈(0,),则“a∈(﹣∞,0)”是“log x>x+a”的()A.充分而不必要条件 B.必要而不成分条件C.充分必要条件 D.既不充分也不必要条件7.设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0),且函数f(x)的部分图象如图所示,则有()A.f(﹣)<f()<f()B.f(﹣)<f()<f()C.f()<f()<f(﹣)D.f()<f(﹣)<f()8.如图,在棱长为a(a>0)的正四面体ABCD中,点B1,C1,D1分别在棱AB,AC,AD上,且平面B1C1D1∥平面BCD,A1为△BCD内一点,记三棱锥A1﹣B1C1D1的体积V,设=x,对于函数V=f(x),则()A.当x=时,函数f(x)取到最大值B.函数f(x)在(,1)上是减函数C.函数f(x)的图象关于直线x=对称D.存在x0,使得f(x0)(其中V A为四面体ABCD的体积)﹣BCD二、填空题(共6小题,每小题5分,满分30分)9.在复平面内,复数z1与z2对应的点关于虚轴对称,且z1=﹣1+i,则=.10.已知等差数列{a n}的公差d>0,a3=﹣3,a2a4=5,则a n=;记{a n}的前n项和为S n,则S n的最小值为.11.若圆(x﹣2)2+y2=1与双曲线C:(a>0)的渐近线相切,则a=;双曲线C的渐近线方程是.12.一个棱长为4的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该截面的面积是.13.在冬奥会志愿者活动中,甲、乙等5人报名参加了A,B,C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者,且甲不能参加A,B项目,乙不能参加B,C项目,那么共有种不同的志愿者分配方案.(用数字作答)14.一辆赛车在一个周长为3km的封闭跑道上行驶,跑道由几段直道和弯道组成,图1反应了赛车在“计时赛”整个第二圈的行驶速度与行驶路程之间的关系.根据图1,有以下四个说法:①在这第二圈的2.6km到2.8km之间,赛车速度逐渐增加;②在整个跑道上,最长的直线路程不超过0.6km;③大约在这第二圈的0.4km到0.6km之间,赛车开始了那段最长直线路程的行驶;④在图2的四条曲线(注:s为初始记录数据位置)中,曲线B最能符合赛车的运动轨迹.其中,所有正确说法的序号是.三、解答题(共6小题,满分80分)15.在△ABC中,角A,B,C所对的边分别为a,b,c,设A=,sinB=3sinC.(1)若a=,求b的值;(2)求tanC的值.16.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(1)体育成绩大于或等于70分的学生常被称为“体育良好”,已知该校高一年级有1000名学生,试估计高一全校中“体育良好”的学生人数;(2)为分析学生平时的体育活动情况,现从体积成绩在[60,70)和[80,90)的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在[60,70)的概率;(3)假设甲、乙、丙三人的体育成绩分别为a,b,c,且分别在[70,80),[80,90),[90,100]三组中,其中a,b,c∈N,当数据a,b,c的方差s2最小时,写出a,b,c的值.(结论不要求证明)(注:s2= [(x)2+(x2﹣)2+…+(x)2],其中为数据x1,x2,…,x n 的平均数)17.(14分)(2016西城区一模)如图,四边形ABCD是梯形,AD∥BC,∠BAD=90°,四边形CC1D1D为矩形,已知AB⊥BC1,AD=4,AB=2,BC=1.(1)求证:BC1∥平面ADD1;(2)若DD1=2,求平面AC1D1与平面ADD1所成的锐二面角的余弦值;(3)设P为线段C1D上的一个动点(端点除外),判断直线BC1与直线CP能否垂直?并说明理由.18.已知函数f(x)=xe x﹣ae x﹣1,且f′(1)=e.(1)求a的值及f(x)的单调区间;(2)若关于x的方程f(x)=kx2﹣2(k>2)存在两个不相等的正实数根x1,x2,证明:|x1﹣x2|>ln.19.(14分)(2016西城区一模)已知椭圆C:mx2+3my2=1(m>0)的长轴长为2,O 为坐标原点.(1)求椭圆C的方程和离心率;(2)设点A(3,0),动点B在y轴上,动点P在椭圆C上,且P在y轴的右侧,若|BA|=|BP|,求四边形OPAB面积的最小值.20.设数列{a n}和{b n}的项数均为m,则将数列{a n}和{b n}的距离定义为|a i﹣b i|.(1)给出数列1,3,5,6和数列2,3,10,7的距离;(2)设A为满足递推关系a n+1=的所有数列{a n}的集合,{b n}和{c n}为A中的两个元素,且项数均为m,若b1=2,c1=3,{b n}和{c n}的距离小于2016,求m的最大值;(3)记S是所有7项数列{a n|1≤n≤7,a n=0或1}的集合,T⊆S,且T中任何两个元素的距离大于或等于3,证明:T中的元素个数小于或等于16.2016年北京市西城区高考数学一模试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.设集合A={x|x2+4x<0},集合B={n|n=2k﹣1,k∈Z},则A∩B=()A.{﹣1,1} B.{1,3}C.{﹣3,﹣1}D.{﹣3,﹣1,1,3}【分析】求出A中不等式的解集确定出A,列举出B中的元素确定出B,找出A与B的交集即可.【解答】解:由A中不等式变形得:x(x+4)<0,解得:﹣4<x<0,即A={x|﹣4<x<0},∵B={n|n=2k﹣1,k∈Z}={…,﹣5,﹣3,﹣1,1,…},∴A∩B={﹣3,﹣1},故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.在平面直角坐标系中xOy中,曲线C的参数方程为(θ为参数),则曲线C是()A.关于x轴对称的图形B.关于y轴对称的图形C.关于原点对称的图形D.关于直线y=x对称的图形【分析】根据平方关系消去参数化为普通方程,由方程判断出图形特征即可.【解答】解:由曲线C的参数方程为(θ为参数),消去θ得,(x﹣2)2+y2=2,方程(x﹣2)2+y2=2表示的图形是以(2,0)为圆心,为半径的圆.∴曲线C是关于x轴对称的图形.故选:A.【点评】本题考查了参数方程化成普通方程,考查了数形结合的思想方法,是基础题.3.如果f(x)是定义在R上的奇函数,那么下列函数中,一定为偶函数的是()A.y=x+f(x)B.y=xf(x)C.y=x2+f(x)D.y=x2f(x)【分析】逐个计算g(﹣x),观察与g(x)的关系得出答案.【解答】解:∵f(x)是奇函数,∴f(﹣x)=﹣f(x).对于A,g(﹣x)=﹣x+f(﹣x)=﹣x﹣f(x)=﹣g(x),∴y=x+f(x)是奇函数.对于B,g(﹣x)=﹣xf(﹣x)=xf(x)=g(x),∴y=xf(x)是偶函数.对于C,g(﹣x)=(﹣x)2+f(﹣x)=x2﹣f(x),∴y=x2+f(x)为非奇非偶函数,对于D,g(﹣x)=(﹣x)2f(﹣x)=﹣x2f(x)=﹣g(x),∴y=x2f(x)是奇函数.故选B.【点评】本题考查了函数奇偶性的性质和奇偶性的判断,属于基础题.4.在平面直角坐标系xOy中,向量=(﹣1,2),=(2,m),若O,A,B三点能构成三角形,则()A.m=﹣4 B.m≠﹣4 C.m≠1 D.m∈R【分析】O,A,B三点能构成三角形,可得,不共线,利用向量共线定理即可得出.【解答】解:∵O,A,B三点能构成三角形,∴,不共线,∴4+m≠0,解得m=﹣4.故选:B.【点评】本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.5.执行如图所示的程序框图,若输入的A,S分别为0,1,则输出的S=()A.4 B.16 C.27 D.36【分析】模拟执行程序框图,依次写出每次循环得到的k、A、S的值,当k>4时满足条件,退出循环,从而计算输出S的值.【解答】解:模拟执行程序,可得A=0,S=1,顺序执行语句,k=1,A=0+1=1,S=1×1=1;不满足条件k>4,执行循环体,k=3,A=1+3=4,S=1×4=4;不满足条件k>4,执行循环体,k=5,A=4+5=9,S=4×9=36;满足条件k>4,退出循环,输出S=36.故选:D.【点评】本题主要考查了程序框图和算法的应用问题,正确得到每次循环k,A,S的值是解题的关键,属于基础题.6.设x∈(0,),则“a∈(﹣∞,0)”是“log x>x+a”的()A.充分而不必要条件 B.必要而不成分条件C.充分必要条件 D.既不充分也不必要条件【分析】由x∈(0,),可得log x>=1.又a∈(﹣∞,0),可得x+a.即可判断出结论.【解答】解:∵x∈(0,),∴log x>=1.又a∈(﹣∞,0),∴x+a.∴a ∈(﹣∞,0)”是“log x >x +a ”的充分条件,不是必要条件,例如a=0时.故选:A .【点评】本题考查了函数的性质、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.7.设函数f (x )=Asin (ωx +φ)(A ,ω,φ是常数,A >0,ω>0),且函数f (x )的部分图象如图所示,则有( )A .f (﹣)<f ()<f ()B .f (﹣)<f ()<f ()C .f ()<f ()<f (﹣) D .f ()<f (﹣)<f ()【分析】根据条件求出函数的周期和对称轴,利用函数周期性,对称性和单调性的关系进行转化比较即可.【解答】解:由图象知=,则T=π,则函数=,=,则函数在[,]上是增函数,且函数关于x=和x=对称,则f ()=f (﹣π)=f (),f (﹣)=f (﹣+π)=f ()=f (),f ()=f ()=f (π),∵<<π,∴f ()<f ()<f (π),即f ()<f (﹣)<f (), 故选:D .【点评】本题主要考查函数值的大小比较,根据条件求出函数的周期和对称轴,利用函数周期性,对称性和单调性的关系进行比较是解决本题的关键.8.如图,在棱长为a(a>0)的正四面体ABCD中,点B1,C1,D1分别在棱AB,AC,AD上,且平面B1C1D1∥平面BCD,A1为△BCD内一点,记三棱锥A1﹣B1C1D1的体积V,设=x,对于函数V=f(x),则()A.当x=时,函数f(x)取到最大值B.函数f(x)在(,1)上是减函数C.函数f(x)的图象关于直线x=对称D.存在x0,使得f(x0)(其中V A为四面体ABCD的体积)﹣BCD【分析】由题意求出平面B1C1D1的面积,求出平面B1C1D1与平面BCD的距离,代入三棱锥体积公式求得函数V=f(x),然后利用导数求其单调区间和最值,逐一核对四个选项得答案.【解答】解:如图,∵四面体ABCD是棱长为a的正四面体,∴顶点A在底面的射影为底面正三角形的中心,设为O,则BO为正三角形BCD底边CD中线的,即BO=,∴正四面体的高为h=.∵平面B1C1D1∥平面BCD,∴△B1C1D1∽△BCD,又=x,∴,又,∴,设A到平面B1C1D1的距离为h′,由,得,∴平面B1C1D1与平面BCD间的距离,即A1到平面B1C1D1的距离为.则V==(0<x<1),V′=,由V′=0,得x=,当x∈(0,)时,V′>0,当x∈()时,V′<0,∴当x=时,V有最大值等于..故A正确,B,C错误,又,∴不存在x0,使得f(x0),D错误.故选:A.【点评】本题考查棱锥体积的求法,训练了利用导数研究函数的单调性,考查了利用导数求函数的最值,是中档题.二、填空题(共6小题,每小题5分,满分30分)9.在复平面内,复数z1与z2对应的点关于虚轴对称,且z1=﹣1+i,则=i.【分析】由已知求得z2=1+i,代入,然后利用复数代数形式的乘除运算化简得答案.【解答】解:∵复数z1与z2对应的点关于虚轴对称,且z1=﹣1+i,则z2=1+i,∴=,故答案为:i.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.10.已知等差数列{a n}的公差d>0,a3=﹣3,a2a4=5,则a n=2n﹣9;记{a n}的前n项和为S n,则S n的最小值为﹣16.【分析】等差数列{a n}的公差d>0,a3=﹣3,a2a4=5,可得,解得d,a1.即可得出.【解答】解:等差数列{a n}的公差d>0,a3=﹣3,a2a4=5,∴,解得d=2,a1=﹣7.∴a n=﹣7+2(n﹣1)=2n﹣9.令a n≤0,解得n≤4.∴当n=4时,{a n}的前n项和S n取得最小值S4=4×(﹣7)+×2=﹣16.【点评】本题考查了等差数列的通项公式及其前n项和公式、不等式的性质,考查了推理能力与计算能力,属于中档题.11.若圆(x﹣2)2+y2=1与双曲线C:(a>0)的渐近线相切,则a=;双曲线C的渐近线方程是y=±x.【分析】求出双曲线的渐近线方程,圆的圆心和半径,运用直线和圆相切的条件:d=r,解方程可得a,进而得到渐近线方程.【解答】解:双曲线C:(a>0)的渐近线方程为y=±x,圆(x﹣2)2+y2=1的圆心为(2,0),半径为1,由直线和圆相切,可得=1,解得a=,渐近线方程为y=±x.故答案为:,y=±x.【点评】本题考查双曲线的渐近线方程和圆与渐近线相切,注意运用直线和圆相切的条件:d=r,考查运算能力,属于基础题.12.一个棱长为4的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该截面的面积是6.【分析】由题意,三视图对应的几何体是正方体截去一个角得到,截面是一个等腰三角形,腰长为2,底为2,计算面积即可.【解答】解:三视图对应的几何体如图,截面是一个等腰三角形,腰长为2,底为2,所以面积为=6;故答案为:6.【点评】本题考查了由几何体的三视图求相关问题;关键是正确还原几何体.13.在冬奥会志愿者活动中,甲、乙等5人报名参加了A,B,C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者,且甲不能参加A,B项目,乙不能参加B,C项目,那么共有21种不同的志愿者分配方案.(用数字作答)【分析】由题意可以分为四类,根据分类计数原理可得.【解答】解:若甲,乙都参加,则甲只能参加C项目,乙只能参见A项目,B项目有3种方法,若甲参加,乙不参加,则甲只能参加C项目,A,B项目,有A32=6种方法,若甲不参加,乙不参加,则乙只能参加A项目,B,C项目,有A32=6种方法,若甲不参加,乙不参加,有A33=6种方法,根据分类计数原理,共有3+6+6+6=21种.【点评】本题考查了分类计数原理,关键是分类,属于中档题.14.一辆赛车在一个周长为3km的封闭跑道上行驶,跑道由几段直道和弯道组成,图1反应了赛车在“计时赛”整个第二圈的行驶速度与行驶路程之间的关系.根据图1,有以下四个说法:①在这第二圈的2.6km到2.8km之间,赛车速度逐渐增加;②在整个跑道上,最长的直线路程不超过0.6km;③大约在这第二圈的0.4km到0.6km之间,赛车开始了那段最长直线路程的行驶;④在图2的四条曲线(注:s为初始记录数据位置)中,曲线B最能符合赛车的运动轨迹.其中,所有正确说法的序号是①④.【分析】结合图1分析可得,在2.6km到2.8km之间,图象上升,故①正确;在整个跑道上,高速行驶时最长为(1.8,2.4)之间,故②,③不正确;跑道应有3个弯道,且两长一短,故④正确.【解答】解:由图1知,在2.6km到2.8km之间,图象上升,故在这第二圈的2.6km到2.8km之间,赛车速度逐渐增加;故①正确;在整个跑道上,高速行驶时最长为(1.8,2.4)之间,但直道加减速也有过程,故最长的直线路程有可能超过0.6km,故②不正确;最长直线路程应在1.4到1.8之间开始,故③不正确;由图1可知,跑道应有3个弯道,且两长一短,故④正确;故答案为:①④.【点评】本题考查了学生的识图能力及数形结合的思想应用.三、解答题(共6小题,满分80分)15.在△ABC中,角A,B,C所对的边分别为a,b,c,设A=,sinB=3sinC.(1)若a=,求b的值;(2)求tanC的值.【分析】(1)由正弦定理化简已知可得:b=3c,利用余弦定理可得7=b2+c2﹣bc,即可解得b的值.(2)由三角形内角和定理可得B=﹣C,从而可得sin(﹣C)=3sinC,利用两角差的正弦函数公式,特殊角的三角函数值,同角三角函数基本关系式即可计算得解tanC的值.【解答】(本题满分为13分)解:(1)∵sinB=3sinC,∴由正弦定理可得:b=3c,∴由余弦定理:a2=b2+c2﹣2bccosA及A=,a=,可得:7=b2+c2﹣bc,∴b2+()2﹣=7,解得:b=3…7分(2)∵A=,∴B=﹣C,∴sin(﹣C)=3sinC,即:cosC+sinC=3sinC,∴cosC=sinC,∴tanC=…13分【点评】本题主要考查了正弦定理,余弦定理,三角形内角和定理,两角差的正弦函数公式,特殊角的三角函数值,同角三角函数基本关系式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.16.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(1)体育成绩大于或等于70分的学生常被称为“体育良好”,已知该校高一年级有1000名学生,试估计高一全校中“体育良好”的学生人数;(2)为分析学生平时的体育活动情况,现从体积成绩在[60,70)和[80,90)的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在[60,70)的概率;(3)假设甲、乙、丙三人的体育成绩分别为a,b,c,且分别在[70,80),[80,90),[90,100]三组中,其中a,b,c∈N,当数据a,b,c的方差s2最小时,写出a,b,c的值.(结论不要求证明)(注:s2= [(x)2+(x2﹣)2+…+(x)2],其中为数据x1,x2,…,x n 的平均数)【分析】(1)由折线图求出样本中体育成绩大于或等于70分的学生人数,由此能求出该校高一年级学生中,“体育良好”的学生人数.(2)设“至少有1人体育成绩在[60,70)”为事件A,由对立事件概率计算公式能求出至少有1人体育成绩在[60,70)的概率.(3)当数据a,b,c的方差s2最小时,a,b,c的值分别是79,84,90或79,85,90.【解答】解:(1)由折线图得样本中体育成绩大于或等于70分的学生有30人,∴该校高一年级学生中,“体育良好”的学生人数大约有:1000×=750人.(2)设“至少有1人体育成绩在[60,70)”为事件A,由题意,得P(A)=1﹣=1﹣,∴至少有1人体育成绩在[60,70)的概率是.(3)∵甲、乙、丙三人的体育成绩分别为a,b,c,且分别在[70,80),[80,90),[90,100]三组中,其中a,b,c∈N,∴当数据a,b,c的方差s2最小时,a,b,c的值分别是79,84,90或79,85,90.【点评】本题考查概率的求法,是中档题,解题时要认真审题,注意折线图、方差公式的合理运用.17.(14分)(2016西城区一模)如图,四边形ABCD是梯形,AD∥BC,∠BAD=90°,四边形CC1D1D为矩形,已知AB⊥BC1,AD=4,AB=2,BC=1.(1)求证:BC1∥平面ADD1;(2)若DD1=2,求平面AC1D1与平面ADD1所成的锐二面角的余弦值;(3)设P为线段C1D上的一个动点(端点除外),判断直线BC1与直线CP能否垂直?并说明理由.【分析】(1)推导出CC1∥DD1,从而CC1∥平面ADD1,同理BC∥ADD1,进而平面BCC1∥平面ADD1,由此能证明BC1∥平面ADD1.(2)推导出AB⊥BC,AB⊥CC1,从而CC1⊥平面ABCD,进而DD1⊥平面ABCD,以D 为原点,DA,DM,DD1分别为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出平面AC1D1与平面ADD1所成的锐二面角的余弦值.(3)设DD1=m,(m>0),,λ∈(0,1),由BC1⊥CP,得λ>1,与0<λ<1矛盾,从而直线BC1与CP不可能垂直.【解答】证明:(1)∵CC1D1D为矩形,∴CC1∥DD1,又∵DD1⊂平面ADD1,CC1⊄平面ADD1,∴CC1∥平面ADD1,同理BC∥ADD1,又∵BC∩CC1=C,∴平面BCC1∥平面ADD1,又∵BC1⊂平面BCC1,∴BC1∥平面ADD1.解:(2)∵平面ABCD中,AD∥BC,∠BAD=90°,∴AB⊥BC,又∵AB⊥BC1,BC∩BC1=B,∴AB⊥平面BCC1,∴AB⊥CC1,又∵四边形CC1D1D为矩形,且底面ABCD中AB与CD相交于一点,∴CC1⊥平面ABCD,∵CC1∥DD1,∴DD1⊥平面ABCD,过D在底面ABCD中作DM⊥AD,∴DA,DM,DD1两两垂直,以D为原点,DA,DM,DD1分别为x轴,y轴,z轴,建立空间直角坐标系,则D(0,0,0),A(4,0,0),B(4,2,0),C(3,2,0),C1(3,2,2),D1(0,0,2),∴=(﹣4,0,2),设平面AC1D1的一个法向量为=(x,y,z),则,∴,取x=2,得,平面ADD1的法向量=(0,1,0),cos<>==﹣,∴平面AC1D1与平面ADD1所成的锐二面角的余弦值为.(3)直线BC1与直线CP不可能垂直.理由如下:设DD1=m,(m>0),,λ∈(0,1),由B(4,2,0),C(3,2,0),D(0,0,0),得=(﹣1,0,m),=(3,2,m),=(3λ,2λ,λm),=(﹣3,﹣2,0),==(3λ﹣3,2λ﹣2,λm),若BC1⊥CP,则=﹣(3λ﹣3)+λm2=0,即(m2﹣3)λ=﹣3,∵λ≠0,∴,解得λ>1,与0<λ<1矛盾,∴直线BC1与CP不可能垂直.【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,考查两直线是否垂直的判断,是中档题,解题时要认真审题,注意向量法的合理运用.18.已知函数f(x)=xe x﹣ae x﹣1,且f′(1)=e.(1)求a的值及f(x)的单调区间;(2)若关于x的方程f(x)=kx2﹣2(k>2)存在两个不相等的正实数根x1,x2,证明:|x1﹣x2|>ln.【分析】(1)求出函数的导数,根据f′(1)=e,求出a的值,解关于导函数的不等式,求出函数的单调区间即可;(2)问题转化为求函数g(x)=(x﹣1)e x﹣kx2+2的单调性,得到x1,x2的范围,从而证出结论.【解答】(1)解:f′(x)=(1+x)e x﹣ae x﹣1,∴f′(1)=2e﹣a=e,解得:a=e,故f(x)=xe x﹣e x,f′(x)=xe x,令f′(x)>0,解得:x>0,令f′(x)<0,解得:x<0,∴f(x)在(﹣∞,0)递减,在(0,+∞)递增;(2)证明:方程f(x)=kx2﹣2,即为(x﹣1)e x﹣kx2+2=0,设g(x)=(x﹣1)e x﹣kx2+2,g′(x)=x(e x﹣2k),令g′(x)>0,解得:x>ln(2k),令g′(x)<0,解得:0<x<ln(2k),∴g(x)在(0,ln(2k))递减,在(ln(2k),+∞)递增,由k>2,得ln(2k)>ln4>1,∵g(1)=﹣k+2<0,∴g(ln(2k))<0,不妨设x1<x2,(其中x1,x2为f(x)的两个不相等的正实数根),∵g(x)在(0,ln(2k))递减,且g(0)=1>0,g(1)=﹣k+2<0∴0<x1<1,同理根据函数g(x)在(ln(2k),+∞)上递增,且g(ln(2k))<0,得:x2>ln(2k)>ln4,∴|x1﹣x2|=x2﹣x1>ln4﹣1=ln,即:|x1﹣x2|>ln.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道综合题.19.(14分)(2016西城区一模)已知椭圆C:mx2+3my2=1(m>0)的长轴长为2,O 为坐标原点.(1)求椭圆C的方程和离心率;(2)设点A(3,0),动点B在y轴上,动点P在椭圆C上,且P在y轴的右侧,若|BA|=|BP|,求四边形OPAB面积的最小值.【分析】(1)将椭圆方程化为标准方程,由题意可得a,可得b,即可得到椭圆方程,再由离心率公式计算即可得到所求值;(2)设AP中点为D,由|BA|=||BP|,所以BD⊥AP,求得AP的斜率,进而得到BD的斜率和中点,可得直线BD的方程,即有B的坐标,求得四边形OPAB的面积为S=S△OAP+S△OMB,化简整理,运用基本不等式即可得到最小值.【解答】解:(1)椭圆C:mx2+3my2=1,即为+=1,所以a2=,b2=,a2=,b2=,可得2a=2=2,m=,可得a=,b=,即有椭圆C: +=1,由c==2,即e==;(2)设AP中点为D,由|BA|=||BP|,所以BD⊥AP,由题意,可得直线BD的斜率存在,P(x0,y0)(y0≠0),则D(,),直线AP的斜率为k AP=,直线BD的斜率为﹣=,可得BD的方程为y﹣=(x﹣),令x=0可得y=,即B(0,),由+=1,可得x02=6﹣3y02,化简可得B(0,),则四边形OPAB的面积为S=S△OAP+S△OMB=×3|y0|+×3||=(2|y0|+)≥2=3,当且仅当2|y0|=,即y0=±∈[﹣,]时,等号成立.所以四边形OPAB面积的最小值为3.【点评】本题考查椭圆的方程和离心率的求法,注意运用椭圆的性质和离心率公式,考查四边形面积的最值的求法,注意运用直线的斜率公式和基本不等式,考查化简整理的运算能力,属于中档题.20.设数列{a n}和{b n}的项数均为m,则将数列{a n}和{b n}的距离定义为|a i﹣b i|.(1)给出数列1,3,5,6和数列2,3,10,7的距离;(2)设A 为满足递推关系a n+1=的所有数列{a n }的集合,{b n }和{c n }为A 中的两个元素,且项数均为m ,若b 1=2,c 1=3,{b n }和{c n }的距离小于2016,求m 的最大值; (3)记S 是所有7项数列{a n |1≤n ≤7,a n =0或1}的集合,T ⊆S ,且T 中任何两个元素的距离大于或等于3,证明:T 中的元素个数小于或等于16.【分析】(1)由数列距离的定义即可求得数列1,3,5,6和数列2,3,10,7的距离; (2)由数列的递推公式,即可求得a ,a 3,a 4,a 5,求得A 中数列的项周期性重复,且间隔4项重复一次,求得数列{b n }和{c n }规律,可知随着项数m 越大,数列{b n }和{c n }的距离越大,由=b i ﹣c i |=,根据周期的定义,得|b i ﹣c i |=|b i ﹣c i |=×864=2016,求得m 的最大值;(3)利用反证法,假设T 中的元素个数大于等于17个,设出{c n },{d n },{f n },最总求得|f i ﹣c i |≤2和|f i ﹣d i |≤2中必有一个成立,与数列的距离大于或等于3矛盾,故可证明T 中的元素个数小于或等于16.【解答】解:(1)由题意可知,数列1,3,5,6和数列2,3,10,7的距离为1+0+5+1=7,(2)设a 1=p ,其中p ≠0,且p ≠±1,由a n+1=,得a 2=,a 3=﹣,a 4=,a 5=p ,∴a 1=a 5,因此A 中数列的项周期性重复,且间隔4项重复一次,所数列{b n }中,b 4k ﹣3=2,b 4k ﹣2=﹣3,b 4k ﹣1=﹣,b 4k =,k ∈N *,所以{c n }中,b 4k ﹣3=3,b 4k ﹣2=﹣2,b 4k ﹣1=﹣,b 4k =,k ∈N *,|b i ﹣c i |≥|b i ﹣c i |,得项数m 越大,数列{b n }和{c n }的距离越大,由=b i ﹣c i |=,得|b i ﹣c i |=|b i ﹣c i |=×864=2016,所以m<3456时, |b i﹣c i|<2016,故m的最大值为3455,(3)证明:假设T中的元素个数大于等于17个,因为数列{a n}中,a i=0或1,所以仅由数列前三项组成的数组(a1,a2,a3)有且仅有8个,(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1),那么这17个元素(即数列)之中必有三个具有相同的a1,a2,a3,设这个数列分别为{c n}:c1,c2,c3,c4,c5,c6,c7,{d n}:d1,d2,d3,d4,d5,d6,d7,{f n}:f1,f2,f3,f4,f5,f6,f7,其中c1=d1=f1,c2=d2=f2,c3=d3=f3,因为这三个数列中每两个的距离大于等于3,所以,{b n}和{c n}中,c i=d i,(i=4,5,6,7)中至少有三个成立,不妨设c4≠d4,c5≠d5,c6≠d6,由题意,c4和d4中一个等于0,而另一个等于1,又因为f4=0或1,所以f4=c4和f4=d4中必有一个成立,同理,得f5=c5和f5=d5中必有一个成立,f6=c6和f6=d6中必有一个成立,所以“f i=c i(i=3,4,5)中至少有两个成立”或”f i=d i(i=4,5,6)中至少有两个成立“中必有一个成立,所以|f i﹣c i|≤2和|f i﹣d i|≤2中必有一个成立.与题意矛盾,∴T中的元素个数小于或等于16.【点评】本题考查数列的新定义,求数列的周期,考查反证法的应用,考查学生分析解决问题的能力,正确理解新定义是关键,属于难题.。

北京2016各区模拟高三理科数学一模、二模分类之压轴题部分

北京2016各区模拟高三理科数学一模、二模分类之压轴题部分

{西城}16年高三一模 理科 数学20.设数列{}n a 和{}n b 的项均为m ,则将数列和的距离定义为1mi ii a b=-∑.(Ⅰ)该出数列1,3,5,6和数列2,3,10,7的距离 (Ⅱ)设A 为满足递推关系111nn na a a ++=-的所有数列{}n a 的集合,{}n b 和{}n c 为A 中的两个元素,且项数均为m ,若12b =,13c =,{}n b 和{}n c 的距离小于2016,求m 得最大值;素的距离大于或等于3,证明:中的元素个数小于或等于16.{顺义}16年高三一模 理科 数学20.在数列中,,,其中,.(Ⅰ)当时,求的值;(Ⅱ)是否存在实数,使构成公差不为0的等差数列?证明你的结论; (Ⅲ)当时,证明:存在,使得.{海淀}16年高三一模 理科 数学20.(本小题满分13 分)给定正整数n (n ≥3),集合{}1,2,,n U n =⋅⋅⋅.若存在集合A ,B ,C ,同时满足下 列条件:① U n =A ∪B ∪C ,且A ∩B = B ∩C =A ∩C =∅;②集合A 中的元素都为奇数,集合B 中的元素都为偶数,所有能被3 整除的数都在集 合C 中(集合C 中还可以包含其它数);③集合A , B ,C 中各元素之和分别记为S A , S B ,S C ,有S A =S B =S C ; 则称集合 U n 为可分集合.(Ⅰ)已知U 8为可分集合,写出相应的一组满足条件的集合A , B ,C ; (Ⅱ)证明:若n 是3 的倍数,则U n 不是可分集合; (Ⅲ)若U n 为可分集合且n 为奇数,求n 的最小值. (考生务必将答案答在答题卡上,在试卷上作答无效){东城}16年高三一模 理科 数学20.(本小题共13 分)数列{}n a 中, 给定正整数m (m >1),V (m )=111||m i i i aa -+=-∑.定义:数列{}n a 满足1i i a a +≤(i =1,2,…,m -1),称数列{}n a 的前m 项单调不增. (1)若数列{}n a 的通项公式为(1),(*)n n a n N =-∈,求V (5).(2)若数列{}n a 满足:1,,(1,*,)m a a a b m m N a b ==>∈>,求证:V (m )=a -b 的充分必要条件是数列{}n a 的前m 项单调不增.(3)给定正整数m (m >1),若数列{}n a 满足:0n a ≥,(n =1,2,…,m ),且数列{}n a 的前m 项和为m 2,求V (m )的最大值与最小值.(写出答案即可){朝阳}16年高三一模 理科 数学20.(本小题满分13分)已知等差数列}{n a 的通项公式31()n a n n *=-∈N .设数列{}n b 为等比数列,且n n k b a =.(Ⅰ)若11=2b a =,且等比数列{}n b 的公比最小, (ⅰ)写出数列{}n b 的前4项; (ⅱ)求数列{}n k 的通项公式;(Ⅱ)证明:以125b a ==为首项的无穷等比数列{}n b 有无数多个.{80零模}16年高三一模 理科 数学20.(本小题满分13分)对于任意的*n ∈N ,记集合{1,2,3,,n E n =⋅⋅⋅,,n n n P x x a E b E ⎧⎫==∈∈⎨⎬⎩⎭.若集合A 满足下列条件:①n A P ⊆;②12,x x A ∀∈,且12x x ≠,不存在*k ∈N ,使212x x k +=,则称A 具有性质Ω.如当2n =时,2{1,2}E =,2{1,P =.122,x x P ∀∈,且12x x ≠,不存在*k ∈N ,使212x x k +=,所以2P 具有性质Ω. (Ⅰ) 写出集合35,P P 中的元素个数,并判断3P 是否具有性质Ω. (Ⅱ)证明:不存在,A B 具有性质Ω,且A B =∅ ,使15E A B = . (Ⅲ)若存在,A B 具有性质Ω,且A B =∅ ,使n P A B = ,求n 的最大值.。

.4.西城.高三一模数学

.4.西城.高三一模数学

北京市西城区2016年高三一模试卷
数 学(理科) 2016.4
第Ⅰ卷(选择题 共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符
合题目要求的一项.
1.设集合2{|0}4A x x x =<+,集合{|21,}B n n k k ==-∈Z ,则A B =( )
2. 在平面直角坐标系xOy 中,曲线C 的参数方程为22cos ,()2sin x y θθθ
⎧=+⎪⎨=
⎪⎩为参数,则曲线C
是( )
3. 如果()f x 是定义在R 上的奇函数,那么下列函数中,一定为偶函数的是( )
4. 在平面直角坐标系中,向量OA =(-1, 2),OB =(2, m ) , 若O , A , B 三点能构成三角形,则( )
5. 执行如图所示的程序框图,若输入的,A S 分别为0, 1, 则输出的S =( ) (A )4 (B )16 (C )27 (D )36
xOy (A ){1,1}-
(B ){1,3}
(C ){3,1}--
(D ){3,1,1,3}--
(A )关于x 轴对称的图形 (B )关于y 轴对称的图形 (C )关于原点对称的图形
(D )关于直线y x =对称的图形
(A ) ()y x f x =+ (B )()y xf x = (C )2()y x f x =+
(D )2()y x f x =
(A )4m =- (B )4m ≠- (C )1m ≠
(D )m ∈R
输出S 2k k =+
A A k =+
S S A =⋅


4
k ≥ 输入A
,S 1k =
开始 结束。

北京市西城区2016届高三上学期期末考试数学理试题(WORD精校版)

北京市西城区2016届高三上学期期末考试数学理试题(WORD精校版)

市西城区2015 —2016学年度第一学期期末试卷高三数学(理科)2016.1第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|1}A x x=>,集合{2}B a=+,若A B=∅,则实数a的取值X围是()(A)(,1]-∞-(B)(,1]-∞(C)[1,)-+∞(D)[1,)+∞2. 下列函数中,值域为R的偶函数是()(A)21y x=+(B)e ex xy-=-(C)lg||y x=(D)y3. 设命题p:“若1sin2α=,则π6α=”,命题q:“若a b>,则11a b<”,则()(A)“p q∧”为真命题(B)“p q∨”为假命题(C)“q⌝”为假命题(D)以上都不对4. 在数列{}n a中,“对任意的*n∈N,212n n na a a++=”是“数列{}na为等比数列”的()(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件5. 一个几何体的三视图如图所示,那么这个几何体的表面积是()(A)16+(B)16+侧(左)视图正(主)视图(C )20+ (D )20+6. 设x ,y 满足约束条件1,3,,x y y m y x +-⎧⎪⎨⎪⎩≤≤≥若3z x y =+的最大值与最小值的差为7,则实数m =()(A )32(B )32-(C )14(D )14-7.某市乘坐出租车的收费办法如下:相应系统收费的程序框图如图所示,其中x (单位:千米)为行驶里程,y (单位:元)为所收费用,用[x ]表示不大于x 的最大整数,则图中○1(A )12[]42y x =-+(B )12[]52y x =-+(C )12[]42y x =++(D )12[]52y x =++8.如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.如果对于常数λ,在正方形ABCD 的四条边上,有且只有6个不同的点P 使得=PE PF λ⋅成立,那么λ的取值X 围是() (A )(0,7) (B )(4,7) (C )(0,4) (D )(5,16)-第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 已知复数z 满足(1i)24i z +=-,那么z =____.10.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c . 若A B =,3a =,2c =,则cos C =____.11.双曲线C :221164x y -=的渐近线方程为_____;设12,F F 为双曲线C 的左、右焦点,P 为C 上一点,且1||4PF =,则2||PF =____.12.如图,在ABC ∆中,90ABC ∠=,3AB =,4BC =,点O 为BC 的中点,以BC 为直径的半圆与AC ,AO 分别相交于点M ,N ,则AN =____;AMMC= ____.13. 现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有____种.(用数字作答)14. 某食品的保鲜时间t (单位:小时)与储藏温度x (单位:C )满足函数关系60,264, , 0.kx x t x +⎧=⎨>⎩≤且该食品在4C 的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示. 给出以下四个结论: ○1该食品在6C 的保鲜时间是8小时;○2当[6,6]x ∈-时,该食品的保鲜时间t 随着x 增大而逐渐减少;○3到了此日13时,甲所购买的食品还在保鲜时间内; ○4到了此日14时,甲所购买的食品已然过了保鲜时间. 其中,所有正确结论的序号是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()cos (sin )f x x x x =,x ∈R . (Ⅰ)求()f x 的最小正周期和单调递增区间;(Ⅱ)设0α>,若函数()()g x f x α=+为奇函数,求α的最小值.16.(本小题满分13分)甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分. 两人4局的得分情况如下:(Ⅰ)若从甲的4局比赛中,随机选取2局,求这2局的得分恰好相等的概率;(Ⅱ)如果7x y ==,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为X ,求X 的分布列和数学期望;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x 的所有可能取值.(结论不要求证明)17.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD ∠=,侧面PAB ⊥底面ABCD ,90BAP ∠=,2AB AC PA ===, ,E F 分别为,BC AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC ;(Ⅱ)若M 为PD 的中点,求证://ME 平面PAB ; (Ⅲ)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所成的角相等,求PMPD的值.18.(本小题满分13分)已知函数2()1f x x =-,函数()2ln g x t x =,其中1t ≤.(Ⅰ)如果函数()f x 与()g x 在1x =处的切线均为l ,求切线l 的方程及t 的值; (Ⅱ)如果曲线()y f x =与()y g x =有且仅有一个公共点,求t 的取值X 围.F CADPMB E19.(本小题满分14分)已知椭圆C :)0(12222>>=+b a by a x 的离心率为23,点A 在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满足此圆与l 相交两点1P ,2P (两点均不在坐标轴上),且使得直线1OP ,2OP 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.20.(本小题满分13分)在数字21,2,,()n n ≥的任意一个排列A :12,,,n a a a 中,如果对于,,i j i j *∈<N ,有i j a a >,那么就称(,)i j a a 为一个逆序对. 记排列A 中逆序对的个数为()S A .如=4n 时,在排列B :3, 2, 4, 1中,逆序对有(3,2),(3,1),(2,1),(4,1),则()4S B =.(Ⅰ)设排列C :3, 5, 6, 4, 1, 2,写出()S C 的值; (Ⅱ)对于数字1,2,,n 的一切排列A ,求所有()S A 的算术平均值;(Ⅲ)如果把排列A :12,,,n a a a 中两个数字,()i j a a i j <交换位置,而其余数字的位置保持不变,那么就得到一个新的排列A ':12,,,n b b b ,求证:()()S A S A '+为奇数.市西城区2015 — 2016学年度第一学期期末高三数学(理科)参考答案及评分标准2016.1一、选择题:本大题共8小题,每小题5分,共40分.1.A 2.C 3.B 4.B 5.B 6.C 7.D 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.13i -- 10.7911.12y x =±1212291613.54 14.○1○4 注:第11,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:()cos (sin )f x x x x =+2sin cos 1)x x x =-1sin 22x x =………………4分πsin(2)3x =+, ………………6分所以函数()f x 的最小正周期2π=π2T =. ………………7分 由ππππ2π+23222x k k -+≤≤,k ∈Z ,得5ππππ+1212x k k -≤≤, 所以函数()f x 的单调递增区间为5ππππ+]1212[k k -,,k ∈Z . ………………9分 (注:或者写成单调递增区间为5ππππ+)1212(k k -,,k ∈Z . ) (Ⅱ)解:由题意,得π()()sin(22)3g x f x x αα=+=++,因为函数()g x 为奇函数,且x ∈R ,所以(0)0g =,即πsin(2)03α+=, ………………11分所以π2π3k α+=,k ∈Z , 解得ππ26k α=-,k ∈Z ,验证知其符合题意. 又因为0α>, 所以α的最小值为π3. ………………13分16.(本小题满分13分)(Ⅰ)解:记 “从甲的4局比赛中,随机选取2局,且这2局的得分恰好相等”为事件A , ………………1分 由题意,得2421()C 3P A ==, 所以从甲的4局比赛中,随机选取2局,且这2局得分恰好相等的概率为13. ……4分(Ⅱ)解:由题意,X 的所有可能取值为13,15,16,18, ………………5分且3(13)8P X ==,1(15)8P X ==,3(16)8P X ==,1(18)8P X ==,………………7分所以X 的分布列为:……………… 8分所以3131E X=⨯+⨯+⨯+⨯=. ………………10分()13151618158888(Ⅲ)解:x的可能取值为6,7,8. ………………13分17.(本小题满分14分)(Ⅰ)证明:在平行四边形ABCD中,因为AB AC=,135∠=,BCD所以AB AC⊥.由,E F分别为,EF AB,BC AD的中点,得//所以EF AC⊥.………………1分因为侧面PAB⊥底面ABCD,且90∠=,BAP所以PA⊥底面ABCD. ………………2分又因为EF⊂底面ABCD,所以PA EF⊥.………………3分又因为PA AC A=,PA⊂平面PAC,AC⊂平面PAC,所以EF⊥平面PAC. ………………4分(Ⅱ)证明:因为M为PD的中点,F分别为AD的中点,所以//MF PA,Array又因为MF⊄平面PAB,PA⊂平面PAB,所以//MF平面PAB. ………………5分EF平面PAB.同理,得//D又因为=MF EF F,MF⊂平面MEF,EF⊂平面所以平面//MEF平面PAB. ………………7分又因为ME⊂平面MEF,所以//ME 平面PAB . ………………9分(Ⅲ)解:因为PA ⊥底面ABCD ,AB AC ⊥,所以,,AP AB AC 两两垂直,故以,,AB AC AP 分别为x 轴、y 轴和z 轴,如上图建立空间直角坐标系, 则(0,0,0),(2,0,0),(0,2,0),(0,0,2),(2,2,0),(1,1,0)A B C P D E -,所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-, ………………10分 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--, 所以(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--,易得平面ABCD 的法向量(0,0,1)=m . ………………11分 设平面PBC 的法向量为(,,)x y z =n , 由0BC ⋅=n ,0PB ⋅=n ,得220,220,x y x z -+=⎧⎨-=⎩ 令1x =, 得(1,1,1)=n . ………………12分因为直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等,所以|cos ,||cos ,|ME ME <>=<>m n ,即||||||||||||ME ME ME ME ⋅⋅=⋅⋅m n m n , ………………13分所以 |22|λ-=,解得λ=λ=.………………14分18.(本小题满分13分)(Ⅰ)解:求导,得()2f x x '=,2()tg x x'=,(0)x >.………………2分 由题意,得切线l 的斜率(1)(1)k f g ''==,即22k t ==,解得1t =.……………3分 又切点坐标为(1,0),所以切线l 的方程为220x y --=.………………4分(Ⅱ)解:设函数2()()()12ln h x f x g x x t x =-=--,(0,)x ∈+∞.………………5分“曲线()y f x =与()y g x =有且仅有一个公共点”等价于“函数()y h x =有且仅有一 个零点”.求导,得2222()2t x th x x x x-'=-=. ………………6分①当0t ≤时,由(0,)x ∈+∞,得()0h x '>,所以()h x 在(0,)+∞单调递增.又因为(1)0h =,所以()y h x =有且仅有一个零点1,符合题意.………………8分②当1t =时,当x 变化时,()h x '与()h x 的变化情况如下表所示:所以()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以当1x =时,min()(1)0h x h ==,故()y h x =有且仅有一个零点1,符合题意.………………10分③当01t <<时,令()0h x '=,解得x .当x 变化时,()h x '与()h x 的变化情况如下表所示:所以()h x 在上单调递减,在)+∞上单调递增,所以当x =时,min()h x h =.………………11分因为(1)0h =1<,且()h x在)+∞上单调递增,所以(1)0h h <=. 又因为存在12e(0,1)t-∈ ,111122()12ln 0tttth t ----=--=>ee ee ,所以存在0(0,1)x ∈使得0()0h x =,所以函数()y h x =存在两个零点0x ,1,与题意不符.综上,曲线()y f x =与()y g x =有且仅有一个公共点时,t 的X 围是0{|t t ≤,或1}t =.………………13分19.(本小题满分14分)(Ⅰ)解:由题意,得c a =,222a b c =+, ………………2分又因为点A 在椭圆C 上, 所以221314ab+=, ………………3分解得2a =,1b =,c ,所以椭圆C 的方程为1422=+y x . ………………5分 (Ⅱ)结论:存在符合条件的圆,且此圆的方程为225x y +=. ………………6分 证明如下:假设存在符合条件的圆,并设此圆的方程为222(0)x y r r +=>.当直线l 的斜率存在时,设l 的方程为m kx y +=.………………7分由方程组22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩ 得0448)14(222=-+++m kmx x k , ………………8分 因为直线l 与椭圆C 有且仅有一个公共点,所以2221(8)4(41)(44)0km k m ∆=-+-=,即2241m k =+. ………………9分由方程组222,,y kx m x y r =+⎧⎨+=⎩ 得2222(1)20k x kmx m r +++-=, ………………10分则22222(2)4(1)()0km k m r ∆=-+->.设111(,)P x y ,222(,)P x y ,则12221km x x k -+=+,221221m r x x k -⋅=+, ………………11分 设直线1OP ,2OP的斜率分别为1k ,2k , 所以221212121212121212()()()y y kx m kx m k x x km x x m k k x x x x x x +++++=== 222222222222222111m r kmk km m m r k k k m r m r k --⋅+⋅+-++==--+, ………………12分将2241m k =+代入上式,得221222(4)14(1)r k k k k r -+⋅=+-.要使得12k k 为定值,则224141r r-=-,即25r =,验证符合题意. 所以当圆的方程为225x y +=时,圆与l 的交点12,P P 满足12k k 为定值14-. ………………13分当直线l 的斜率不存在时,由题意知l 的方程为2x =±, 此时,圆225x y +=与l 的交点12,P P 也满足1214k k =-. 综上,当圆的方程为225x y +=时,圆与l 的交点12,P P 满足斜率之积12k k 为定值14-. ………………14分20.(本小题满分13分)(Ⅰ)解:()10S C =;………………2分 (Ⅱ)解:考察排列D :121,,,,n n d d d d -与排列1121,,,,n n D d d d d -:,因为数对(,)i j d d 与(,)j i d d 中必有一个为逆序对(其中1i j n <≤≤),且排列D 中数对(,)i j d d 共有2(1)C 2n n n -=个, ………………3分 所以1(1)()()2n n S D S D -+=. ………………5分 所以排列D 与1D 的逆序对的个数的算术平均值为(1)4n n -. ………………6分 而对于数字1,2,,n 的任意一个排列A :12,,,n a a a ,都可以构造排列A 1:121,,,,n n a a a a -,且这两个排列的逆序对的个数的算术平均值为(1)4n n -. 所以所有()S A 的算术平均值为(1)4n n -. ………………7分 (Ⅲ)证明:○1当1j i =+,即,i j a a 相邻时, 不妨设1i i a a +<,则排列A '为12112,,,,,,,,i i i i n a a a a a a a -++,此时排列A '与排列A :12,,,n a a a 相比,仅多了一个逆序对1(,)i i a a +,所以()()1S A S A '=+,所以()()2()1S A S A S A '+=+为奇数.………………10分 ○2当1j i ≠+,即,i j a a 不相邻时, 假设,i j a a 之间有m 个数字,记排列A :1212,,,,,,,,,,i m j n a a a k k k a a ,先将i a 向右移动一个位置,得到排列A 1:12112,,,,,,,,,,,,i i m j n a a a k a k k a a -,由○1,知1()S A 与()S A 的奇偶性不同,再将i a 向右移动一个位置,得到排列A 2:121123,,,,,,,,,,,,i i m j n a a a k k a k k a a -,由○1,知2()S A 与1()S A 的奇偶性不同,以此类推,i a 共向右移动m 次,得到排列A m :1212,,,,,,,,,,m i j n a a k k k a a a ,再将j a 向左移动一个位置,得到排列A m +1:1211,,,,,,,,,,i m j i n a a a k k a a a -,以此类推,j a 共向左移动m +1次,得到排列A 2m +1:121,,,,,,,,,j m i n a a a k k a a ,即为排列A ',由○1,可知仅有相邻两数的位置发生变化时,排列的逆序对个数的奇偶性发生变化,m+次的前后两数交换位置,可以得到排列A',而排列A经过21所以排列A与排列A'的逆序数的奇偶性不同,所以()()+为奇数.S A S A'综上,得()()+为奇数.………………13分S A S A'。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


是S=S ∙A
A=A+k
k>4k=k+2
k=1输出S 输入A,S 结束
开始 北京市西城区2016高三一模试卷
数学(理科) 2016.4
第Ⅰ卷(选择题 共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目
要求的一项.
1.设集合{}2
40A x x x =+<,集合{
}
21,B n n k k ==-∈Z ,则A B =
(A){}1,1-
(B){}1,3
(C){}3,1--
(D){}3,1,1,3--
2.在平面直角坐标系xOy 中,曲线C 的参数方程为22cos 2sin x y θ
θ
⎧=+⎪⎨=⎪⎩ (θ为参数),则C 曲线是
(A)关于x 轴对称的图形 (B)关于y 轴对称的图形 (C) 关于原点对称的图形
(D)关于y x =对称的图形
3.如果()f x 是定义在R 上的奇函数,那么下列函数中,一定为偶函数的是 (A) ()y x f x =+
(B)()y xf x = (C)()2
y x f x =+
(D)()2
y x f x =
4.在平面直角坐标系xOy 中,向量()1,2OA =- ,()2,OB m =
,若O ,A ,B 三点构成的三角形,
则 (A) 4m =- (B)4m ≠-
C)1m ≠
(D)m ∈R
5.执行如图所示的程序库按图,若输入的A 、S 分别为0,1则输出的S = (A)4
(B)16
(C)27
(D)36
6.设10,2x ⎛⎫∈ ⎪⎝⎭
,则“(),0a ∈-∞ ”是“12
log x x a >+”的
(A)充分而不必要条件 (B)必要而不充分条件
(C)充分必要条件 (D)既不充分也不必要条件
7.设函数()()sin f x A x ωϕ=+(A ,ω,ϕ是常数,0A >,0ω>),且函数()f x 的部分图
像如图所示,则有
y
O x
5π6
π
12
(A)357436f f f πππ⎛⎫⎛⎫⎛⎫
-
<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
(B)375463f f f πππ⎛⎫⎛⎫⎛⎫
-
<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (C) 5733
6
4
f f f πππ
⎛⎫⎛⎫⎛⎫
<<-
⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
(D)5373
4
6
f f f πππ
⎛⎫⎛⎫⎛⎫
<-<
⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
8.如图,在棱长为()0a a >的正四面体ABCD 中,点B ,C ,D 分别在棱AB ,AC ,AD 上,
且平面111B C D ∥平面BCD ,1A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设
1
AD x AD
=,对于函数()V F x =,则 (A)当2
3
x =
时,函数()f x 取得最大值 (B)函数()f x 在1,12⎛⎫ ⎪⎝⎭
上是减函数
(C)函数()f x 的图像关于直线1
2
x =对称
(D)存在0x ,使得()01
3
A BCD f x V ->(其中A BCD V -为四面体ABCD
的体积)
A
D C
B
D 1
C 1
B 1
A 1
第Ⅱ卷(非选择题 共110分)
二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.在复平面内,复数1z 与2z 对应的点关于虚轴对称,且11i z =-+,则
1
2
z z = . 10.已知等差数列{}n a 的公差0d >,33a =-,245a a =,则n a = ;记{}n a 的前项和为n S ,则n S 的最小值为 .
11.若圆()2
2
21x y -+=与双曲线()22
2:10x C y a a
-=>的渐近线相切,则a = ;双曲线C 的
渐近线方程是 .
12.一个棱长为4的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该截面的面积是
.
俯视图
侧(左)视图
正(主)视图2
2
13.在冬奥会志愿者活动中,甲、乙等5人报名参加了A ,B ,C 三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者工作,且甲不能参加A ,B 项目,乙不能参加B ,C 项目,共有 种不同的志愿者分配方案.(用数字作答)
14.一辆赛车在一个周长为3km 的封闭跑道上行驶,跑道由几段直道和弯道组成,图1反映了赛车在“计时赛”整个第二圈的行驶速度与行驶路程之间的关系.
根据图1,有一些四个说法:
①在这第二圈的2.6km 到2.8km 之间,赛车速度逐渐增加; ②在整个跑道中,最长的直线路程不超过0.6km ;
③大约在这第二圈的0.4km 到0.6km 之间,赛车开始了那段最长直线路程的行驶; ④在图2的四条曲线(注:s 为初始记录数据位置)中,曲线B 最能符合赛车的运动轨迹. 其中,所有正确说法的序号是 .
三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)
在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,设3
A π
=,sin 3sin B C =.
(Ⅰ)若7a =
,求b 的值;
(Ⅱ)求tan C 的值.
16.(本小题满分13分)
某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).
(Ⅰ)体育成绩大于或等于70分的学生常被成为“体育良好”.已知该校高一年级有1000名学生,试估计,高一全年级中“体育良好”的学生人数;
(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在[)60,70和[)80,90的样本学生中随机抽取2人,至少有1人体育成绩在[)60,70的概率;
(Ⅲ)假设甲、乙、丙三人的体育成绩分别为a ,b ,c ,且分别在[)70,80,[)80,90,[]90,100三组中,其中a ,b ,c ∈N ,当数据a ,b ,c 的方差2
s 最小时,写出a ,b ,c 的值.(结论不要求证明)
(注:()()()
2222
121n s x x x x x x n ⎡
⎤=
-+-+⋅⋅⋅+-⎢
⎥⎣⎦,其中x 为数据12,,,n x x x ⋅⋅⋅的平均数)
17.(本小题满分14分)
如图,四边形为梯形ABCD ,DAD BC ∥,90BAD ∠=
,四边形11CC D D 为矩形,已知1AB BC ⊥,4AD =,2AB =,1BC =.
(Ⅰ)求证:1BC ∥平面1ADD ;
(Ⅱ)若12DD =,求平面11AC D 与平面1ADD 所成的锐二面角的余弦值;
(Ⅲ)设P 为线段1C D 上的一个动点(端点除外),判断直线1BC 与直线CP 能否垂直?并说明理由.
D 1
C 1
D
C
B
A
18.(本小题满分13分)
已知函数()1e e x x f x x a -=- ,且()'1e f =. (Ⅰ)求a 的值及()f x 的单调区间;
(Ⅱ)若关于x 的方程()()2
22f x kx k =->存在两不相等的正实数根1x ,2x ,证明:
124
ln e
x x ->.
19.(本小题满分14分)
已知椭圆()22
:310C mx my m +=>的长轴长为26,O 为坐标原点
(Ⅰ)求椭圆C 的方程和离心率;
(Ⅱ)设点()3,0A ,动点B 在y 轴上,动点P 在椭圆C 上,且P 在y 轴的右侧,若BA BP =,求四边形OPAB 面积的最小值.
20.(本小题满分13分)
设数列{}n a 和{}n b 的项均为m ,则将数列和的距离定义为1
m
i i
i a b
=-∑.
(Ⅰ)该出数列1,3,5,6和数列2,3,10,7的距离
(Ⅱ)设A 为满足递推关系111n
n n
a a a ++=
-的所有数列{}n a 的集合,{}n b 和{}n c 为A 中的两个元素,且项数均为m ,若12b =,13c =,{}n b 和{}n c 的距离小于2016,求m 得最大值;
(Ⅲ)记S 是所有7项数列{
7,10n n n a a =≤≤或}1的集合,T S ⊆,且T 由任何两个元素的距离大于或等于3,证明:中的元素个数小于或等于16.。

相关文档
最新文档